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Abstract

This paper presents a framework for N-view triangula-
tion of scene points, which improves processing time and
final reprojection error with respect to standard methods,
such as linear triangulation. The framework introduces an
angular error-based cost function, which is robust to out-
liers and inexpensive to compute, and designed such that
simple adaptive gradient descent can be applied for con-
vergence. Our method also presents a statistical sampling
component based on confidence levels, that reduces the
number of rays to be used for triangulation of a given fea-
ture track. It is shown how the statistical component yields
a meaningful yet much reduced set of representative rays for
triangulation, and how the application of the cost function
on the reduced sample can efficiently yield faster and more
accurate solutions. Results are demonstrated on real and
synthetic data, where it is proven to significantly increase
the speed of triangulation and optimize reprojection error
in most cases. This makes it especially attractive for effi-
cient triangulation of large scenes given the speed and low
memory requirements.

1. Introduction

During the past years, there has been an escalation
in the amount of work dealing with multi-view recon-
struction of scenes, for example in applications such as
robotics, surveillance and virtual reality. State-of-the-art
systems [13] are already capable of reconstructing large
scenes with high accuracy, with imagery obtained from the
Internet, but higher accuracy and efficiency are still areas of
ongoing work in the research community.

A fundamental component of reconstruction is triangu-
lation, which refers to determining the 3D location of a
scene point X from its location x; in two or more im-
ages. When X reprojects exactly onto its imaged x; coor-
dinates, implying that all epipolar constraints [6] are satis-
fied, triangulation is trivial through any linear method. Due
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to noise, however, reprojected coordinates will not coin-
cide with each respective xz;, which dually implies that rays
through each x; from each camera center will not intersect
perfectly in 3D space. Therefore, triangulation is a difficult
task given an arbitrary number of views and noisy image
measurements, or feature tracks, and the goal becomes find-
ing the point that best fits a given track. To this end, there
are fast and somewhat accurate methods that solve for 3D
points based on linear least squares, such as linear triangu-
lation [6]. The midpoint method [6], though inaccurate in
general, is by far the fastest method given two views. Such
methods are not optimal, which means that given noisy in-
puts, the final 3D position can potentially be very inaccu-
rate. More recent methods, which have tried to achieve
higher accuracy, have focused on minimizing the Lo-
norm of reprojection error. This yields the geometrically-
meaningful maximum-likelihood estimate for the point as-
suming independent Gaussian image noise. This is a non-
convex constrained optimization problem.

In the specific case of two views, a closed-form solution
for optimal triangulation was first achieved by Hartley and
Sturm [5], and then made more efficient by Lindstrom [7].
Both methods yield the set of all stationary points of their
respective objective functions, which are then tested to ob-
tain the optimal solution. Their objective functions actually
alter the image positions z; themselves, such that epipolar
constraints are fulfilled and the final position can be triangu-
lated through any linear method. For three views, a closed-
form solution was first achieved by Stewénius et al. [14] and
more recently by Byrod et al. [2]. Both of these methods
make use of the Grobner basis method for solving polyno-
mial equation systems, which is computationally expensive
and susceptible to precision inaccuracies. More details on
these methods are provided in Section 2.2.

Currently, for more than three views, an optimal solver
has not yet been achieved. The approach that has tradi-
tionally been used has been a two-phase method, where
an initial linear method such as N-view linear triangula-
tion [6] is applied to obtain an initial point, followed by non-
linear bundle adjustment optimization to reduce the sum-of-



squares reprojection error [8]. However, this can be an ex-
pensive element in a reconstruction pipeline for high num-
bers of scene points and cameras, despite efficient sparse
implementations [8]. Several issues exist in N-view lin-
ear triangulation, including numerical conditioning of the
solution. It is also not clear how N-view linear triangula-
tion would scale with high numbers of cameras viewing the
same scene point. In general, while this two-phase proce-
dure can give very accurate results, there is always a risk
that the optimization will converge to a local and not global
optimum of the cost function. The closest solution to an
optimal solver for the N-view case has been the work of
Agarwal et al. [1]. Unfortunately, their procedure is very
expensive, timing results for triangulation are not provided,
and only short feature tracks were tested. Though optimal
solutions have been achieved for two and three views, in-
creasing the efficiency and accuracy for general N-view tri-
angulation is still an open problem.

