
Fast Graph Cuts using Shrink-Expand Reparameterization

Parikshit Sakurikar and P. J. Narayanan

Center for Visual Information Technology

International Institute of Information Technology, Hyderabad, India

{parikshit s@students.,pjn@}iiit.ac.in

Abstract

Global optimization of MRF energy using graph cuts is

widely used in computer vision. As the images are getting

larger, faster graph cuts are needed without sacrificing op-

timality. Initializing or reparameterizing a graph using re-

sults of a similar one has provided efficiency in the past. In

this paper, we present a method to speedup graph cuts us-

ing shrink-expand reparameterization. Our scheme merges

the nodes of a given graph to shrink it. The resulting graph

and its mincut are expanded and used to reparameterize the

original graph for faster convergence. Graph shrinking can

be done in different ways. We use a block-wise shrinking

similar to multiresolution processing of images in our Mul-

tiresolution Cuts algorithm. We also develop a hybrid ap-

proach that can mix nodes from different levels without af-

fecting optimality. Our algorithm is particularly suited for

processing large images. The processing time on the full

detail graph reduces nearly by a factor of 4. The overall

application time including all book-keeping is faster by a

factor of 2 on various types of images.

1. Introduction

Many labelling problems in computer vision, such as im-

age segmentation, image denoising and stereo correspon-

dence can be modelled as problems of energy minimiza-

tion over a Markov Random Field [2, 12]. Though optimal

label assignment is an NP hard problem, polynomial time

algorithms are available for many classes of MRFs. The

minimum-cut of a graph defined over the MRF gives the

global minimum solution if the energy functions are sub-

modular. Graph cuts has become important for many com-

puter vision problems as a result. Efficient implementation

of graph cuts is essential for practically useful applications.

Efficiency is particularly important when processing multi-

million pixel images that are common today.

Reparameterizing the graph to initialize it closer to the

solution has been used to speedup graph cuts [7]. This re-

quires a valid flow defined on a similar graph of identical

topology, which can be subtracted from the given graph

without affecting its mincut. Kohli and Torr used the ini-

tial and final graphs from an earlier frame to reparameterize

later frames of a video [7]. Finding a graph with a similar

mincut is the key to getting good performance using repa-

rameterization.

In this paper, we present the shrink-expand reparameter-

ization to find a graph with a similar cut from the given

graph itself. The given graph is simplified using one or

more shrink steps. Corresponding expansion steps restore

the original graph topology. We show how a mincut of the

simplified graph can be used to derive a valid flow for accu-

rate reparameterization. Shrinking and expanding can be

done in different ways on graphs. We present a spatial-

proximity based shrink operation and the multiresolution

cuts algorithm using it for image segmentation. Our ap-

proach achieves a 2× speedup over regular graph cuts on

the CPU and the GPU, which is critical when processing

large images. We also present a method that can provide

a trade-off between accuracy and speed of segmentation in

a user-controllable manner. Our implementation, built over

public code available for the CPU and the GPU, is available

for download.

Prior Work: In computer vision, the global minimum

of an energy function of the form E(f) =
∑

DiXi +∑
VijXi(Xj) is often sought, where the dataterm DiXi

measures the cost of assigning a label l ∈ L to a pixel

p ∈ P and the smoothness term VijXi(Xj) measures the

cost of assigning combinations of labels to neighboring pix-

els. A graph with a node for each pixel plus two designated

terminal nodes and edge weights depending on the energy

values can be constructed for bilevel problems. The mincut

of this graph gives the global minimum of the submodular

energy function and partitions the nodes into sets S and T
corresponding to the terminal nodes s and t respectively [3].
The maxflow algorithms used to solve the mincut problem

include the augmenting path method by Ford-Fulkerson [4]

and the push-relabel method by Goldberg-Tarjan [5].

