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Abstract

The focus of this work is on improving the recognition
performance of low-resolution iris video frames acquired
under varying illumination. To facilitate this, an image-
level fusion scheme with modest computational require-
ments is proposed. The proposed algorithm uses the evi-
dence of multiple image frames of the same iris to extract
discriminatory information via the Principal Components
Transform (PCT). Experimental results on a subset of the
MBGC NIR iris database demonstrate the utility of this
scheme to achieve improved recognition accuracy when
low-resolution probe images are compared against high-
resolution gallery images.

Index Terms - Iris recognition, Low-resolution, Image-
level fusion, Image averaging, Principal Components
Transform (PCT).

1. Introduction

The iris is a thin membrane-like structure of the eye that
regulates the size of the pupil and controls the amount of
light impinging the retina. The iris exhibits a rich textu-
ral pattern due to its multi-layered structure consisting of fi-
brous tissues and blood vessels, and the presence of anatom-
ical entities such as crypts, furrows, freckles and pigmenta-
tion. The texture of the iris is believed to be unique to each
eye, and is thought to be stable throughout the lifespan of an
individual [5]. Thus, human recognition using iris texture is
considered to be highly reliable under ideal imaging con-
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ditions. Large-scale experiments have confirmed this no-
tion [2].

The key steps in a typical iris recognition system are (a)
image acquisition, (b) iris segmentation, (c) iris normaliza-
tion, (d) feature extraction, and (e) matching. In the image
acquisition step, an image of the eye is captured using a
sensor of adequate resolution. Depending on the field of
view of the sensor, these images (or frames in the case of
videos) can potentially include other regions of the eye such
as the sclera, eyelashes, eyelid, or even the eyebrow. This
additional information is excluded by the iris segmentation
routine which isolates the iris from the rest of the image.
During the normalization stage, the pixels within the nearly
annular-shaped iris are geometrically re-mapped into a rect-
angular region. Textural features are then extracted from the
normalized iris and encoded into a binary template. Finally,
the match scores obtained by performing template matching
are used for recognition.

Under ideal constrained acquisition conditions, iris
recognition results in very good performance as has been
borne out by several experiments [2]. However, such a per-
formance can be guaranteed only when cooperative subjects
are involved. Most iris recognition systems require the sub-
jects to maintain a fixed gaze at a specified location for a
short period of time, in order to acquire a high-quality im-
age. In the case of moving subjects, the images may be of
poor quality due to improper illumination, off-angle gaze,
motion blur, occlusions, specular reflection, etc. Matey et
al [9] discuss a system to successfully acquire iris images in
less constrained environments. Such a system may require
an elaborate setup, and can result in off-angle iris images if
the facial profile of a subject is non-frontal.

The performance of an iris recognition system is nega-
tively impacted when the spatial resolution of the acquired
iris images is low. The resolution of the iris image depends
on (a) the resolution of the sensor itself, and (b) the stand-off
distance (distance of the subject from the sensor). While the
effect of the first factor can be mitigated by using a high res-
olution sensor, it is difficult to handle the stand-off distance
problem. An increase in the stand-off distance causes a de-
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crease in the size (or pixel resolution) of the eye recorded
in the image (at a fixed zoom-factor). Such a reduction in
size can lower the textural quality of the iris in the image,
which can in turn affect the performance of the recognition
system. Figure 1 illustrates this effect.

(d)

b)

(©)

Figure 1. Panels (a), (b), and (c), respectively, show the face, the
eye, and the normalized iris regions (in the visible spectrum) of
a subject standing close to the sensor. The corresponding regions
for a subject with larger stand-off distance are shown in panels (d),
(e), and (f), respectively.

When the input images are of poor quality, fusion meth-
ods can be used to enhance the recognition performance.
Biometric fusion refers to the process of aggregating the
information needed for reliable recognition from multiple
sources of evidence [10]. Depending on the type of in-
formation available, fusion can be performed at various
levels in a biometric system (e.g., image-level, feature-
level, score-level, etc.). In this work, an image-level fusion
scheme is presented that uses the information contained in
the multiple frames of an iris video. The use of multi-frame
iris fusion has several benefits:

1. In many image-level fusion techniques, registration (or
alignment) of the input images into a single coordinate
system of reference is very important. Registration
of images obtained at different time instances or from
different sensors, is a challenging task. However, the
frames extracted from a given iris video are likely to
be aligned. As a result, the errors caused by improper
image registration can be greatly reduced.