The main contribution of this paper is to introduce a new
framework for triangulation, aimed particularly at improv-
ing efficiency and accuracy in general N-view triangula-
tion. There are two changes with respect to the literature.
The first is to present a new cost function for triangulation,
for which standard optimization algorithms such as adaptive
gradient descent can be applied. The cost function is com-
puted as the L; sum of angular differences between rays
produced from each camera center to each candidate 3D po-
sition, which requires less operations to compute than Ly on
reprojection error [8]. This function is smoothly-varying in
a large vicinity near the global optimum, and we can show
that even somewhat inaccurate starting positions, such as
with the midpoint method, can still lead to the optimum af-
ter optimization with simple adaptive gradient descent. This
optimizer does not require the matrix operations of solv-
ing normal equations, such as in bundle adjustment with
Levenberg-Marquardt [8]. The second is the use of a sta-
tistical sampling method based on confidence levels, where
only a subset of a feature track’s rays are used for triangu-
lation. Overall, the framework provides a combination of
speed and accuracy which can be considered an improve-
ment to the current methods in the literature for N-view
triangulation. While we do not guarantee optimality, our
framework is very practical and efficient, and through ex-
tensive experiments we have shown that convergence to the
global optimum is possible given a reasonable starting po-
sition. With respect to existing triangulation methods, ours
possesses faster processing times and lower final reprojec-
tion errors. Also, there are no issues with numerical stabil-
ity and we avoid the computation and solving of Grobner
bases. A summary of related work is provided in Section 2.
The framework is detailed in Section 3, followed by exper-
imental results (Section 4), and conclusions (Section 5).

2. Related work

Triangulation is an essential component in multi-view
scene reconstruction. The following sequential stages are
necessary for performing multi-view reconstruction, keep-
ing in mind that there are many different algorithms and
that these are just the most common steps. Feature match-
ing and tracking can be sparse (for example with SIFT [9] or
dense [6]), and consist on computing and linking the pixel
coordinates in all images for each particular scene point,
wherever it is visible. Dense approaches particularly suffer
from issues such as occlusions, repetitive patterns, texture-
less regions and illumination changes. With tracks, the cam-
eras’ intrinsic parameters, such as focal length, can be re-
covered through self-calibration. Camera projection matri-
ces can then be computed from the intrinsic and extrinsic
parameters (pose) of translation and rotation [6]. Extrin-
sic calibration usually requires an estimation of the ‘epipo-
lar geometry’ between image pairs or triplets [6], which
mathematically encapsulates the intrinsic projective geom-
etry between the images. There are a number of methods
for pose estimation, and an overview is given in Rodehorst
et al. [12]. Given camera projection matrices and feature
tracks, triangulation is applied to compute the scene’s 3D
structure. This can be achieved by methods such as ‘linear
triangulation’. Finally, bundle adjustment can be performed
to minimize the Lo reprojection error of all computed struc-
ture points across all cameras with respect to the computed
feature tracks [8]. Based on these basic steps, there are a
number of successful general reconstruction algorithms in
the literature, and comprehensive overviews and compar-
isons of different methods are given in Strecha et al. [15].
Software packages such as Bundler [13] are capable of esti-
mating all calibration and structure parameters from a set of
images. The rest of this section will provide a more in-depth
analysis of triangulation, specifically.

2.1. Standard linear triangulation

In standard linear triangulation [6], solving for the best-
fit 3D scene point involves setting up a 2N x 4 data matrix
and performing SVD or eigen analysis to obtain a solution
to a system of the form AX = 0 for each 3D position.
In the simplest case of two views, the input is a set of 2D
matches (x;, 2;) between two images and the correspond-
ing 3 x 4 projection matrices for each camera, respectively
P and P’. Let z; = PX; be the image plane coordinates
of a 3D scene point X;, and z; = P’X/ the coordinates
of its match z; given the scene point X/. Linear triangula-
tion makes use of the fact that X; and X should be equal
since the feature matches x; and z; should view the exact
same 3D point. However, with noise, this is usually not the
case. With X; and X/ being forced to be equal, this leads
respectively to K 'x; = Py X; and K12} = P! X,

where P = K P.yp, and P = K'P/, ., with K and K’ be-



ing respective 3 X 3 intrinsic calibration matrices. Using
normalized image coordinates, the expressions Zcgm,; =
(z,y) = PeamX; and zr,,,,, ; = (2',y') = P.,,,, X; are
obtained. It follows that 2D image positions up to a scale
factor w can be obtained in terms of the rows Py, i, as
shown in Eq. 1 and expanded in Eq. 2. If the same equa-
tions are also set up for x,,, ; using Py, a 4 x 4 sys-
tem of the form AX = 0 is obtained. For better numer-
ical conditioning, A is normalized by rows A; such that
— (A1 Ay Az A4 \T : :
'Am'Mfl = (HAl\j AT TTAST] ||A4||) . Extension to N views
is trivial, following the same procedure such that each cam-

era introduces two rows to an A matrix of size 2N x 4.

