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Abstract

In this paper we propose an image indexing and match-
ing algorithm that relies on selecting distinctive high dimen-
sional features. In contrast with conventional techniques
that treated all features equally, we claim that one can ben-
efit significantly from focusing on distinctive features. We
propose a bag-of-words algorithm that combines the feature
distinctiveness in visual vocabulary generation. Our ap-
proach compares favorably with the state of the art in image
matching tasks on the University of Kentucky Recognition
Benchmark dataset and on an indoor localization dataset.
We also show that our approach scales up more gracefully
on a large scale Flickr dataset.

1. Introduction

Much progress has been achieved in image matching
in recent years [25, 26, 27]. Despite considerable ad-
vances, achieving good performance for applications in-
volving large image databases remains challenging [13, 34].
There are obvious computational issues because, as the
database size increases, finding exact nearest neighbors be-
comes inefficient, especially for high-dimensional image
features. More importantly, as the database size increases,
the number of similar feature points in a unit distance in-
terval increases exponentially [3, 36], i.e., the curse of di-
mensionality starts to affect performance (Figure 1). There-
fore, distinguishing distinctive features from indistinctive
features is important for both efficiency and, more impor-
tantly, matching accuracy.

Much of the literature has focused on the computational
issues. For example, [33] proposed a framework based on
the bag of words (BOW) model from the text retrieval do-
main. To further improve the efficiency, a tree data structure
was adopted in [29]. The limitations of the vector quantiza-
tion approaches have been addressed and the proposed im-
provements include adding local soft distance [15, 30], im-
proving the symmetry among nearest neighbors [16], min-

Hash and spatial verification [4, 31], fast search with metric
learning [14], and other variations. Advances in approxi-
mate nearest neighbor search also contributed to improving
efficiency [, 28].

In this paper we explore the feasibility of addressing the
second issue, i.e., distinguishing distinctive features from
indistinctive features. Intuitively, we note that the concept
of feature distinctiveness only makes sense when we con-
sider the feature vector in the context of its nearest neigh-
bors in the feature space (Figure 1). When all of its nearest
neighbors are similarly close, a feature is indistinctive and
has little or even negative contribution to image matching.
From the literature, we found these heuristics can be sum-
marized well by a formal definition of feature distinctive-
ness based on statistics and information theory [ 1], which
has been successfully applied in content-based image re-
trieval as a retrieval quality criteria, after the retrieval is ac-
complished [19]. In this work, we explore its effectiveness
in feature selection and indexing large image databases. We
show that feature distinctiveness is strongly correlated with
image matching performance. This observation is espe-
cially important, given the tendency to use larger and larger
number of high dimensional features in the image matching
problem [29, 31, 16]. We propose a bag-of-words algorithm
that combines the feature distinctiveness in visual vocabu-
lary generation.

Some of the published approaches used other strategies
for selecting features. For example, in [33], a visual vocab-
ulary was generated using only features that could be stably
tracked through consecutive video frames, which eliminates
a large number of features that are not repeatable. However,
this tracking based process is not applicable to static image
datasets that are not extracted from the same video stream.
Also, in [25], an empirical method was used to prune the
candidate feature matches by requiring that a good match
must have distance less than 0.6 times that of the second
best match. Although this criteria is intuitive, it is difficult
to formulate the underlying theory and this approach is not
applicable to large scale image matching problems where
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Figure 1. An example comparing distinctive features (left) and indistinctive features (right). Each row shows: 1) the query and retrieved
images; 2) the feature that was used as the query and its nearest neighbors; and, 3) their corresponding distances. When all of its nearest
neighbors are similarly close, a feature is indistinctive and has little or even negative contribution to image matching.

the same and or similar objects can appear in multiple im-
ages.