Careful and efficient implementations of the Ford-

65



Fulkerson algorithm have been used very widely in com-

puter vision. Boykov and Kolmogorov [3] improved the

augmenting path method by maintaining two search trees

starting from both the source node and the sink node, and

reusing them while paths were saturated one by one to find

the mincut. Schmidt et al. [13] presented an O(n logn)
method for planar graphs. The push relabel algorithm has

also been implemented on the GPU for improvements in

speed [15].

In dynamic graph cuts [7], Kohli and Torr achieved a

speedup in graph cuts over a frame of a video by reparam-

eterizing the graph using the initial and final graphs of a

similar, previous frame. Alahari et al. [1] and Komodakis et

al. [8] extended this idea to multi-labelling problems. The

active graph cuts [6] method exploits approximate solutions

obtained using different means including hierarchical pro-

cessing for faster convergence. Lombaert et al. extended the

traditional pyramid processing to achieve faster graph cuts

at the expense of the global optimum [9]. Sinop and Grady

extended this idea further and ensured global optimality by

explicitly maintaining a separate record of changes [14].

Our method is a generalization of the reparameterization

step of dynamic graph cuts, using the mincut on a simpli-

fied version of the original graph. It is also related to active

graph cuts in reusing a similar cut, but follows the standard

maxflow algorithm after reparameterizing the graph with a

valid flow. The key idea is the construction of a valid flow

using a number of graph shrinking and expansion opera-

tions.

2. Shrink-Expand Reparameterization

Shrink-Expand reparameterization to find the mincut of

a given positive weighted, general graph G = (V,E) in-
volves creating a simplified graphG1 fromG using a single

shrinking step. G1 and its mincut can be used to find the

mincut of G faster. We describe the generic shrink and ex-

pand steps essential to the reparameterization scheme.

Graph Shrinking: Consider a set A of k nodes of G as

shown in Figure 1. Set A doesn’t include nodes s or t. A
graphG1 = (V1, E1) is formed by merging nodes of A into

a single node vA. Nodes of A are replaced by vA in ev-

ery edge. Self-edges that may result from this are omitted.

Weights of resulting mulitedges are replaced by their aver-

age value. This step resembles the supervertex formation

used by minimum spanning tree and connected component

algorithms [11]. The shrinking process is defined formally

below (Figure 1).

• V1 has all nodes of (V −A) and a single node vA for

all nodes in A.

• Edges (u, v) ∈ E where u, v /∈ A are copied to E1.

• Each edge (u, v) ∈ E where u ∈ A and v /∈ A is

replaced in E1 by a single edge (vA, v) with the same

weight. If several u ∈ A are connected to node v, the
average of all such edges is assigned to (vA, v).

• Edges between nodes of A in G do not appear in G1.

Graph Expansion: A graph G1 = (V1, E1) can be ex-

panded to yield a graph Ĝ1 = (V̂1, Ê1). Expansion is de-

fined only with respect to a shrinking step using a set A. It
restores all nodes and edges of the graphG that yieldedG1.

Edges that were averaged during shrinking separate and get

identical weights equal to the corresponding edge in E1.

The omitted edges between nodes of A all get zero (or ǫ)
weights. Thus, graphs G and the Ĝ have identical topol-

ogy, but may have different edge weights. The expansion

process is defined formally below (Figure 1).

• Ĝ1 has all nodes of G1, with node vA being replaced

by the set of nodes in A. It has all edges of G, includ-

ing the edges between nodes of A and the rest of the

graph saved during the shrinking step.

• Weights of edges (u, v) ∈ E1 where u, v 6= vA are

copied to corresponding edges of Ê1.

• Weights of edges (u, vA) ∈ E1 are copied to every

edge in Ê1 between u and nodes of A.

• Edges within nodes of A have an infinitesimal weight

in Ê1.

Augmented Expansion: Let C be the mincut of G1,

with the corresponding residual graph Gr
1. The edges of

Gr
1 have reduced weights. The cut C partitions the nodes

of G1 into sets S and T which are reachable from nodes s
and t respectively in Gr

1. These correspond to sets Ŝ and T̂
in Ĝ1. We create an augmented graph expansion aĜ1 with

respect to a cut C by adding an edge of arbitrarily high

weight between each node and a terminal node. An edge

from s to a node û is added in Ê1 if û ∈ Ŝ based on the cut

C. An edge from û to t is added if û ∈ T̂ . All nodes of A
are connected to s if vA ∈ S and to t otherwise.

Claim 1: The graphs aĜ1 and
aĜr

1 have the same mincut.