x Pcam,l
wly = Pcam,2 X; (1)
1 Pcam,S

xPcam,S - Pcam,l

X, =0 2
yPcam,3 - Pcam,2 ( )

Finally, X; is obtained as the eigenvector corresponding to
the smallest eigenvalue of ApormE Aporms OF equivalently
the last column of V' in the singular value decomposition
Anorm = UDVT. The obtained 3D point is in homoge-
neous coordinates X; = (X;Y; Z;W;)T, such that the final
3D position is X; = (%ﬁ %%)T

There are a number of issues with the solution provided
by linear triangulation. First, the obtained solution is a sim-
ple, direct solve which is a ‘best fit’ to the input feature
tracks, regardless of how noisy these are. It does not seek
an optimal solution, or even one which minimizes reprojec-
tion error. Additionally, there is the potential for numer-
ical stability issues, especially with near-parallel cameras
in the two-view setup, where bad condition numbers for A
can lead to very poor triangulations. Also, it has not been
clear how performance and processing time scale with fea-
ture track length, and we analyze this in Section 4.1.

2.2. Optimal triangulation methods

Given the short-comings of linear triangulation, there are
a number of recent optimal methods, which outperform lin-
ear triangulation in accuracy, but at the expense of compu-
tational efficiency. One such method is Hartley and Sturm’s
optimal method for two views [5]. This algorithm uses a
given epipolar geometry estimation in order to alter original
feature match positions x and z’ over their respective image
planes, such that they end up at the closest positions that lie
on epipolar lines. This results in minimizing a 6*"-order
polynomial to obtain the stationary points which minimize
the Lo reprojection error cost function, and then choose the
correct solution by evaluation. The cost function includes
parameters from the epipolar lines and fundamental matrix.
Since the new positions for 2 and 2’ are ensured to lie on the
same epipolar plane as the scene point they represent, any

method can be used for direct triangulation. Lindstrom’s
‘fast triangulation’ algorithm [7] re-writes optimal triangu-
lation’s equations in terms of Kronecker products, which
allows for terms to cancel out so that the cost function is re-
duced to a quadratic equation. This eliminates the difficul-
ties in solving a 6*"-order polynomial. Convergence occurs
in exactly two iterations, and matches to very high precision
with the original optimal triangulation result [5], but with
higher stability and 1-4 orders of magnitude greater speed.
Additionally, unstable camera configurations are handled
with great results, including near-parallel cameras. Both of
these algorithms are designed only for the two-view case,
and alter the feature matches themselves.

The concept of solving for the stationary points of a cost
function and evaluating to obtain the global optimal solution
was first extended to the three-view case by Stewénius et
al. [14], whose solver is constructed using techniques from
computational commutative algebra. The solution amounts
to computing the eigenvectors of 47 x 47 action matrices
and evaluating the real solutions for the global optimum.
One drawback of this method is that certain arithmetic op-
erations are performed in high-precision floating point, with
128 bits of mantissa, in order to avoid round-off error accu-
mulation. This makes the algorithm costly in terms of pro-
cessing time. The three-view method by Byrdd et al. [2] im-
proves on the numerical issues by using a modified version
of the Grobner basis method for solving polynomial equa-
tion systems, the relaxed ideal method, which then trades
speed for an increase in numerical stability. For optimal V-
view triangulation, the only method we’re aware of is by
Agarwal et al. [1]. They demonstrate that several problems
in multi-view geometry can be formulated using fractional
programming. They also propose a branch and bound trian-
gulation algorithm that provably finds a solution arbitrarily
close to the global optimum, which minimizes reprojection
error under Gaussian noise. While the method does pro-
vide a way to perform optimal N-view triangulation, no
timing results are given, though they do claim almost lin-
ear runtime scaling with number of cameras. Results were
demonstrated on just 3-6 cameras, and do not discuss how
this scales and performs for larger numbers. For resection-
ing, on a 3G H z computer times are approximately 40-700
seconds on 6-100 cameras, which indicates that their brach
and bound framework is generally expensive. As will now
be discussed, we provide a non-optimal yet very accurate
and efficient alternative to the discussed algorithms.