Our approach is related to the supervised feature selec-
tion approaches in the literature. For example, [35] and [23]
use information theory and conditional entropy. [24] also
showed an interesting idea on reducing the number of fea-
tures used in location representation through optimizing the
weighting of features to maximize the posterior probability
of a location. [32] is most similar to our approach in that
they generate a visual vocabulary by maximizing the infor-
mation gain in distinguishing different locations. The ma-
jor difference between these approaches and ours is that our
distinctive feature selection process is fully unsupervised,
based on the non-uniformity of high dimensional feature
space and feature distinctiveness. Beyond the obvious scal-
ability advantage of unsupervised techniques, our approach
is also more appropriate for the image matching problem
itself. For example, in Figure 2, our approach discovers
the distinctive “eye” type of features that are important for
image matching. However, since this feature also appears
on several different kinds of objects, they would be down-
weighed by the supervised approaches due to the confusion
for classification.

The use of local nearest neighbor statistics in our ap-
proach has additional connections to estimating distance
functions for recognition and retrieval tasks [9, 10, 37].
Although our primary goal is for specific instance match-
ing, our general approach is also similar to approaches
in object categorization that try to identify important fea-
tures/locations for category recognition [7, 22, 38]. Also
note that our distinctiveness measure is based on local
nearest neighbor information, which is fundamentally dif-
ferently from the dimensionality reduction literature such
as [8, 20]. These are global approaches that seek to lower
the dimensionality of the whole feature space, without tak-
ing advantage of the non-uniformity in the data distribution
[6, 17].

Our approach is generally applicable to any high di-
mensional features used in image matching. In this pa-

per, we use the Scale Invariant Feature Transformations
(SIFT) [25]. We use the standard benchmark of [29] in or-
der to validate the effectiveness of our approach. Since our
approach is particularly well-suited for situations in which
the database images are very confusing, we also evaluate the
performance on a public dataset from an indoor localization
task [18]. In this task, the images differ in relatively small
details which cannot be captured without accounting explic-
itly for the distinctiveness of features. Finally, we demon-
strate that our approach scales up more gracefully on a large
scale Flickr dataset.

2. Distinctiveness of high dimensional features
2.1. Definition of feature distinctiveness

We first introduce the measure of feature distinctiveness
and we show its connection with the concept of intrinsic
dimensionality [19]. In a high dimensional space, assum-
ing uniform distribution, the number of feature points in a
unit ball increases exponentially with respect to the dimen-
sionality (the “curse of dimensionality” [3].) This is indeed
what makes information retrieval applications, such as im-
age search, extremely challenging. As shown in [ 1, 19],
in a high dimensional space, the expected ratio of the dis-
tance between a query feature point to the (K + 1) nearest
neighbor and its distance to the K*" nearest neighbor is:

E{dxinynnt 1 1
E{dxnn}

Kn’
where 7 is the dimension of the feature space. The ratio de-
creases monotonically as the dimensionality increases. For
a given n, the maximum ratio is achieved between the near-
est and second nearest neighbors of the query feature point,
which is:

ey

(@)

For example, for a 128 dimensional feature, this expected
distance ratio is merely 1.008. Features with such high
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ne which feature is more informative by itself; however,

after putting this image in the context of the given database, our algorithm is able to select the distinctive features based on the statistics of
their nearest neighbors. (Features shown here only illustrate the locations of the original MSER regions.)

dimensionality are therefore very unreliable for similarity
search, because any small disturbance to the feature space,
e.g., lighting or viewpoint, could change the nearest neigh-
bor ordering. Fortunately, in real-world applications, 1) fea-
ture spaces are rarely uniform, and 2), locally, the feature
intrinsic dimensionality is much lower than the actual di-
mensionality n of the parent feature space.

Based on these observations, we can draw a direct con-
nection between feature distinctiveness and its intrinsic di-
mensionality. Then our goal is to select the features that
have low intrinsic dimensionality (distinctive) and filter out
the ones that have high intrinsic dimensionality (indistinc-
tive). To this end, [19] suggested a generative model for
estimating the data likelihood for a given intrinsic dimen-
sionality, by simply counting the number of nearest neigh-
bors appearing within some range from the feature point of
interest. It was shown that given an intrinsic dimensionality
n/, if the nearest neighbor of a feature x is at distance dp y,
the likelihood of observing more than N, data points in the
distance range of R, X dyn (R, > 1.0) is:

