Classification of Plant Structures from Uncalibrated Image Sequences
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Abstract

This paper demonstrates the feasibility of recovering
fine-scale plant structure in 3D point clouds by leverag-
ing recent advances in structure from motion and 3D point
cloud segmentation techniques. The proposed pipeline is
designed to be applicable to a broad variety of agricul-
tural crops. A particular agricultural application is de-
scribed, motivated by the need to estimate crop yield during
the growing season. The structure of grapevines is clas-
sified into leaves, branches, and fruit using a combination
of shape and color features, smoothed using a conditional
random field (CRF). Our experiments show a classification
accuracy (AUC) of 0.98 for grapes prior to ripening (while
still green) and 0.96 for grapes during ripening (chang-
ing color), significantly improving over the baseline perfor-
mance achieved using established methods.

1. Introduction

Precision agriculture deals with characterizing spatial
variation in the production of crops, which increases effi-
ciency by reducing inputs such as fertilizer and more accu-
rately predicting crop yield. Although extensive work has
been based on remote sensing from satellite and airborne
platforms, ground-based sensing is increasingly in demand
because of its lower cost, ease of data acquisition, ability
to observe smaller structures such as fruit that may not be
visible from above, and potential for characterization at the
level of individual plants.

Information about plant structures is useful in a variety
of ways. Estimates of crop yield allow adjustments to be
made during the growing season, and drive business de-
cisions such as planning logistics for harvest and market
preparation. Measurements of foliage provide an estimate
of a plant’s ability to intercept sunlight (and thereby ma-
ture a crop), and its water requirements [42]. The amount
and condition of foliage can indicate water stress, nutrient
excess or deficiency [34]. Other structures such as stem
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Figure 1. Reconstruction of grape vine from uncalibrated image
data, and automatic classification using the proposed method into
leaves (green), branches (blue), and fruit (red). Obtaining better
non-destructive measurements of foliage and crop enables more
accurate crop yield estimates.

length and branching can also indicate plant stress [26].
Current practice for obtaining these measurements often
involves destructive sampling — for example, removing
all of the fruit from a small percentage of plants to esti-
mate crop weight. Work in agricultural sensing seeks to
make such measurements non-destructively and automati-
cally, with greater coverage of the crop, at multiple times
during the growing season.

A variety of sensing modalities have been used to obtain
measurements of plant structures, including LIDAR and ul-



trasonic sensing for 3D information [12,27,28,32,40,41,

]. Recent improvements in digital camera technology and
structure from motion algorithms allow detailed 3D struc-
tures to be recovered from uncalibrated images at relatively
low cost [18,37]. Compared to analyses of 2D imagery,
these reconstructions ameliorate the effect of occlusions and
provide data registration. Compared to LIDAR, which is
limited by spot size in the detail that can be sensed, image-
based reconstructions use a lower cost sensor and provide
both color and the potential to recover finer grained struc-
tures. Once a reconstruction is obtained, the next task is to
automatically classify the content into semantically mean-
ingful structures, such as leaves and fruit.

The main contributions of the paper are listed below:

e We propose a general vision-based processing pipeline
for classification of plant structures that leverages re-
cent advances in structure from motion and 3D point

cloud segmentation.

Our pipeline, which operates on uncalibrated images,
replaces the need for expensive outdoor LIDAR and
complicated data acquisition efforts with affordable
commodity cameras and the ease of collecting data in
a point-and-shoot manner.

The plant structures are identified using both color and
local 3D shape, which makes proposed the method
robust to lighting and inevitable color changes as the
crop matures.

We describe an example application on real world
datasets, motivated by the need to estimate crop yield
during the growing season. Grapes are detected on
vines at two different times during the growing sea-
son — before and after the start of ripening.

Experiments show a classification accuracy as mea-
sured by area under the ROC curve of 0.98 for grapes
prior to ripening (while still green) and 0.96 for grapes
during ripening (changing color). These results are a
significant improvement over standard techniques.

2. Related Work

Jiménez et al. [20] summarize the early progress on com-
puter vision methods for locating fruit on trees. Moreda et
al. [29] discuss methods for non-destructive estimation of
fruit and vegetable volume using a broad range of sens-
ing modalities, including but not limited to computer vi-
sion. McCarthy et al. [27] provide a review of current
computer vision approaches (monocular, stereo, range and
multi-spectral) for automated farming. Taylor et al. [39]
present a survey of methods for incorporating new sensor
information into viticultural practice. We organize the dis-
cussion of related work in two main categories: (1) fruit
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detection and yield estimation, and (2) canopy and foliage
reconstruction.