The frames in an iris video contain information related
to the spatio-temporal activity of the iris and its sur-
rounding region over a short period of time. As this
information is continuous, good quality frames can be
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selectively chosen for fusion while avoiding poor qual-
ity frames.

In this work, image-level fusion is performed in two
stages: (i) by first applying Principal Components Trans-
form (PCT) to the individual frames, and (ii) then averag-
ing the resulting images. The performance of image-level
fusion is compared against that of score-level fusion. Ex-
perimental results, in both cases, indicate that the fused out-
puts provide better recognition performance than their cor-
responding low-resolution source images.

2. Image-level Fusion

Super-resolution techniques may be used to perform
image-level fusion. Super-resolution is the process of gen-
erating an image with a higher resolution than the corre-
sponding source images. The information from individ-
ual frames can be fused into a single composite image
with higher resolution, resulting in better recognition per-
formance. Although much work has been done in the face
recognition domain, super-resolution of iris images has not
been widely discussed in the literature. This is due to the
stochastic nature of the iris texture which does not lend it-
self to traditional super-resolution schemes. Fahmy [4] de-
scribes an interleaving process to generate a high resolution
iris image from a low resolution face video. Iris regions of
equal sizes are segmented from the low-resolution frames
of a face video. These iris regions are registered using a
cross correlation model, and interleaved with each other to
form an image of higher resolution. This process is iterated
multiple times to generate a high resolution iris image.

Huang et al. [7] propose a learning based algorithm to
improve the resolution of normalized iris images. The algo-
rithm is trained using a large number of image pairs consist-
ing of low-resolution normalized iris images and their cor-
responding high-resolution versions. In the training stage,
each low-resolution normalized iris image is tessellated into
multiple blocks, and the relation of each block with its cor-
responding high-resolution pair is modeled using Markov
networks. In the testing stage, a high-resolution output is
generated by upsampling the input low-resolution image
and restoring the lost frequency information based on the
best matching training blocks from the database.

While the input in the above mentioned approaches is
a static set of individual images, Hollingsworth et al. [6]
use a set of frames extracted from an iris video. A set of
10 good quality frames are chosen automatically and the
iris is segmented and normalized in each of them. These
normalized irides are then fused on a pixel-by-pixel basis,
by using an operator (e.g., mean, median, etc.). Consider a
set of n images {I1, Io,...I,} each of size M x N. The
intensity of the final fused image It,scq4 at a location (i, 5)
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can be obtained via the mean operator as

AN
Tpusea(isg) = = > Ip(i. ), (1)
p=1

where 1 <4 < M and 1 < j < N. This technique can be
viewed as a pixel-level fusion scheme, where the pixel in-
tensity at a given location of the output is dependent only on
the corresponding pixel intensities of the input images. Al-
though the technique is simple, the recognition performance

of the resulting output is greatly improved [6]. However,
such an output strongly depends on the following factors:

1. Number of observations: The output is typically more
reliable if the number of the input samples, n, is large.
If n is small, the output can be a weak estimate.

Accuracy of observations: If a majority of the input
images contain noise, the quality of the output image
cannot be expected to improve over the input images.
For example, if a large number of input images are
blurred at a specific region, it cannot be rectified in
the resulting output.

Furthermore, the input images should be perfectly regis-
tered. If the registration is inaccurate, the output would be
an approximate or a smoothed representation of the actual
scene. Perfect registration of iris images obtained in non-
ideal environments is a challenging problem. In iris images,
imperfect registration can perturb the texture of the output
and reduce the matching performance of the system. Thus,
it has to be ensured that the fusion scheme does not alter the
textural richness of the iris.

The proposed approach performs image-level fusion in
two stages. In the first stage, an image reconstruction
scheme based on the Principal Components Transform is
used to re-estimate the input images. In the second stage,
the reconstructed input images are fused by an image av-
eraging scheme using the mean operator. The recognition
performance obtained using the output generated by the
two-stage approach is observed to be higher than the per-
formances obtained after applying either of the stages.