1
P(N|n',R,) = (1 — )Ne, 3)

note that P(N.|n’, R,,) is independent of the absolute value
of dy . In this paper, we use this likelihood definition as
our measure of the feature distinctiveness. Intuitively, the
more features (larger N..) observed in this distance range the
less distinctive x is. For example, the query feature of Fig-
ure 1(b) is less likely to have a low intrinsic dimensionality
than that of Figure 1(a), because many of the other neigh-
bors have almost the same distance as its nearest neighbor,
therefore IV, will be quite large. In practice, we will choose
a desired intrinsic dimensionality n’, we will estimate N,
for each feature and select the features for which P(N.,..) is
larger than certain threshold. In our experiments, we calcu-
late the values of R, for each n’ in the same way exactly as
in[ll, 19].

2.2. Correlation between feature distinctiveness and
image matching performance: a case study

From a public image dataset [29] that we used in our ex-
periments, we generate some empirical statistics of feature
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Figure 3. Statistics of feature distinctiveness estimated from the
dataset of [29]. A 128 dimensional MSER-SIFT feature is used;
we assume that the intrinsic dimensionality is 6. In each graph,
statistics are drawn from images categorized based on their match-
ing scores (1 — 4) resulted from a baseline algorithm (N.S. [29]),
which does not use distinctiveness. The graphs show a strong
correlation between the number of distinctive features and the re-
trieval performance, i.e., the more distinctive features exist in the
query image, the better it will get matched to the correct database
images.

distinctiveness (Figure 3). We set n’ = 6 and R, = 2.77
for this empirical study. To see the strong correlation be-
tween feature distinctiveness and image matching perfor-
mance, we categorize query images based on their match-
ing performance, using a baseline algorithm that does not
use feature distinctiveness [29]. We notice that the more
distinctive features the query image has, the better it will
get matched to the correct database images.

3. Image matching with distinctive features

We propose an integration of the feature distinctiveness
with the bag-of-visual-words framework [33]. The major
steps of our approach are: distinctive visual vocabulary gen-
eration, distinctive feature selection for database image in-
dexing and query image representation, vector quantization
and retrieving, as shown in Figure 4.

3.1. Distinctive visual vocabulary generation

The purpose of visual vocabulary generation is to cluster
a large set of high dimensional features to a finite set that
are representative for the visual patterns in the database.
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Figure 4. Diagrams of the distinctive bag-of-words (Distinc-
tive_BOW) approach.

This visual vocabulary essentially compresses the dataset
because it is usually much smaller than the original feature
set [12, 33]. The K-means algorithm is frequently used for
this purpose. The original K-means algorithm can be for-
mulated into the following minimization problem,

K
gy, > o — il @

i=1 z;€C;

where C = UC,;. C; is a cluster consists of a set of data
points with their averaged center at c;.

This clustering approach, however, is sensitive to the
non-uniformity or bias in the dataset [21]. This is especially
problematic for the K-means algorithm, since the calcula-
tion of a cluster center can be skewed by a few data points
that are far away from the actual cluster centers [11, 12].
In this paper, we adopt a weighted clustering algorithm that
weighs feature points with their distinctiveness. The weigh-
ing strategy has two advantages. First, it leads to cluster
centers that are closer to regions where features with higher
distinctiveness are located at; and second, the skewing ef-
fect of indistinctive features far away from the cluster cen-
ters will be alleviated by their low distinctiveness. We de-
fine the clustering problem as the following,

K
argmin D w;+ oy — e, 5)

i=1 z;€C;

where w; is the weight for each data point ;. In our exper-
iments, we set w; to the distinctiveness measure of x;. The
output of the distinctiveness weighted clustering process is
a set of cluster centers. This set is called distinctive visual
vocabulary, and a member of it is called a distinctive visual
word.