Proof : We show that aĜ1 can be converted to aĜr
1 by

pushing a few valid flows. Let Ŝ and T̂ be the set of nodes

in aĜ1 that are expanded from nodes of the source and

target sets S1 and T1 respectively in G1. There are no

edges in aĜr
1 between nodes of Ŝ and T̂ since there are

none in Gr
1.

aĜr
1 is hence a residual graph. Also, the

augmented graphs have large weighted edges from s to the

nodes in Ŝ and from the nodes in T̂ to t by construction.

Consider an edge (û, v̂) ∈ aĜ1 with û ∈ Ŝ and v̂ ∈ T̂ .
This edge can be saturated in one step by pushing flow

66



Figure 1: Shrink-Expand Reparameterization: Graph G (left), with a set of nodes A, gives graph G1 (middle) where the set A is merged

to form the node vA. The edge a has the same weight as the edge p. The edge b is the average of edges q and r, and so on. The expansion

of G1 gives Ĝ1 (right), which has the same topology as that of G. The dotted line indicates the cut of the graph G1 which is subsequently

reflected in the expanded graph Ĝ1. Augmented Expansion adds high weight edges in Ĝ1 from each node to s or t.

equal to its capacity from s to û to v̂ and then to t. The

graph aĜ1 transforms to aĜr
1 if all such edges are saturated.

Claim 2: The reparameterized graph G̃ = G − (Ĝ1 − Ĝr
1)

has the same mincut as G, where A−B between graphs of

same topology refers to the subtraction of edge weights of

B from corresponding edge weights of A.

Proof : Since aĜ1 and
aĜr

1 have the same mincut, the graph

G̃ = G − (aĜ1 − aĜr
1) will be a reparameterization of

the graph G in which the mincut is preserved as shown by

Kohli and Torr [7]. Also, (aĜ1−
aĜr

1) = (Ĝ1− Ĝr
1), as the

augmented edges cancel out in the subtraction due to their

very high weights. Thus, G̃ has the same mincut as G.

Shrinking Steps for Images: Shrink-Expand reparame-

terization is a framework to generate graphs with the same

mincut as that of a given graph. The mincut is preserved

when a number of shrink steps are performed together or

sequentially. The cut on a reparameterized graph is likely

to be faster as the graph G̃ is closer to the final residual

graph. Different ways of grouping nodes in the shrink step

can be used. In image processing, node grouping can be

based on pixel similarity as in superpixels or pixel prox-

imity. On general graphs, nodes could be clustered based

on other neighbourhood properties. We now present mul-

tiresolution reparameterization, inspired by pyramid image

processing, that uses pixel proximity for grouping.

3. Multiresolution Reparameterization

For multiresolution shrink and expand operations, the

MRF graph over the full resolution image is formed first.

Every fixed, non-overlappingm×m block of graph nodes

is combined into a single node in a shrink step to yield the

graph G1 with far fewer nodes. The mincut of G1 is com-

puted before applying expansion to yield Ĝ1, Ĝ
r
1, and G̃

which yields the final mincut ofG. Similar reparameteriza-

tion can be applied to compute the mincut onG1 by forming

a graphG2,G
r
2, and G̃1 at lower levels. This process can be

repeated for several levels for large images, if it is profitable

to do so. This multiresolution cuts algorithm uses this repa-

rameterization to compute the global minimum of the orig-

inal graph G. It differs from banded graph cuts [9, 14] and

the hierarchical segmentation based active graph cuts [6] as

our apparent resolution change is in the graph space only.

We do not build image pyramids or graphs at each pyramid.

The nodes of the graph built from the original image are

combined to form graphs of lower sizes. This gives us the

flexibility to combine multiple levels as discussed later.