Work on fruit reconstruction primarily explores the
imaging of individual pieces of fruit under controlled con-
ditions, such as Forbes et al. [13], Chalidabhongse et al. on
mango volume estimation [6] and Chaivivatrakul et al.’s on
pineapple reconstruction [5]. While our proposed method is
motivated by similar high-level goals, our applications de-
mand robust fruit detection and yield estimation in natural
settings, where the fruit must be segmented from nearby fo-
liage. Swanson et al. [38] face similar challenges in yield
estimation for citrus groves but their approach employs a
combination of laser sensing to estimate canopy density
and computer vision for fruit detection, while we require
only a single commodity camera. The majority of recent
computer vision approaches for yield prediction, such as
Aggelopoulou et al. [2], employ straightforward image pro-
cessing approaches (e.g., thresholding) by exploiting visual
characteristics of their domain (e.g., white flowers against
a dark background). Unfortunately, color is not a sufficient
feature in our domain since green grapes and foliage are
similar in color space. Nuske et al. [31] detect grapes us-
ing 2D techniques on artificially illuminated images taken
at night using multiple flashes. In contrast, our approach
can use but does not require specialized lighting.

Aguilar et al. [3] present early results on 3D model-
ing of tomato plant canopies to non-destructively estimate
leaf area index, with applications in determining correct
pesticide dosage. Bienert ef al. [4] build a 3D represen-
tation of forest areas as input for a numerical wind flow
simulation model. Although applied to different domains,
their eigenvector analysis of 3D point clouds is structurally
similar to the features we propose for classification (Sec-
tion 3.2.1). Fleck et al. [12] recover the branch system
and leaf-mass area of apple trees using 3D data obtained
using a laser scanner, while Henning et al. [19] build 3D
models by merging multiple calibrated laser scans. Sev-
eral recent systems propose LIDAR for modeling canopy
structure [32], assess fuelbed characteristics of trees [24],
leaf area index estimation [28], branch modeling [16], fruit
harvesting [21], and tree structure derivation [41]. There
are only a few examples of vision-based systems related to
3D foliage reconstruction. Shlyakhter et al. [36] build 3D
model of foliaged trees from instrumented (rather than un-
calibrated) photographs with the goal of generating realistic
trees in computer graphics applications. Phattaralerphong et
al. [33] showed encouraging results (in simulation) that sil-
houette voxel carving could be used to reconstruct foliage.
Zhang et al. [44] present preliminary work on recovering
a 3D model of a corn stalk. Dandois and Ellis [9] acquire
photos using an aerial kite platform and argue that recon-
struction using imagery is competitive with LIDAR. Finally,
Haala et al. [17] combine laser scanning with panoramic
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Figure 2. Overview of proposed pipeline for recovering fine-scale
plant structure. We analyze local 3D geometry in the recovered
point cloud to label plant structures, such as leaves and fruit.

imaging for classifying tree species; they acquire position
and diameter of trees using the laser data and use visual
texture parameters from images. In our proposed method,
classification is used to segment the 3D scene into seman-
tically meaningful structures (branches, leaves and fruit)
rather than classifying whole trees by species.

Point cloud classification has recently been studied for
applications such as object map construction in indoor set-
tings [35], urban environment reconstruction [15, 30] and
robot navigation in forested terrain [23]. Our approach is
motivated by that of Lalonde et al. [23], where the tree
trunks are identified by exploiting their locally linear struc-
ture. However, we focus on classifying finer-grained plant
structures such as twigs, individual leaves and berries.

3. Overview of Processing Pipeline

Figure 2 shows an overview of the proposed vision-based
processing pipeline. The input to the pipeline is a sequence
of images acquired from a relatively inexpensive commod-
ity digital camera. The data collection is simple and does
not require time consuming calibration of the camera intrin-
sics. Furthermore, complicated setup procedures required
for other sensors (e.g., LIDAR) are obviated. The sequence
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of images is processed using a structure-from-motion mod-
ule to recover a dense, colorized 3D reconstruction of the
scene. In the next stage, local features are extracted from the
point cloud and used to independently classify each point.
The classified point cloud is smoothed in a post-processing
step that uses generic spatial constraints and domain spe-
cific knowledge to reduce false positives. The fine-grained
plant structure of interest is recovered at the end.

We briefly outline each module in the following sections
with respect to the specific problem of estimating crop yield
in grapevines.

3.1. 3D Reconstruction

Given an uncalibrated sequence of images, we first em-
ploy structure-from-motion to obtain a dense, colorized 3D
point cloud. This is accomplished in a two stage procedure:

e obtaining a sparse 3D reconstruction of the scene using
a scalable bundle adjustment algorithm [37];

e converting this representation into a dense, colorized
3D point cloud using recent progress in multi-view
stereopsis [14].