3.2. Database image indexing and retrieving with
bag-of-distinctive-words

After the visual vocabulary is constructed, we assign a
discrete digit to represent a high dimensional feature vector.
This digit represents the visual word that is the closest to the
feature vector, under the Euclidean distance. This process
is normally known as vector quantization [12]. Convention-
ally, any given feature vector is forced to be assigned to at
least one of the clusters, regardless of the specific distance
configuration between this feature vector and all the cluster
centers. In this paper, however, instead of quantizing every
feature vector in the image, we propose to select only a sub-
set of features that are most distinctive, then quantize and
use them for indexing and searching.

The distinctiveness of an image feature is calculated in
the same way as described in Section 2. But this time, the
reference feature set that an image feature vector compare
with is the distinctive visual vocabulary generated from the
previous step, instead of using the original features from the
database. Because the distinctive visual vocabulary is rela-
tive small, we can efficiently calculate the distinctiveness of
each feature vector. Also, since one needs to find the near-
est neighbor for the purpose of vector quantization any way,
using the visual vocabulary for distinctiveness calculation
adds negligible computational cost.

After the distinctiveness of the query features is calcu-
lated, we apply a threshold (0.9) to select the distinctive
ones and vector quantization is used to transform the origi-
nal feature vectors to discrete visual words indexes, we note
the generated image representation by bag-of-distinctive-
words. Based on these bag-of-distinctive-words, each im-
age is now represented by a term frequency inverse docu-
ment frequency vector (TF-IDF). More details of TF-IDF
formulation and its application in image search can be
found in [2, 33]. Distances between a query image and the
database images are then calculated by the L, distances of
these TF-IDF vectors [29].

Instead of distinctive feature selection, one can use the
distinctiveness of a feature as the soft weight in the TF-IDF
vectors. We choose not to implement this strategy in this
paper for the consideration of computational expense. Cal-
culating the precise distinctiveness requires searching for a
large number of nearest neighbors (NV.), which can be in-
efficient. Instead, for a distinctiveness threshold (0.9), to
determine whether a feature is distinctive or not, the maxi-
mum number of nearest neighbors that one needs to retrieve
is less than a hundred. This is especially useful for the sce-
narios where early stopping can decrease the computational
expense significantly [5, 19].

4. Experiments

The University of Kentucky Recognition Benchmark
[29] provides a suitable baseline to demonstrate and analyze



the effectiveness of our proposed approach. This dataset in-
cludes 2550 objects and scenes, e.g. Figure 2. Each ob-
ject is captured 4 times from different viewpoints, distances
and illumination conditions. For evaluation, each image is
used as query and a score between 1 and 4 is calculated for
the retrieval results, corresponding to the number of rele-
vant images returned by the algorithm among the top 4 (4 is
the highest achievable score, meaning that all four database
images matching the query image have been found). This
score divided by 4 is the value that the precision and re-
call measurements are equal at. In addition to this bench-
mark dataset, we collected a larger image dataset that con-
sists of about 500 thousand high resolution images down-
loaded from the Flickr website, using the public API for the
daily list of “interesting” photos'. In our experiments, we
denote the University of Kentucky Recognition Benchmark
itself by “UKBench”, and the combined dataset by “UK-
Bench+Flickr”.

4.1. Object instance recognition

General object recognition has been a difficult research
problem in the literature. Using image search techniques,
however, one can achieve promising results in recognizing
specific instances of objects [29]. The University of Ken-
tucky Recognition Benchmark dataset has been commonly
used for benchmarking the performance of various image
search algorithms in this application [16, 29, 31]. In this
experiment, we use the standalone UKBench dataset. To be
consistent with the other baselines, here we use the origi-
nal 7 million SIFT features computed from MSER regions
[25, 26]. We quantitatively evaluate our approaches and
compare them with the state of the art.

We vary the selections of the intrinsic dimensionality n’
in the distinctive visual vocabulary generation process (n7,)
and the feature selection process for the bag-of-distinctive-
words (n}). We compare our performance with several
state-of-the-art techniques (Table 1). The first baseline al-
gorithm is the Nistér and Stewénius algorithm [29] that uses
a hierarchical K-means algorithm for vocabulary generation
and a multi-level scoring strategy. The second baseline al-
gorithm is proposed by Jegou et. al. [16] which showed
that improving the nearest neighbor symmetry with a con-
textual similarity measure could improve the matching per-
formance.