3.1. Multiresolution Cuts

Our method consists of shrinking the graph by grouping

m × m blocks of nodes together and creating edges with

averaged weights (Figure 2). Expansion reverses this pro-

cess and creates a graph with zero weight edges within the

Algorithm 1:Multiresolution Cuts

1: Build full resolution graphG0 on the input image

2: Generate graphsG1, G2, · · ·GL by shrinkingm×m
blocks of nodes into a single node in each step.

3: Perform graph cuts on GL to get its mincut and Gr
L

4: for i = (L− 1) → 0 do
5: Construct Ĝi+1, Ĝ

r
i+1 and G̃i

6: Perform graph cuts on G̃i to get its mincut and Gr
i

7: end for

67



Figure 2: Multiresolution Cuts: Each non-overlapping block of

m×m nodes is merged to form one node in the lower resolution

graph. Expansion reverses this process and gives equal weights to

edges between different blocks.

blocks and equal weight edges between nodes of adjacent

blocks. The performance of this approach depends on the

block sizem and number of levels used. For large values of

m, the graph shrinks fast with quick cuts at the shrunk lev-

els. However, the reparameterized graph is farther from the

original graph at upper levels which increases the process-

ing time. Experimentally, we found shrinking 4× 4 blocks

of nodes to work the best for large graphs. Algorithm 1

decribes the multiresolution cuts process in detail.

The number of levels to be used depends on the bene-

fits of shrinking further compared to performing the cut at

the same level. We found that performing the cut directly

is faster when the graph has approximately 4K-8K nodes

when using Boykov’s graph cuts code on the CPU. This

translates to 4 levels of 4 × 4 reduction for a 16MP im-

age. The corresponding number when using the NPP code

on the GPU [10] is about 10K-16K nodes, below which the

single level cut is cheaper than using reparameterization.

3.2. Hybrid Reparameterization

Global optimality is guaranteed if the graph G is repa-

rameterized by a valid flow to give G̃. Shrink and expand

steps can proceed at their own pace as long as this is sat-

isfied. This can be exploited to create graphs with mixed

resolution levels, with larger regions combined into single

nodes in smooth regions. We do this based on the mincut

at the highest shrink (or lowest resolution) level. Regions

Figure 3: Hybrid Reparameterization: The large, smooth regions

of the image in the background and the foreground are not repa-

rameterized on expansion, thus reducing the time that the algo-

rithm spends in processing these regions.

near the cut edges are expanded to the next level while re-

gions far from it skip some of the intermediate levels (Fig-

ure 3). We skip a level i of expansion for a region by using

weights from the residual graph Ĝr
i+1 for the subgraph re-

sulting from that region. Regions that are not skipped are

reparameterized normally in G̃i by subtracting valid flows

from level (i+1). This results in the mincut algorithm doing

practically no work in the skipped region but provides a pair

of G̃i and Gr
i pairs that can be used to reparameterize the

next level (i − 1). It should be noted that the cut of the hy-

brid G̃i is not equal to the cut of graph Gi. Complete repa-

rameterization at the most detailed level guarantees global

optimum.

3.3. Minimally Approximate Cut

The final cut of G̃ at the highest level takes the most

time in all examples. We can trade computation time for

some approximation of the results by modifying this step

slightly. We follow normal procedure for levels 1 onwards.

In the final step, Ĝ1 and Ĝ
r
1 are restricted to just around the

bounding box of the foreground object in G1, skipping re-

gions outside of it. This limits the nodes that take part in the

final graph cuts, similar to the banded graph cuts approach.

This method provides further speedup when foreground ob-

jects are relatively compact. The exact boundary may not

be obtained. The discrepancy in segmentation affects fewer

than 0.02% of pixels in our experience, for a further saving

in time of 20-25%.

