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Abstract
A general framework is proposed for solving groupwise pose normalization problems and is
analyzed in detail under different feature spaces. The analysis shows that using principal
component analysis for pose normalization is a special case of using the proposed framework
under a special feature space. The experimental results on two craniofacial datasets show the
proposed method achieved promising results for solving groupwise pose normalization problems
for craniofacial applications.

1. Introduction
3D shape analysis is an important tool for both recognition and retrieval of 3D shapes [19].
If two 3D shapes are members of the same class of objects, their comparison is simplified if
they are both canonical views of their class. For example, if the shapes being compared are
human faces, it is common and natural to have them both facing forward. For other shape
classes, such as kitchenware or furniture, there may be no natural canonical pose, but it is
possible and desirable to define such a pose for purpose of analysis. Given a 3D shape of a
particular class, pose normalization is the process of applying a 3D transformation to the
shape to transform it to a canonical pose for its shape class.

Most algorithms for pose normalization operate on a single 3D shape or try to bring two
shapes into alignment [19][22][9][13]. Single-object pose normalization is used in 3D object
retrieval, in which all models are considered separately since the group of an unseen object
is unknown. Two-object pose normalization is used for alignment tasks. In some analysis
tasks, particularly in the medical domain, a set of 3D models of a single class is provided
and the analysis requires that all of those models be aligned in a single canonical pose. The
methodology proposed here is for the last case and is motivated by our work on 3D
craniofacial image analysis. Our data are sets of 3D meshes of children’s heads from a
3dMD® 12-camera stereo imaging system. The children in the study have one or more
craniofacial abnormalities such as midface flattening, cleft lip, or cleft palate. Because many
of them are infants or toddlers, they cannot be expected to sit still for long or to be able to
keep their heads in a specified pose. In order to analyze the abnormalities and compare
individuals, we must first pose normalize the meshes so that all the heads face in the same
direction.

Thus, the problem of interest in this paper is groupwise pose normalization: how to jointly
pose normalize a group of 3D shape models of the same class. In this paper, the groupwise
pose normalization problem is formulated as an optimization problem, and a gradient
descent approach is proposed solving the optimization problem.
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There are three main contributions to our work. First, the groupwise pose normalization
problem is formally defined. Second, a general framework for solving this problem is
proposed and is analyzed to show that using principal component analysis (PCA) for pose
normalization [22] is a special case of using the proposed framework under a particular
feature space. Third, the framework is applied to the problem of pose normalization of 3D
meshes of children’s heads and experimental results are given.

2. Related Work
We will discuss related work in pose normalization as well as groupwise techniques for 3D
data analysis.

2.1. Pose normalization
Let X = (V, E) denote a triangular mesh model of a 3D shape, where V and E are the sets of
vertices and edges in the mesh model, respectively. Vranic and Saupe [22] proposed to use
principal components analysis (PCA), a common approach to modeling shape, for pose
normalization. Given the mesh X, PCA computes its scatter matrix S and finds a projection
axis b that maximizes btSb. Intuitively, the total scatter of the projected samples is
maximized after the projection of the samples onto b. The optimal Q projection axes bq, q =
1, …, Q that maximize the above criterion are the eigenvectors of S corresponding to the
largest Q eigenvalues, {λq| q = 1, …, Q}. The three eigenvectors are then chosen as the
resultant x,y,z axes, respectively.

While PCA is a standard, easy-to-use approach, it is not effective in general shape
recognition and retrieval problems [19]. For this reason, several different PCA variants [23]
[15][14][11] have been proposed to deal with the problems faced by basic PCA for pose
normalization. Other non-PCA approaches include a rectilinearity measure [10] and a
symmetry-based measure [1].