These stages are detailed below.

Snavely et al. [37] propose a structure-from-motion al-
gorithm suitable for internet-scale photo collections which
has enabled Photosynth [1] and similar applications. We
chose this particular algorithm for structure-from-motion
because of its proven, robust performance on large scale im-
age datasets with wide variations in viewpoint, illumination
and scale. Bundler proceeds by extracting local features
like SIFT [25] on each input image. Features are matched
across pairs of images followed by finding tracks which are
matches across multiple images. An initial pair of images
which are well conditioned (large baseline, non-degenerate)
is chosen. The fundamental matrix and camera parameters
are estimated between the initial pair, and the locations of
the sparse 3D points are estimated by bundle adjustment. To
this initial 3D reconstruction other images are added and the
expanding 3D reconstruction refined in an iterative fashion.
This procedure is continued until no other suitable images
are feasible to be added to the reconstruction. This results
in a sparse 3D scene reconstruction.

The sparse 3D scene reconstruction from Bundler is in-
put to the dense, robust, multi-view stereopsis software by
Furukawa et al. [14]. This algorithm initializes rectangu-
lar 3D patches and iterates between an expansion step and
a filtering step. In the expansion step, photometric consis-
tency is used to spread the match to nearby pixels while in
the filtering step visibility constraints are used to eliminate
incorrect matches. The output at the end of this stage is a
dense, colorized 3D reconstruction of the scene. An exam-
ple reconstruction of a grape vine is shown in Figure 1.



Next, we extract shape and color features in the local
neighborhood of each point and train a classifier to label
each point into semantic categories, such as foliage, branch
and fruit.

3.2. Classifying Grapevine Structures

The dense 3D point cloud generated from the uncali-
brated image sequences captures the overall shape of the
scene. Our goal is to recover the fine-grained plant struc-
ture, e.g., to determine which points correspond to berries,
foliage or branches. We formulate this as a supervised clas-
sification problem and leverage recent work in robot obsta-
cle detection [23] to segment the scene using the statistics
of local spatial point distribution in conjunction with ap-
pearance information, such as color. Although color can
be a useful cue (even for distinguishing unripe grapes from
foliage), it is unreliable due to illumination conditions and
variability within plants. Therefore, we focus primarily on
classification based on shape features. Since classifications
based solely on local information can be noisy, we spatially
smooth the results using a conditional random field (CRF).

The key aspects of our approach are the choice of lo-
cal features, the classifier and the spatial smoothing, all of
which are detailed below.

3.2.1 Feature extraction

The features we employ to model plant structure can be do-
main specific. For the grapevine structures application, our
features employ both color and shape information, since
color alone cannot reliably discriminate foliage from un-
ripe or green grape varieties. For color features, we use the
(R,G,B) value of the 3D point (as obtained from appropri-
ate images).

For shape, we employ a variant on the “saliency fea-
ture” proposed by Lalonde et al. [23] for traversability anal-
ysis of point cloud data in outdoor ground mobile robots.
Intuitively, we characterize the local neighborhood around
each 3D point in terms of its “point-ness”, “curve-ness” and
“surface-ness”. In other words, we examine whether the
local neighborhood is like a point (compact and spatially
isotropic), a line (a distribution with a single dominant axis
of spatial variation), or a thin flat sheet (two axes of vari-
ation). These mathematical concepts map directly to se-
mantic categories of plant structures, such as berries (which
tend to be round and compact), branches (roughly linear)
and leaves (largely flat). The analysis of point cloud neigh-
borhoods can be efficiently performed using singular value
decomposition.

For computational efficiency, we store the point cloud in
a kd-tree, which enables fast lookup of the local neighbor-
hood around each point. For each point x in the data set,
we perform the following operations. First, we retrieve the
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set of points in its neighborhood A4 = {x; : ||x; —x|| < d},
where d specifies the support region. Next, we compute the
covariance matrix for this neighborhood as:

Y xi-%)(xi—%)",

x;€N

ey

where X denotes the mean of the 3D points in the neighbor-
hood X = Y y.c » X;.

We perform Singular-Value Decomposition on this co-
variance matrix to identify the principal components of
A’s spatial distribution. Specifically, we analyze the rel-
ative magnitudes of the top three eigenvalues A9 > A; >
A2.  For isotropic spatial distributions (corresponding to
berries), we expect Ay =~ A; ~ A;; for predominantly lin-
ear distributions (branches), A9 > A; = A,; and for roughly
planar distributions (leaves), Ay =~ A; > A,.