68



Figure 4: Illustration of Graph Cut on a few images of varying sizes. Runtimes given in Tables 1 and 3. (a) 2 Mpixel image (b) 4 Mpixel

image (c) 8 Mpixel image (d) 12 Mpixel image (e) 16 Mpixel image (f) 8 Mpixel image with distributed foreground segments. (g) 12

Mpixel image, distributed foreground. (h) 16 Mpixel image, distributed foreground. All images obtained from the Creative Commons

section of Flickr.

4. Experimental Results

We present the results of using graph cuts to segment

several large images on the CPU and on a GPU. The experi-

ments are performed on an Intel Core i7 CPU. The GPU ex-

periments are performed on an Nvidia GTX-580 with 512

cores using CUDA4.0 library. The MRF graph weights are

assigned according to the GrabCut method [12]. The time to

learn the GMMs is not included in the timings. We present

the total application time unless mentioned otherwise. The

total application time includes the time taken for graph con-

struction, shrink-expand manipulation, reparameterization

and the graph cuts optimization steps. We concentrate on

processing large images for which computational efficiency

is more important. Thus, we show results on images with

2 or more millions of pixels (MP). We also distinguish be-

tween images with relatively compact foreground and those

with distributed foreground. We extend the code by Boykov

and Kolmogorov (BK) for the CPU implementation [3].

On the GPU, we extend the code from the NPP library of

CUDA 4.0 provided by Nvidia [10].

Table 1 gives the times for different stages of our algo-

rithm for two typical 16MP images using four levels of 4×4
shrinking. The graph cut on the final reparameterized graph

G̃ on the CPU, is about 4 times faster than the graph cut

on the original graph. The time to compute the cuts at all

the other levels is significantly smaller than this. The appli-

Graph Resolution Fig 4e Fig 4h

CPU(s) GPU(ms) CPU(s) GPU(ms)

Direct Cut (16M) 7.91 761 10.27 959

Multiresolution Cuts:

Level 0 (Full = 16M) 2.01 219 2.83 257

Level 1 (1M) 0.30 118 0.51 113

Level 2 (64K) 0.06 54 0.17 79

Level 3 (4K) 0.01 – 0.04 –

Table 1: Time taken for only the graph cuts step at different stages

for two 16 MP images.

cation time though is only 2 times faster than the standard

BK application time due to the overhead of the shrink, ex-

pand, and reparameterization steps. Our speedup at differ-

ent levels exceeds the speedup reported by the hierarchical

segmentation based active graph cuts [6] method.

Figures 5a & 5b show the variation of the application

time with number of levels for images of several sizes. The

time shown for 0-level corresponds to graph cuts without

our approach. Each level represents a shrinking of the im-

age using 2×2 blocks. The total time reduces with the num-

ber of levels until a minimum value and increases thereafter.

The experiments show that the best performance is obtained

when the coarsest graph has 4K to 8K nodes, as direct cut

is faster at that size or lower. The minimum point is 10K

to 16K nodes when using the GPU as it can process larger

images faster.

Figures 5c & 5d show the variation in application time

of computing graph cuts using 2×2 and 4×4 shrink blocks
for a 12 MP image. The 4 × 4 scheme of downsampling

works marginally better among the different schemes we

tried, being a balance between the number of levels and the

quality of reparameterization. We use this scheme for our

experiments.

We experimented with hybrid reparameterization on

both the CPU and the GPU platforms. During the expand

Graph Our Method MAC

Cuts 2× 2 4× 4 2× 2 4× 4
Compact foreground (Fig 4e)

CPU (sec) 9.9 5.3 4.9 3.6 3.2

GPU (ms) 985 508 461 323 269

% Err pixels 0 0 0.005 0.012

Distributed foreground (Fig 4h)

CPU (sec) 12.2 6.9 6.1 6.0 5.9

GPU (ms) 1049 578 531 518 471

% Err pixels 0 0 0.002 0.006

Table 2: Application time results of minimally approximate cuts

for 16MP images.