While most pose normalization algorithms operate on a single 3D object, some methods
have been proposed for aligning two 3D models. Kazhdan [9] used a spherical function to
represent a 3D shape model and minimized the L2-distance between pairs shapes. Martinek
and Grosso [13] used an image-like representation to store depth information from all
perspectives for a 3D shape and a weighted ratio of the intersection to the union of two
images as a similarity measure [13]. Specialized pose normalization approaches exist for
specific 3D shape classes such as faces and human bodies [20][7]. To the best of our
knowledge, groupwise pose normalization problems have neither been formally defined nor
solved.

2.2. Groupwise Techniques for 3D Data
Groupwise approaches have been applied to several other 3D data analysis tasks including
point registration[4][24], point correspondence [5], image registration [12] and Procrustes
analysis [16][6]. To avoid solving point correspondence problems, one class of groupwise
point-set registration approach [4][24] models point sets as probability distributions and uses
information theoretic measures [4][24] to determine how similar a group of probability
distributions are after transformation.

There are several important contrasts between group-wise point-set registration and
groupwise pose normalization. First, groupwise point-set registration focuses on point sets
(2D/3D point clouds), while groupwise pose normalization focuses on shape models (2D/3D
meshes). Richer information including oriented position, descriptors such as the light field
descriptor [2], and geometric properties such as surface-normal angles and curvatures, can
be taken into consideration when working with 3D shape models.
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Davies et al. [5] proposed an information theoretic MDL-based objective function to
quantize the quality of the point correspondences. A simplified version G proposed by
Thodberg [21] as defined below is commonly-used.

(1)

In [5], given a set of computed point correspondences among a set of shapes, PCA is
computed on the set of point correspondences, and the computed eigenvalues, {λk|k = 1, …,
N}, are used to calculate G in (1). λcut is a parameter that determines the point at which to
effectively switch between the determinant-type term (the if-part in (1)) and the trace-type
term (the otherwise-part in (1)). The determinant-type terms jointly measure the volume of
the training set after correspondence in shape space, which favors compactness. The trace-
type terms jointly measure similarity of each pair of the training shapes after correspondence
via Euclidean distance. The point correspondences of the ith shape are assumed to be
controlled by some parameter vector βi, for which the individual parameters are given by
{βi,a|a = 1, …, A}. The gradient descent approach is used to minimize G with respect to a
parameter vector βi. The Jacobian matrix for the gradient of the objective function is defined
in [8]:

(2)

It is easy to compute  (see (1)) and so we focus on  in the following discussions. 
can be computed by using the following chain rule for derivatives.

(3)

where pi is a vector which contains the positions of corresponding points on the i-th mesh.

While  is typically computed by using finite differences, the following analytic form for

 exists:

(4)

where ci,k is the projection coefficient of the i-th position vector pi onto the k-th eigenvector
bk.

Chen, Zheng and Shapiro [3] further generalized the MDL framework [5] to feature spaces
and proved that the Davies framework is a special case of their proposed framework.
Although the MDL framework [5] and its generalization [3] have been used in point
correspondence and image registration [12], to the best of our knowledge, this class of
framework has not been applied for solving groupwise pose normalization problems.
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3. Groupwise Pose Normalization
In this section we formulate the groupwise pose normalization problem and both describe
and analyze our approach.

3.1. Problem Formulation
Assume that Ψ is the space of all triangular mesh models of 3D shapes. A group of 3D shape
models of the same class will be jointly pose normalized, so that the shapes can be more
effectively compared.

Let Γ be the space of all transformations T: Ψ → Ψ. Let Ω be a feature space and φ: Ψ → Ω
be a mapping from a mesh to a feature representation. Let S = {Xi ∈ Ψ|i = 1, …, N} be a set
of N 3D shape models of a particular class. Let F: ΩN → R be a groupwise shape
dissimilarity function that measures the quality of pose normalization for a set of models.
The groupwise pose normalization problem is to find the set of transformations T* that
minimize the value of function F as defined below.