The third baseline algorithm [31] is most similar to our
approach, which used approximate K-means algorithm for
large vocabulary generation. In fact, it is exactly the same as
our algorithm when nj, = +o00 and n}; = 400, i.e., every
feature has distinctiveness 1.

We pick the parameters by 10-round cross validation on
a hundred samples randomly selected from the database,
and choose the combination that is favored the most, i.e.,

Thttp://www.flickr.com/services/api/flickr.interestingness.getList.html

Algorithm Score

Nistér and Stewénius[29] | 3.29
Jegou, et.al.[16] 3.38
Philbin, et.al.[31] 345
Distinctive_BOW 3.51

Table 1. Quantitative comparison of our approach to other base-
line bag-of words approaches that do not use distinctive feature
selection in vocabulary generation.

N.S.[29] | R.S.[18] | Distinctive_ BOW
Clean set 0.996 0.999 1.0
Confusing set | 0.843 0.905 0.98

Table 2. Quantitative comparison of our approach with the N.S. al-
gorithm [29] and the R.S. algorithm [ 18] on an image based indoor
localization task.

ni, = 25, n; = 25 and vocabulary size 1M. Although,
the performance does not vary much for other choices of
n', e.g. nj, = 25 and nj, = 30, and vocabulary sizes,
e.g., b00OK and 1M (Figure 5). Considering the potential
variance due to K-means initialization, for all the experi-
ments with the 1M vocabulary, we used fixed initial cluster
centers that are randomly initialized for once; and for each
of the other experiments, we used independently randomly
initialized cluster centers. We found that the initialization
does not cause significant variance to the algorithm. Figure
5 shows the performance for different parameters and the
comparison to other baseline algorithms is shown in Table
1.

Figure 6 shows a representative example comparing our
result (Distinctive_BOW) and that of the baseline algorithm
[29], since this is the only publicly available feature set with
quantized visual words. We implemented the flat weighting
scheme and we verified that our implementation of the base-
line got exactly the same score as published.

4.2. Image based indoor localization

In this section, we analyze the performance of the pro-
posed image matching approach in the context of an indoor
localization application. In this application, the location of
a user is estimated by matching an image taken by the user
with a large database of position-tagged images. The chal-
lenge in this task stems from the high degree of repeata-
bility in man-made environments. The resulting ambigu-
ity complicates the matching process dramatically. For this
task, [18] proposed an iterative algorithm (Re-Search, or
R.S.) that refines a similarity function based on the visual
words distribution in a small neighborhood. However, this
approach is unstable and sensitive to quantization noises.
Therefore, [18] resorted to an intermediate solution that
combines the local and global similarity functions. In con-
trast, our approach fits very well into this scenario because
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Figure 6. C(;mbarison of the performance of our approach and the N.S. algorithm [29] in some extremely challenging situations that involve

severe illumination, view point changes and cluttered background.

it emphasizes the effect of feature distinctiveness for robust
image matching.

For evaluation, we use the same publicly available
dataset as [18]. The database consists of around 8.8 thou-
sand images (each associated with a location label). Two
sets of testing images are used, one has rich and distinctive
visual structures, called the “clean set”, the other “confus-
ing set” is composed of some much more challenging im-
ages that captured more detailed parts of the scene, or ob-
jects that are common across images, such as doors, posters,
etc. Most of the features in those images are ambiguous
therefore techniques that do not emphasize on distinctive-
ness performs poorly. Both testsets are composed of 80 im-
ages with location ground-truth. For each testing image,
the 8 most similar pre-captured images are retrieved. A ma-
jority vote scheme is used for location prediction and the
performance is measured the same way as [18].

The provided dataset has 6.4 million SIFT features ex-
tracted with the HESAFF [27] region detector. Through
cross validation on a hundred of images from the database,
we set the intrinsic dimensionality n’ = 6 and the distinc-
tiveness threshold 0.9, which reduced the number of fea-
tures down to 4.2M. The baseline for comparison here are
the two algorithms developed in [18].