3. Principal Components Transform

Principal Components Analysis (PCA) has been widely
used in the field of automatic face recognition. Turk and
Pentland [11] view each face image as a point in a high-
dimensional sub-space whose coordinates correspond to the
pixel intensities. Based on a large set of registered training
face images, PCA is used to determine a set of orthogonal
basis vectors, referred to as eigenfaces or principal compo-
nents, that correspond to directions of maximum variance in
the original sub-space. Subsequently, any given face image
can be represented as a weighted sum of such eigenfaces.
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In the field of iris recognition, Dorairaj et. al. [3] use PCA
to determine a set of basis vectors for iris images. However,
in the absence of a common morphology in normalized iris
(unlike face which has some common landmarks across im-
ages), the basis vectors do not have a trivial physical inter-
pretation.

In this work, PCA is used in a different manner than what
has been typically used in the biometrics literature. To avoid
confusion, the PCA technique used in [11] (and other pub-
lications) is referred to as the conventional PCA, while the
technique used in this work is referred to as Principal Com-
ponents Transform (PCT). The major differences between
the conventional PCA, and the PCT approach used in this
work are listed below:

1. Given a set of n images, each having a spatial reso-
lution of M x N, conventional PCA represents every
image as a point in the M N dimensional space. In this
work, an n dimensional space is considered in which
each pixel intensity vector is a point. The pixel in-
tensity vector, \7pq, that contains pixel intensity values
across all given images at a location (p, ¢), is defined
as:

Voo = L0, 0), (0, 0), - -, Ln(p,@)) s (2)

where I;(p, ¢) denotes the pixel intensity value of an
image I, at a location (p,q), and j = {1,...n},
p=A{1,....,.M}, ¢ = {1,...,N}. This variation in
representation can be easily obtained by considering a
different scheme for stacking (or arranging) the pixel
values of the images, as shown in Figure 2(a).

Conventional PCA is typically applied on multiple im-
ages of different subjects, to highlight the variance in-
formation among the images. On the other hand, PCT
is applied on multiple images of the same subject, to
highlight the variance information among the pixel in-
tensity vectors. Consequently, PCT seeks to extract
discriminatory pixels from the iris frames.

Consider a set of n images {1, I, ... I}, each having
a spatial resolution of M x N pixels. Every image [;, is

transformed to a row vector, fj, of size 1 x M N where
j =1{1,2,...n}. Animage data matrix X is obtained by
stacking ! the n row vectors, one per row, as shown below:
n
I

3)

=

~y .

n

'The major difference between the conventional PCA and the PCT ap-
proach lies in the stacking process used to generate the image data matrix.
Turk and Pentland [11] stack the images as column vectors into X, whereas
PCT considers the images as row vectors.
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Figure 2. (a) Left: In an M N dimensional space, the conventional PCA considers each image as a point (denoted by a circle). Right: In
an n dimensional space, the PCT approach considers every pixel intensity vector as a point (denoted by a diamond). (b) The process of
stacking image pixels used to generate image data matrix X for the PCT approach.

The size of X will be n x M N. In other words, every col-
umn of the image data matrix X is a pixel intensity vector
at a particular location. For this data, the empirical mean
vector m is computed along each dimension. The result-
ing row vector of size 1 x M N is given by the following
equation:

n =
ST
p=1-"P 4
— “)
The covariance matrix Cx for the image data can be com-

puted by the equation:

—

myx =

1
Cx = E(X — Im¥)(X — Imx)7

&)

where I is an identity matrix of size n x 1. The size of the
covariance matrix Cx will be n x n.