We represent the shape of the local neighborhood .4
(specified by d) around a given point X using the following
feature vector:

point-ness A
saliency, = | curve-ness | = | dp—A 2)
surface-ness M=

For each point in the point cloud we compute this
saliency at 3 spatial scales (d), concatenate these and
append x’s color, (R(x),G(x),B(x))" to obtain a 12-
dimensional feature vector for each point in the cloud.

3.2.2 C(lassification

Our grapevine data set was manually labeled into three se-
mantic classes (berry, branch and leaf). Using a portion of
this data, we trained a multi-class support vector machine
(SVM) classifier [8] to classify points. Section 4 presents
classification results on a separate test set using a variety of
parameters.

For completeness we investigated the Gaussian Mixture
Model (GMM) classifier as used by Lalonde et al. [23] but
found that SVM consistently outperforms GMM.

The output of the SVM generates an independent classi-
fication for each 3D point based solely upon its local spa-
tial neighborhood. As confirmed in our experiments, such
a classification can be quite noisy since it ignores the labels
of surrounding 3D points.

3.3. Spatial smoothing

We address the classification noise induced by indepen-
dent 3D point classification by spatially smoothing the la-
bels generated by the SVM. Specifically, we formulate this
task as an energy minimization problem using a conditional
random field (CRF) framework with discrete labels [22].
Each 3D point is treated as a node in the CREF, initialized
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(b) During ripening

Figure 3. Grape image examples

with the output generated by the SVM. Each node is con-
nected to those 3D points in its spatial neighborhood and
we employ a simple pairwise term that penalizes adjacent
nodes with differing labels. The size of the spatial support
region should be selected using domain knowledge; using
too small a volume does not significantly change the labels,
while employing too large a volume can result in the loss of
desirable small objects (such as individual berries) because
they are treated as outliers. In practice, we smooth over re-
gions that are similar in size to the support region of our
spatial features. We use the algorithm by Delong ez al. [10]
to solve the minimization problem. Spatial smoothing sig-
nificantly improves the accuracy of the point classification
system as shown in Section 4.
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Figure 4. ROC curves for green Gewiirztraminer grapes using
SVM classification prior to spatial smoothing.

4. Evaluation

We present a selection of experiments on recovering fine
structure from uncalibrated image sequences of grapevines
bearing unripe and ripe berries.

4.1. Dataset

Since there are no standard, publicly available datasets
for this domain, we collected two image sequences of
Gewiirztraminer grapes in a research vineyard. The se-
quences were collected three weeks apart, before and af-
ter the start of ripening. In the first sequence, the grapes
were green, while in the second, they had begun changing
color. The vines were trained with vertical shoot position-
ing, a common cultural practice that places the fruit in a
predictable zone on the vine. In addition, the leaves had
been pulled from the fruit zone, making the fruit visible.
Leaf pulling is another common practice that increases sun-
light exposure and air circulation around the fruit, making
the vine less susceptible to certain diseases. Both image
sequences concentrated on the fruit zone.

Images were taken with a Canon PowerShot SX200IS
camera with a Smm focal length lens and fill-in flash. A
total of 133 8-megapixel images were acquired of a 15 foot
section containing four vines. We ensured that consecu-
tive images in a given sequence overlap by at least 50%
to provide sufficient correspondences for the structure from
motion pipeline. Figure 3 shows sample images from both
sequences. The data was manually labeled and partitioned
into training and test sets.

4.2. Results

Figure 1 shows a snapshot of the reconstruction of the
green Gewilirztraminer grapes. The reconstruction of the
green and purple grape data set had 839,000 and 933,000
total 3D points respectively. Of these, 87,900 and 73,308
points from the green and purple grape data set respectively
were used to train a support vector machine with the ra-
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Figure 5. ROC curves for purple Gewiirztraminer grapes using
SVM classification prior to spatial smoothing.

dial basis kernel (¢ = 1.0) using the LIBSVM implemen-
tation [7]. The training data contained equal numbers of
points from each of the three semantic classes to ensure
good performance on the grape class as grapes are only
approximately 10% of the points with the majority of the
points belonging to foliage and branches. The rest of the
points in the data set were held for testing.

Figures 4 and 5 show ROC curves for classification of
green and purple grapes, respectively, using the SVM prior
to spatial smoothing. The figures show the performance of
saliency features with and without color at three different
combinations of scales, as well as color alone.

The nominal scale was chosen by inspection of the point
cloud such that points within approximately a two inch
radius of the point under consideration contributed to the
computation of the saliency feature for that point. For fea-
tures using two scales, the second was half the nominal
scale. For features using three scales, the third was twice
the nominal scale.