We measure the performance with precision-recall and
mean average precisions (mAP)(Table 2). On the clean-
set, there was no surprise that all four algorithms reached
almost perfect performance. On the much more challeng-
ing confusing-set, our approach significantly outperform

the Nistér and Stewénius algorithm (N.S.) [29] and the R.S.
algorithm proposed by [18]. Some qualitative comparisons
are illustrated in Figure 7, notice that our proposed approach
performs much better than the baseline algorithms in the
confusing environment and the extreme cases where very
few non-ambiguous features are available.

4.3. Scaling up image search with distinctive fea-
tures

In addition to the performance on the small scale bench-
mark dataset, one important performance measurement of
an image search algorithm is its scalability to large scale
datasets. We evaluate the performance of our approach on
the UKBench+Flickr dataset. In this evaluation, images in
the original UKBench dataset are used as query. The search
score is measured the same way using the top 4 returns as
mentioned earlier. A retrieval is correct if the retrieved im-
age is from the original UKBench dataset and contains the
same object as in the query image.

In this experiment, we use a fixed visual vocabulary that
has been generated using the approach proposed in this pa-
per, and we focus on the scalability of our approach and
evaluate the added benefit of the distinctive feature selection
approach in large scale applications. Two algorithms are un-
der comparison, one is the standard bag-of-words algorithm
that uses all the features for indexing and retrieving (Stan-
dard BOW); the other uses the proposed distinctive feature
selection to select and quantize only a part of the features
(Distinctive_ BOW).
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Figure 8. Performance evaluation on scaling up the object instance
recognition to large scale dataset (UKBench+Flickr). In the exper-
iment, we vary the size of the distraction Flickr dataset and moni-
tor the changes in the recognition performance when the database
scales up. The two measurements are, (a), the absolute value of
recognition accuracy; and (b), the recognition score decreasing
rate with respect to sizes of the database.

For this experiment, we extract the HESAFF SIFT fea-
tures from the UKBench+Flickr dataset using a publicly
available package [27]. Using the default parameters, the
HESAFF SIFT feature extractor generates on average 2000
features per image, and in total about 200 for the UK-
Bench dataset. We randomly sampled 10M of them for
the distinctive visual vocabulary generation. We use the
same parameters as we used in the previous experiment, i.e.,
ny, = 25, n; = 25 and vocabulary size 1M .

In addition to the absolute value of the object instance
recognition score (Figure 8(a)), a better measurement for
scalability is the changing rate of the recognition scores
with respect to the database size. We measure this as the de-
crease of the recognition score for every unit number (111)
of distraction images that are added, i.e., the slope of the
curve in Figure 8(a). Figure 8(b) shows the score decreas-
ing rate when more and more distraction images are added
to the database.

The changing rate is high at the beginning when new dis-
traction images are added and then it starts to decrease. This
phenomenon is due to the way that we measure the recog-
nition rate, i.e., all the images from the Flickr distraction
dataset are considered equally. Therefore, newly added dis-
traction images do not add a significant distraction effect to
the ones that are already in the database.

The ratio between the score decreasing rates of the two

approaches under comparison is 0.7 ~ 0.9, i.e., applying
feature selection is 10% ~ 30% better in scalability com-
pared to the standard bag-of-words approach, which is ben-
efited directly from the selection of distinctive features for
indexing and retrieving since the same distinctive visual vo-
cabulary is used in both approaches.

5. Conclusions and future work

In this paper, we explored an approach for image match-
ing that builds on the distinctiveness of high dimensional
features, reflected in their relationship with their nearest
neighbors. This approach compares favorably with the state
of the art in image matching tasks such as the University
of Kentucky Benchmark dataset and an indoor localization
dataset, also our approach scales up more gracefully on a
large scale Flickr dataset

There are several directions that remain to be explored.
First, the distinctiveness we rely on right now assumes a sin-
gle intrinsic dimensionality across the dataset, without fully
taking advantage of the non-uniformity property of high di-
mensional space. Second, we would also like to evaluate the
generalizability of our visual vocabulary to other datasets.
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