3. Triangulation cost function

We propose both a new cost function for triangulation, as
well as introduce a statistical sampling component to make
it more efficient. As input, we assume a set of feature tracks
across N images and the respective 3 x 4 camera projection
matrices P; are known.



The cost function for our triangulation scheme is based
on an angular error measure for a candidate 3D position,
p, with respect to a feature track ¢. Recker et al. [11] first
introduced a similar angular-based cost function for scalar
field analysis, and we create a variation which allows for
minima and fully develop the algorithm mathematically for
the specific purpose of triangulation. To calculate the error
for a candidate 3D position p, as shown in Fig. 1, for each
camera center C;, a unit direction vector v; is first com-
puted between it and the 3D position. A second unit vector,
wy;, is obtained by casting a ray from each C; through the
2D projection of the evaluation point on each image plane
(blue image plane dot in Fig. 1). Take into account that this
projection generally does not coincide with the projection
of vector v; on each image plane (purple image plane dot in
Fig. 1), and hence there is typically a non-zero dot product
between each possible v; and wy;. Finally, the average of the
errors (dot products) across all cameras is obtained. Notice
that if this value is zero, the set of rays perfectly intersect at
this evaluation position, making it the global optimum.

Mathematically, with C; cameras, let T' be the set of all
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Figure 1: Angular error calculation for a candidate 3D po-
sition p, with respect to a feature track .

feature tracks, and p = (X, Y, Z) is the evaluation point un-
der consideration. The cost function for p with respect to a
track ¢ € T is shown in Eq. 3, where I = {C;|t “appears in
” Gy}, i = (p— C;), and wyi; = P;"t;. The right pseudo-

inverse of P; is given by P;", and ¢; is the homogeneous
coordinate of track ¢ in camera ¢. The expanded equation
is shown in Eq. 4, with vector v; = (v;,x, vy, Vi z) =
(X -Cix,Y — Civ,Z — Ci7z), its normalized version,
U; = ”—H and similarly for wy; = ﬁ

v
Zie[(l — U; 0 Wy; )

frer(p) = THI

3)

Yoier 1= (vixwi x +viywdiy +vizwi z)
|11}

frer(p) =
4)

The cost function defined in Eq. 3 has its lowest pos-
sible value at zero but is non-convex, and thus a direct
linear solution is not possible. Non-linear optimization is
needed, for which a gradient calculation is required. Gra-
dients along the X, Y and Z directions are defined by

. a . b . c .
Vfier = (ZH;\I\ , EHLIEIII , EHLIEﬁ ), with a, b and ¢ de-

fined as in Eqs. 5-7, with the denominator d = ((C; x —
X)24(Ciy —Y)?+(Ci.z — Z)?)3/?) in each expression.

a=(=Clywix — C}ywi x — Ci xwiiyY  (5)
twi y XY —wi xY? + Ci vy (Ci xwiiy — wiiy X
+2wi; xY) — Ci xwii zZ + wi; 2 X Z — wi; x 22

+C;.z(Ci xwii z — wii zX + 2wy x2))/d

b= (=C}xwiy — C}ywiiy — Ciywi xX  (6)
—wiy X2+ wi; x XY + C; x (Ciywii x + 2w vy X
—wi; xY) — Ciywi; zZ +wii zY Z — wi; y Z°
+Ci,2(Ciywii,z — wei 7Y + 2w v Z))/d

c=(=C}xwiiz — Clywiiz — CizwixX  (7)
—wf; 7 X? = Ci gwiyY —wi zY? +wi xXZ +
wivY Z + C; x (C zwii x + 2w z X — wii x Z)
+Ci v (Cs zwiiy + 2w zY —wi v Z))/d

3.1. Cost function properties

Our cost function is an L; sum of error terms derived
from dot products between rays in 3D space. Each dot prod-
uct can vary from [—1, 1], but in practice we only deal with
points that lie in front of the cameras, and hence the range
[0,1]. The function is positive-definite, with an absolute
minimum at zero. Intuitively, minimizing our cost function
to zero means that the triangulation rays are perfect. In this
perfect condition, reprojection error would also be zero, but
we do not minimize reprojection error directly by measur-
ing 2D pixel errors as in the Ly reprojection error cost func-
tion. This cost function is not mathematically equivalent
to ours, and has different local minima. Ours is not opti-
mal under Gaussian noise like Lo, but L is more robust to