(5)

3.2. Proposed Method
To solve (5), we will adapt the general MDL framework of [3] to groupwise pose
normalization problems. We will restrict Γ to be the space of rigid transformations in 3D
space. While the framework of [3] allowed an arbitrary re-producing kernel Hilbert space
(RKHS) Ω [18], in this work we will consider Ω to be a space of sets of local features, in
which PCA and the framework of [3] cannot be applied directly. In other words, the function
φ: Ψ → Ω will map a mesh to a set of local features that belongs to ϒ, the space of local
features vectors.

For the dissimilarity function F, we will adapt (1), which was also used in [3], from the
Davies et al. work [5]. Because PCA cannot be performed on Ω, the space of sets of local
features, it is instead performed on ϒ, the space of local features, so that the resultant
eigenvalues can be used for computing the value of F. To elaborate, PCA is performed on Δ
= {f ∈ φ(Ti(Xi))|i = 1, …, N}, the union of the sets, {φ(Ti(Xi))|i = 1, …, N} that is the input to
(5).

The intuition is that the better the local features are represented by PCA on ϒ, the better the
resultant meshes are pose normalized.

The proposed objective function is defined below.

(6)

where d is the minimum of N and the dimension of a local feature vector in ϒ and {λk|k = 1,
…, d} are the eigenvalues obtained from PCA performed on Δ.

The set of local feature vectors of the ith model is assumed to be controlled by some
transformation parameter vector αi, for which the individual parameters are given by {αi,a|a
= 1, …, A}. The gradient descent approach is proposed to minimize F with respect to a
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parameter vector αi. The Jacobian matrix for the gradient of the objective function is defined
as

(7)

In contrast with (3),  can be computed by using the following chain rule for derivatives

(8)

While  is typically computed by using finite differences, the following analytic form for

 exists:

(9)

where c is the projection coefficient of f onto the k-th eigenvector bk and M is the cardinality
of Δ.

Note that if ϒ is a reproducing kernel Hilbert space (RKHS), (6)–(9) can be generalized with
Mercer kernels [18] by using the techniques developed in [3]. In the following, two types of
local features, positions and rotation variant local features, are considered. Unlike using

finite differences to approximate the gradient , the analytic formulas for computing the

gradient  can be derived for these two types of local features.

3.2.1 Positions as Local Features—Consider the 3D transformation T = {tx, ty, tz, q1,
q2, q3} where tx, ty, tz are the three translation parameters to represent a translation vector, t
= [tx ty tz]t, and q1, q2, q3 are the classical Rodrigues parameters to represent a rotation
matrix, R (see (10)) [17]. Let x be a position vector before application of the transformation
T and x′ = R(x − t) be the corresponding position vector after the transformation. The
analytic formulas for computing derivatives with respect to translation and rotation are given
in (11) to (15).

3.2.2 Rotation-Variant Local Features—Consider a feature map fm that maps each
vertex in a mesh to a feature vector. For example, fm might map each vertex v to a vector nv,
the normal to the tangent plane at v. Assume that feature vectors are invariant with respect to
translation and scale and change via a rotation matrix with the following rule, l′ = Rl, where
l is a feature vector before the transformation and l′ is the corresponding feature vector after
the transformation. Then the analytic formulas for computing gradients with respect to
rotations are:

(10)
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(11)

(12)

(13)

(14)

(15)

(16)

3.2.3 Relation to PCA—If N = 1, φ(X) = V, ϒ = R3, eqn. (6) is used as the objective
function, and λcut is a number that is larger than the largest eigenvalue from the PCA
analysis on V, then eqn. (5) degenerates to the original PCA problem. This relation shows
that the proposed objective function is a general objective function to minimize and (5) is a
general framework.

3.3. Groupwise Pose Normalization by Example
If additional prior information about the shape class is known, it is necessary to add this
information to the groupwise pose-normalization problems. For example, some pose-
normalized examples can be manually provided. In that case, PCA can be replaced by
weighted PCA and the pose-normalized examples can be given more weight than the
remaining 3D models.

Consider Fw: ΩN × RN → R as an objective function for groupwise pose normalization
problems.
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(17)

If (6) is used as the objective function to minimize, in contrast with (8), the derivatives have
the following form.