The eigenvectors of the covariance matrix Cx are ob-
tained by decomposing it into its canonical form. Using
this information, the input data can be transformed into a
new feature space by the equation:

Y = A(X — I'mix), (6)

where A is an n X n matrix, whose rows contain the normal-
ized eigenvectors of Cx. At any point of time, the original
data X can be recovered by performing a simple inverse
transformation given by:

X =AY + Imx. (7

As the rows of A are ortho-normal vectors, A=1 = AT.
Hence the above equation becomes:

X =ATY + Imkx. (8)

If only the most significant g principal components of the
data are retained, A becomes a ¢ X n matrix, denoted as A.
The transformed data obtained by using only the selected ¢
principal components is given by the following equation:

Y = Ay(X — Iniy), ©)
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where the size of Y is ¢ x M N. Even though some of the
eigenvectors are discarded, it is still possible to recover the
initial input data by considering the following approxima-
tion:
X =AlY + Imi,, (10)
Consider an input of 6 normalized iris images, as shown
in the left panel of Figure 3. The principal components of
this data, arranged in the descending order of magnitude,
are shown in the central panel of Figure 3. It can be noticed
that the principal components of higher magnitude account
for the maximum variability in the input data. If all the
principal components are used, the original data can be re-
constructed. The images reconstructed using only the top
q (in this case, ¢ = 2) principal components are shown in
the right panel of Figure 3. The above process results in an
approximation of the initial data, since all the eigenvectors
are not used during reconstruction. However, the impact of
dropping the lowest-valued eigenvectors is less significant
on the reconstructed data.

4. Information Fusion

The following steps describe the process by which the
proposed image-level information fusion scheme is applied
to low resolution iris video frames:

1. Let V' be a low-resolution iris video containing n
frames denoted by F' = {f1, fo, ... fu}-

A set of k£ good quality frames are manually selected
from the available frame set. It is not necessary for the
selected frames to be successive in the video stream.

. The selected frames are processed to segment and nor-
malize (un-wrap) the iris to equal sized rectangular en-
tities.
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Figure 3. (a)-(f): Normalized input iris images, (g)-(1): principal components of the input data arranged in the decreasing order of magni-
tude, (m)-(r): reconstructed output obtained by using the PCT approach with ¢ = 2. Images have been scaled to fit the document.

4. PCT is applied on these normalized frames to obtain

the reconstructed frames 2.

. The reconstructed frames, are further fused by im-
age averaging process, yielding a single output image.
This output, instead of the original input, is used dur-
ing the recognition process.

By using the evidence of multiple frames, the PCT based
on pixel intensity vectors, projects the iris image onto a
lower manifold where its discriminatory information is op-
timized. This optimization is accomplished using the eigen-
vectors of the covariance matrix of pixel intensities. While
other types of manifold analysis techniques (e.g., NMU)
can be used, in the interest of computational complexity,
the PCT scheme is adopted in this work. By reconstructing
the frames based on the eigenvectors, the salient informa-
tion is extracted. A schematic of the technique is shown in
Figure 4.

2The transformation alters the content of the input frames but does not
change their spatial resolution.
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Figure 4. Proposed image-level fusion scheme.

5. Experiments
5.1. Database

A subset of the Multi-Biometric Grand Challenge
(MBGC) database * containing Near Infrared (NIR) iris
videos was used for the experiments. The iris video streams
of multiple subjects are recorded in MPEG-4 format under
varying illumination. A set of 110 right iris videos were

3www.face.nist.gov/mbgc/
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selected for the study by considering 1 video each of 110
unique subjects. Frames are extracted from the videos and
saved in BMP format without any compression. Each video
contained 300 frames on an average, with every frame hav-
ing a spatial resolution of 640 x 480 pixels.

A gallery set comprising a total of 440 images was
formed by selecting 4 frames per subject. The value of
k, which represents the number of low-resolution probe
frames, was empirically chosen as 6. Thus, a set of 660
frames (6 frames each, for 110 videos) were chosen as the
probe set. The frame selection process was performed man-
ually, based on factors that impact the amount of informa-
tion useful for recognition (e.g., percentage of iris visible
in the frame, specular reflection, blur, occlusion due to eye-
lashes and eyelids, etc.). As the selected frames need not
be successive, it is possible to observe contraction or dila-
tion of the pupil due to varying illumination. However, the
proposed approach can handle such variations by a small
margin (as was verified empirically).