The figures show that the multi-scale saliency features
with two scales performed better than either single scale or
three scales, with an area under the curve (AUC) of 0.92
and 0.94 for green and purple grapes, respectively. For
three scales, the highest scale incorporates contributions
from points which are far away from the point under con-
sideration, and provide distracting information about the lo-
cal shape around the point. Similarly the single scale alone
does not encapsulate all the necessary information about the
characteristic local shape around the point.

Saliency features alone did not perform as well for pur-
ple grapes compared to green grapes. Many of the pur-
ple grape images were taken from a greater distance from
the vines compared to the green grape images. This in-
creased distance resulted in a noisier reconstruction, which
made the local shape of leaf points similar to the spatially
isotropic local shape of grapes, instead of being predomi-
nantly flat. As a result, a large number of foliage points
were misclassified as grapes and vice versa. This problem

334

1 -
<08 r"- SVM
o —SVM+CRF
=06
‘®
o
Q0.4
()
2
F 0.2}
0 . . . .
0 0.2 0.4 0.6 0.8

False Positive (%)

Figure 6. ROC curves for green Gewiirztraminer grapes before and
after CRF-based spatial smoothing. Spatial smoothing improves
the AUC from 0.92 to 0.98.
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Figure 7. ROC curves for purple Gewiirztraminer grapes before
and after CRF-based spatial smoothing. Spatial smoothing im-
proves the AUC from 0.94 to 0.96.

can be fixed by ensuring that images are collected at a closer
distance to the vines.

As expected we observe that adding color features can
improve results, provided that the images were acquired
under similar illumination conditions. For purple grapes,
we see that color alone performs well, but combining color
with shape features further improves accuracy. For green
grapes, the improvement due to color can be explained by
the fact that under our illumination conditions, the camera
perceives the fruit and foliage as slightly but sufficiently dif-
ferent shades of green. As discussed earlier, the use of color
alone is to be avoided, particularly since the color of the
grapes changes as they ripen. Since the local 3D shape of
fruit and foliage is both invariant to lighting changes and
does not change (in terms of statistical properties) through
the season. Employing color in conjunction with shape en-
ables us to be more robust to color changes.

Figures 6 and 7 show the ROC curves obtained after spa-
tially smoothing the output of the independent classifier us-
ing the CRF, for the green and purple grape datasets, re-
spectively, as compared to the ROC curve obtained from



SVM classification alone. For clarity, we only show re-
sults using the best set of features: saliency computed at
two scales along with color. These results show that our
CRF-based spatial smoothing produces a significant im-
provement in the true positive rate and a drop in false pos-
itive rate. For instance, on green grapes a nominal operat-
ing point of 84.8% true positive and 11.6% false positive
rate improves to 91.9% true positive and 2.7% false posi-
tive rate. Overall, for green grapes the area under the curve
(AUC) improves from 0.92 to 0.98 due to the CRF-based
smoothing. Similarly for purple grapes, the AUC is boosted
from 0.94 to 0.96.

As discussed in Section 3.3, the size of the support re-
gion can impact the effectiveness of spatial smoothing. For
these experiments, on the green grapes dataset we defined
the support region to be the same size as the larger of the two
spatial saliency features (corresponding to approximately 2
inches). Since the 3D point cloud reconstructions from the
purple grape dataset are less reliable, we find that a smaller
support region (corresponding to approximately 1 inch) re-
sults in a greater improvement on this dataset. Automati-
cally selecting the support region using cross-validation is
practical since the spatial smoothing procedure is not com-
putationally time-consuming.

5. Conclusion

This paper demonstrates the feasibility of recovering
fine-scale plant structure in 3D point clouds obtained from
uncalibrated image sequences using structure from motion.
The proposed method employs a combination of shape and
color features to model the local neighborhood around a
given 3D point in terms of its spatial distribution. This en-
ables us to label each point as either a fruit (isotropic dis-
tribution), leaf (planar) or branch (linear). Our experiments
on both unripe and ripe grapes show that an SVM classi-
fier using our features can detect fruit (for yield estimation)
with high accuracy, particularly when the labels are spa-
tially smoothed using a conditional random field.

We plan to build upon these results by extending our
work in several directions. First, preliminary experiments
show that we can obtain more accurate 3D reconstructions
by exploiting the sequential nature of the image data (e.g.,
using [11]). We will also continue to work towards a yield
estimate in grapes by counting either bunches or berries.
Finally, we will evaluate the generality of the proposed ap-
proach by applying it to a variety of other crops.
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