69



(a) (b) (c) (d)

Figure 5: (a) Shows variation of application time with number of levels of downsampling(shrink) on the CPU. (b) shows the corresponding

results on the GPU. (c) & (d) show the variation of application time with shrink resolution on the CPU and GPU respectively for a 12MP

image (4g).

operations of this scheme, only those blocks ofm×m nodes

which include a boundary pixel from the cut are reparam-

eterized normally. All other blocks are are skipped as ex-

plained in Section 3.2. Thus at intermediate levels, the al-

gorithm spends no time in processing large smooth regions

of the background and the foreground. The gains due to

the hybrid approach are significant at lower levels on the

CPU, but the final cut at the full resolution level takes more

time than the multiresolution method, leading to no overall

improvement in application time. On the GPU, the hybrid

scheme reduces the application time by about 10-15%. This

difference is perhaps due to their implementations1. We

thus use Multiresolution Cuts on the CPU and Hybrid Mul-

tiresolution Cuts on the GPU. For a 16 MP image (Figure

4e), the application time for Hybrid Multiresolution Cuts is

5.73 seconds and 461 ms respectively on the CPU and GPU

as compared to 4.99 seconds and 509 ms for Multiresolu-

tion Cuts.

Table 3 summarizes the application times on the CPU

and the GPU for many images including all from Figure

4. In general, the running time increases with the num-

ber of pixels in the cut perimeter. The average speedup

of our approach is 2 on the CPU and the GPU. Our ap-

proach consistently produces this speedup on compact and

distributed foreground images. Active graph cuts using hi-

erarchical segmentation obtains no speedup when the fore-

ground segment is complicated as reported in [6]. The GPU

performs 10 times faster than the CPU on the whole in both

approaches.

Table 2 gives the results of the minimally approximate

cuts approach. We restrict the last level cut to the bound-

1The BK code performs significant preprocessing over the built graph

for performance, adding a large fixed time to all graph cut computations.

For instance, if one feeds the final residual graph of a previous graph cut

operation as the input graph, the BK code takes about 33% of the time

to converge as it did for the original graph though no flow occurs. The

residual graph converges in negligible time – well under 2% of total time

– using the GPU code.

ing box of the foreground of G1. This improves the

speedup significantly for compact foregrounds with fewer

than 0.02%misclassified pixels. The saving is not much for

distributed foregrounds as only a few pixels are eliminated

at the last level. This method can result in faster graph cuts

if errors can be tolerated to a certain extent.

5. Conclusions and Discussion

We presented a shrink-expand reparameterization

scheme to speedup graph cuts in this paper. We demon-

strated its effectiveness using multiresolution shrinking

for grid graphs used in computer vision. Our approach

preserves the global minimum. Our implementation is

built over standard code of graph cuts on the CPU and the

GPU. It can hence benefit from improvements in each.

We achieve a speedup of about 4 for the final graphs and

about 2 for the overall graph cut application. We also

presented hybrid reparameterization of the graphs based

on an adaptive method of construction of the mixed-level

graphs which can improve efficiency. The approximate

version we presented can achieve further speedup using an

adaptive scheme at the highest level.

Other ways to shrink the graph may be useful in other

situations. For example, shrinking nodes based on local

similarity of corresponding image pixels creates a multi-

level, superpixel-based segmentation scheme. The bound-

aries within the superpixels will be resolved at later levels

of the algorithm. Stopping at a less detailed level will yield

coarse segmentations that are not blocky, unlike the mul-

tiresolution cuts scheme. The graphs at different shrink lev-

els may not have a simple mesh structure. This can result in

lack of efficiency using standard implementations like BK

and NPP. The basic method works even if distant nodes are

combined in the shrink step. However, the overall efficiency

will depend on how close the cut at the simplified level is to

the expanded level.