(18)

In other words, the derivatives for the weighted version are the corresponding ones in (8)

multiplied by .

4. Experimental Results and Discussions
Two separate sets of 3D craniofacial data for studying craniofacial abnormalities were used
in our pose normalization tests. One set of 40 heads is for studying midface flattening (M
set) and the other set of 19 heads is for studying cleft lip or cleft palate (C set). The heads in
these two sets have been interactively pose normalized and thus serve as ground truth for our
experiments. Some examples from the two sets can be found in the first two rows in Figures
1 and 2, respectively1.

Given a set of heads, a random test set is created by randomly rotating each head with
respect to its mass center. For each random test set, the proposed method is used to solve the
pose normalization problem and a result set is generated. The errors between the ground
truth set and the result set are measured in terms of degrees of rotations. In addition, the
mean of the standard deviations along the three resultant main axes is used for measuring
how good the pose normalization result is. A total of 4 random test sets is generated with
different degrees of rotation and the means and standard deviations of the errors are
recorded for comparisons using a 5-fold cross validation-like method (i.e., the examples in a
fold are used as reference examples and the remaining folds are used as a test set for pose
normalization).

The first experiment is to study how different features and reference examples affect the
performances of the proposed method. Two different features, 3D positions and normals, are
compared and reference examples are selected as pose-normalized heads that can be used to
constrain the groupwise pose normalization to force it to choose a standard pose for
craniofacial analysis2. A standard PCA approach is also implemented for comparisons.

The last five rows in Figure 1 and 2 show examples of the pose normalized results for the
two sets with different features. Table 1 shows the detailed error comparisons. The figures
and table show that the performances with normals as features are better than those with
positions as features, and that the PCA performance is the worst. One reason for the weak
performance of the positions as features is that the heads are not scaled, since scaling is not
generally used in craniofacial analysis. In addition, the performances with the reference
examples are generally better than those without the reference examples, and the
improvements are larger with normal features than those with position features.

1To follow the IRB protocol to “deidentify” the images, the eyes were blackened out.
2Total 4 combinations, positions with references (P/w), positions without references (P/w.o), normals with references (N/w) and
normals without references (N/w.o) are tested.
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The second experiment is to investigate how the value of λcut affects the pose normalization
performance. A fold selected from the random datasets (M1 and C1) is selected as a
reference set, and the remaining folds are used for pose normalization. Different values of
λcut are tested for both features, and the experimental results are shown in Figure 3. The
performance generally decreases with the values of λcut for normal features, and the ranges
that achieve the best performance is [2−5 2−10]. In contrast, no clear trends between the
performance and the values of λcut are observed for position features.

Although the two sets of experimental results show the promising performances of the
proposed method, there is still room for improvement. One weakness is that the number of
normal vectors of different heads may not be equal, which results in a bias toward a head
with a higher number of normal vectors. How to select part of the normal vectors of a head
and weight them differently will be part of our future work. From the experimental results, it
is observed that different sets of references examples can affect the groupwise pose
normalization performance since different sets of examples can capture different prior
information. Hence, how to select (or construct) representative examples for pose
normalization will be an important future direction.

5. Conclusions and Future Work
Groupwise pose normalization problems are formally formulated in this paper. A general
framework is proposed for solving groupwise pose normalization problems. It is shown that
using PCA for pose normalization is a special case of using the proposed framework under a
special feature space. From the experimental results, the proposed method achieved better
performances than the PCA approach to which it was compared.

In addition to how to select normal vectors differently and how to select the representative
examples, another important future direction is to customize the proposed method for
specific objects and to take different geometric and shape information such as curvature and
torsion into consideration. In contrast with using the MDL-based objective function, finding
a better objective function also merits future research.
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Figure 1.
Some examples of the pose normalized 3D heads for the M set.
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Figure 2.
Some examples of the pose normalized 3D heads for the C set.
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Figure 3.
The impact of λcut on the pose normalization results for position (a) and surface normal (b).
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