5.2. Pre-processing

To generate the low-resolution data, the original
probe set of 640 x 480 pixel resolution (referred to as
ProbeSet L1) is sub-sampled. Sub-sampling was per-
formed by an averaging operator to reduce the size of a
frame by a factor of 4: 1/2 the length and 1/2 the width.
The sub-sampling operation was performed on every frame
of the ProbeSet L1 to obtain a lower-resolution frame-
set. This process was used iteratively to generate mul-
tiple framesets of the following resolutions: 320 x 240,
160 x 120, and 80 x 60 (referred to as ProbeSet L2,
ProbeSet L3, and ProbeSet L4, respectively). Any res-
olution below 80 x 60 pixels (ProbeSet L4) was consid-
ered too low to work with. The average diameter of the iris
in ProbeSet 1, ProbeSet 2, ProbeSet 3, and ProbeSet 4
was approximately 220, 110, 50, and 20 pixels, respectively.
Figure 5 shows a sample frame at various resolutions.

"%y;/z 7 N

T

yp

Figure 5. A sample right iris frame of resolution 640 x 480 down-
sampled to resolutions of 320 x 240, 160 x 120, and 80 x 60.
Images have been scaled to fit the document.

Iris segmentation was performed independently on each
frame for the various probe sets. Segmenting the iris be-
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comes difficult with the decreasing resolution of the im-
age. To avoid the effect of incorrect iris segmentation on
the recognition performance, a semi-automated segmenta-
tion scheme is adopted. This is performed by a human ob-
server by marking the boundaries of the iris in a frame. Si-
multaneously, a noise mask is created, which records the lo-
cations of eyelids and eyelashes that occlude the segmented
iris. Both the segmented iris region and the noise masks
are normalized using Daugman’s rubber sheet model [1]. In
this work, the segmented irides in all probe sets (varying
resolution) are normalized to a fixed size: 32 x 180 pix-
els. Usually, the most suitable size for normalizing an iris
image is based on the radii of the pupil and iris. However,
matching normalized irides of different sizes is not possi-
ble using the existing Daugman’s approach [1]. In general,
matching iris images of different resolutions is still an open
problem. The loss of textural information caused by nor-
malizing frames of varying resolutions to a fixed size can
be noticed in Figure 6.

(a)

(b)

(d)

Figure 6. Normalized probe images corresponding to an iris frame
at multiple resolutions: (a) 640x480, (b) 320 x 240, (c) 160x 120,
and (d) 80 x 60. Images have been scaled to fit the document.

To extract the textural features of the iris, a two dimen-
sional Gabor filter is convolved with the unwrapped iris
image. The output of this convolution operation contains
both the real and imaginary responses. A phase demod-
ulation process is used to encode these responses to a bi-
nary biometric template, often called as an IrisCode. Ham-
ming distance is used to measure the dissimilarity between
two [risCodes while masking the corresponding noisy re-
gions. An open source MATLAB implementation [8] was
used with minor modifications to perform above mentioned
operations.



Appeared in Proc. of IEEE Workshop on Applications of Computer Vision (WACV), (Kona, USA), January 2011

5.3. Recognition Accuracy

Two iris recognition software packages, IrisBEE # and
VeriEye 3, were initially used to observe the matching per-
formance at various image resolutions. However, neither
package could generate the iris templates or perform match-
ing on probe images below a resolution of 320 x 240. Thus,
the performance evaluation in this work is conducted us-
ing an open source MATLAB implementation [8] for iris
encoding and matching. Receiver Operating Characteristic
(ROC) curves are used to evaluate and compare recogni-
tion performance. Every frame in the probe set is matched
against all the gallery frames. A total of 2,640 genuine
scores and 287,760 impostor scores were obtained by the
matching process for each probe set. The performances ob-
tained by matching the probe sets with the gallery are shown
in Figure 7.

False Reject Rate(%)

[ —+—ProbeSet L1 (EER = 3.90%)
+—ProbeSet L2 (EER = 3.95%)

L ProbeSet L3 (EER = 4.21%)
- - —ProbeSet L4 (EER = 6.09%)
2 - o

10
False Accept Rate(%)

-2
10

10

10

Figure 7. ROC curves obtained by matching probe sets with the
gallery.