70



Image Size Foreground Cut Perimeter Time on CPU (sec) Time on GPU (millisec)

(MPixels) (% pixels) (% pixels) BK MC Speedup NPP HMC Speedup

Compact Foreground

2 (4a) 37 0.34 1.60 0.92 1.74 126 88 1.43

2 26 0.22 0.93 0.55 1.70 83 52 1.59

4 (4b) 2.5 0.05 1.86 1.11 1.67 216 151 1.43

4 11 0.10 2.39 1.35 1.76 226 153 1.47

8 (4c) 28 0.18 4.10 2.29 1.79 407 211 1.92

8 19 0.11 3.93 2.00 1.95 412 223 1.84

8 7 0.06 2.61 1.47 1.78 313 155 2.01

12 (4d) 3.6 0.08 7.34 3.89 1.88 678 337 2.01

12 9 0.17 7.49 3.93 1.90 686 342 2.00

12 16 0.13 8.20 4.15 1.97 713 351 2.03

16 5.1 0.09 7.48 3.38 2.20 752 357 2.10

16 12 0.11 8.35 3.98 2.09 882 459 1.92

16 (4e) 21 0.23 9.94 4.99 1.98 985 461 2.13

Distributed Foreground

8 (4f) 38 0.71 5.87 3.10 1.89 453 210 2.15

12 (4g) 35 0.74 8.17 4.00 2.04 751 325 2.31

16 (4h) 24 0.58 12.24 6.10 2.00 1049 531 1.97

Table 3: Comparison of BK with Multiresolution Cuts (MC) on the CPU and of NPP with Hybrid Multiresolution Cuts (HMC) on the

GPU.

Shrink-expand reparameterization works on graphs of

arbitrary structure also. The shrinking algorithm should de-

pend on the properties of the nodes and edges of the graph.

A shrink step similar to the supervertex formation of con-

nected component algorithms or spanning tree algorithms

can help find layered cuts in the original graph [11]. We ex-

pect to explore several combinations of the shrink step for

efficient computation of mincuts of general graphs in the

future.

References

[1] K. Alahari, P. Kohli, and P. H. S. Torr. Reduce, reuse & recy-

cle: Efficiently solving multi-label MRFs. In CVPR, 2008.

66

[2] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in n-d images. In

ICCV, pages 105 –112, 2001. 65

[3] Y. Boykov and V. Kolmogorov. An experimental compari-

son for min-cut/max-flow algorithms for energy minimiza-

tion in vision. IEEE Transactions on PAMI, 26(9):1124–

1137, 2004. 65, 66, 69

[4] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton

University Press, Princeton, N.J.,, 1962. 65

[5] A. V. Goldberg and R. E. Tarjan. An new approach to the

maximum-flow problem. J. ACM, 35(4):921–940, 1988. 65

[6] O. Juan and Y. Boykov. Active graph cuts. In CVPR (1),

pages 1023–1029, 2006. 66, 67, 69, 70

[7] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient

inference in markov random fields. IEEE Transactions on

PAMI, 29:2079–2088, 2007. 65, 66, 67

[8] N. Komodakis and G. Tziritas. Fast approximately optimal

solutions for single and dynamic MRFs. In CVPR, 2007. 66

[9] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel

banded graph cuts method for fast image segmentation. In

ICCV, pages 259–265, 2005. 66, 67

[10] P. J. Narayanan, V. Vineet, and T. Stitch. Fast graph cuts on

the GPU. In GPU Computing Gems, volume 1, chapter 29,

pages 439–450. Morgan Kaufmann, Dec. 2010. 68, 69

[11] R. C. Prim. Shortest connection networks and some general-

izations. Bell Systems Technical Journal, pages 1389–1401,

Nov. 1957. 66, 71

[12] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM

Transactions on Graphics, 23:309–314, 2004. 65, 69

[13] F. R. Schmidt, E. Töppe, and D. Cremers. Efficient planar

graph cuts with applications in computer vision. In CVPR,

pages 351–356, 2009. 66

[14] A. K. Sinop and L. Grady. Accurate banded graph cut seg-

mentation of thin structures using laplacian pyramids. In

MICCAI 2006, volume II of LNCS 4191, pages 896–903,

Oct. 2006. 66, 67

[15] V. Vineet and P. J. Narayanan. Cuda cuts: Fast graph cuts on

the GPU. CVPR Workshop on CVGPU, pages 1–8, 2008. 66

71