From Figure 7, it is observed that the recognition perfor-
mance drops significantly for ProbeSet L4. Therefore, the
proposed algorithm is used on this set to improve its per-
formance. As interpolation is a commonly used technique
to upsample low-resolution images, the matching perfor-
mance obtained after interpolation is used as the baseline.
Hence, the recognition performance obtained by interpolat-
ing ProbeSet L4 to a resolution of 160 x 120 is used as
a baseline. Figure 8 shows the recognition performances
of the new framesets obtained by applying (a) only PCT,
(b) only image averaging, and (c) the proposed approach,
on normalized frames of ProbeSet L4. From the figure, it
can be noticed that the Equal Error Rate of ProbeSet L4
is reduced from 6.09% to 1.76%. This suggests that the
recognition performance of the proposed approach is bet-
ter than performances obtained by the individual stages in-
volved (PCT and averaging).

The genuine and impostor match score distributions of
ProbeSet L4 before and after applying the proposed tech-

4www.iris.nist.gov/ice/
Swww.neurotechnology.com/verieye.html
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Figure 8. ROC curves obtained before and after applying the pro-
posed technique. Note that by applying the proposed approach, the
Equal Error Rate of ProbeSet L4 is reduced from 6.09% to 1.76%.

nique are shown in Figure 9. From the results, it is observed
that the genuine match score distribution shifts toward zero,
indicating a reduction in false reject rate (FRR).
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Figure 9. Genuine and impostor match score distributions: (a), (b)
before, and (c), (d) after applying the proposed technique.

To further evaluate the performance of the proposed
technique, the above experiment was repeated with the
same setup using the left iris videos of 100 subjects. The
performances obtained using this data are summarized in
Table 1. From the results obtained using both left and right
iris videos, it can be stated that the recognition performance
of low resolution frames can be significantly improved us-
ing the proposed technique.

6. Score-level Fusion

The match scores generated by comparing a gallery im-
age against a multi-frame probe set can be fused by employ-
ing a score-level fusion scheme [10]. In this work, score-
level fusion is applied to (a) ProbeSet L4 and (b) the cor-
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Table 1. Equal Error Rates obtained using the left iris video
data.

Probe Set EER
ProbeSet L1 3.16%
ProbeSet L2 2.96%
ProbeSet L3 3.10%
ProbeSet L4 5.45%
On interpolating ProbeSet L4 3.38%
On applying PCT on ProbeSet L4 2.03%
On applying averaging on ProbeSet L4 2.58%
On applying the proposed approach (PCT + 1.48%
averaging) on ProbeSet L4 '

responding frame set obtained after applying PCT. Given a
set of match scores {57, .52, ...S,} obtained by matching
n probe frames {f1, f2,... fn} against a gallery image, a
new score is generated by the sum rule that merely takes the
average of these scores. The EERs obtained by invoking
score-level fusion on the right and left iris video data are
summarized in Table 2. The score-level fusion of the PCT
output reduces the Equal Error Rate of ProbeSet L4 from
6.09% to 1.45% for the right iris videos, and from 5.45%
to 1.46% for the left iris videos, respectively. The results
indicate that the recognition performance can be further im-
proved by using score-level fusion.

Table 2. Equal Error Rates obtained before and after applying
score-level fusion on the right and left iris video data.

Right Iris (110 Left Iris (100
subjects) subjects)
Before After Before | After
ProbeSet L4 6.09% | 2.59% 545% | 2.25%
PCT frameset | 4.44% | 1.45% 2.03% | 1.46%

7. Conclusions and Future Work

An image-level fusion scheme is proposed which im-
proves the recognition performance of low-resolution iris
images. By using the proposed approach on a low-
resolution iris database with an average iris diameter of 20
pixels, the equal error rate is reduced from 6.09% to 1.76%
for the right iris video data and from 5.45% to 1.48% for
the left iris video data, respectively. The use of complex
routines to enhance low-resolution iris videos is avoided.
Future work would include improving the recognition per-
formance further by considering other sub-space analysis
techniques for fusion (such as Linear Discriminant Anal-
ysis, Independent Component Analysis, etc.). The perfor-
mance of the proposed technique when the input images are
not properly registered should be investigated. A large scale
evaluation of the proposed approach on larger and more
challenging databases is to be performed.
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