outliers [6], and essentially determines the median angular
error. It is also significantly cheaper to compute ours: a sin-
gle dot product and a subtraction for each term compared
to a matrix multiply, subtraction, and then distance compu-
tation for Lo on reprojection error. The only way to guar-
antee optimality would be by solving for all of its station-
ary points and evaluating, which we have not yet achieved.
However, in practice we have been able to show that non-
linear optimization methods, even simple ones such as gra-
dient descent, can lead to the optimum value from a wide
range of starting locations. This is true even when starting
with the generally-inaccurate midpoint method [6], as dis-
cussed in the Results section. Fig. 2 shows a scalar field,
consisting of our cost function measured for a dense set of
test positions near a known ground-truth position. Notice
the smooth variation in a large vicinity surrounding this po-
sition, which is key to the success of our cost function. The
advantage of being able to use gradient descent is to avoid
matrix storage and operations, foregoing the matrix opera-
tions of solving normal equations, such as in bundle adjust-
ment with Levenberg-Marquardt [8].

—

Figure 2: Multi-view reconstruction (left), where the cam-
era follows a circular path above the scene. A volume view
of a scalar field representing our angular cost function eval-
uated at a dense grid of sample points around a ground-truth
position (black dot in both images) is also shown (right).
Redder values are closer to zero cost.

3.2. Statistical sampling

A second component to our triangulation framework is
the use of statistically-meaningful samples of rays as op-
posed to the entire available set, N. For this, we make use
of confidence levels in selecting a random set of rays from
the full set. For instance, a 95% confidence level with a
5% margin of error implies that a point computed from a
reduced sample will have a 95% probability of being within
a 5% margin of error of the position obtained with the en-
tire set of rays. The central limit theorem states that when
the sample size is large, approximately 95% of the sample
means will fall within ¢ = 1.96 standard errors o of the pop-
ulation mean p, p & \/"T assuming a normal distribution of
the data. To compute sample size, ng, we use Cochran’s
formula [3], shown in Eq. 8. The value o2 is an estimate
of the variance, and we used o = 0.5 as the fixed value.

The value for ‘d’ corresponds to the maximum error of es-
timate for a sample mean, which we fix at 5%, or 0.05. In
case the obtained sample size exceeds 5% of IV, Cochran’s
correction formula [3] should be used to calculate the fi-
nal sample size, n, as shown in Eq. 8. For example, if a
feature track consists of 10000 cameras, a 95% confidence
level yields a much-reduced sample size of 370. Though
sampling implies a known risk that a randomly-chosen set
of rays may not be representative of the entire population
for a given feature track, we found that in practice the sam-
pling procedure works surprisingly well. Final reprojection
errors are on par with those obtained when using full sets of
rays, and a significant speed-up is achieved, as will be dis-
cussed in the Results section. This sampling technique may
be reminiscent of RANSAC [4], but there are some key dif-
ferences. First, we measure a simple geometrical error in
search for the first which meets the criteria, and do not seek
to fit a model. Second, we are not concerned with inliers and
outliers, as we have a fixed threshold. Finally, we seek an
approximate starting position at the cheapest possible price,
and RANSAC would be significantly more expensive.
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3.3. Implemented triangulators

The proposed cost function and sampling component
were used to design a number of triangulators, which dif-
fer in how initial starting positions are computed, the confi-
dence level used, and in the way optimization is performed.
Sampling is only applied for feature track lengths greater
than 30; otherwise the full sample is used. For confidence
levels, ¢%, 90% and 95% are standard and were found to
produce the best results, though we also tested 75% for
added speed and 99% for improved confidence. Let M de-
note a starting point obtained through the midpoint method,
and L for linear triangulation. Initial starting positions
based on the midpoint algorithm were computed as follows
for the multi-view case (N > 2). For a feature track, af-
ter obtaining a sample of n cameras based on ¢% confi-
dence, we pick an initial random pair from the sample and
obtain the ratio between the pair’s baseline in 3D and the
distance between the shortest-distance locations on the two
rays through corresponding feature track locations. If the
ratio is more than 0.1, another pair is chosen until one meets
the criteria, for which the midpoint is computed as the initial
3D position for optimization. While this is not as robust as
analyzing all possible combinations for the smallest ratio, in
practice we found this to be much faster and to perform sur-
prisingly well. If no ray pair meets the criteria, we assume
a very inaccurate feature track and do not attempt triangula-
tion, discarding the track. Such an initial condition analysis
is not performed in standard linear triangulation.



The following triangulators were evaluated: standard lin-
ear triangulation (LT), our multi-view midpoint triangula-
tion (MP), midpoint followed by cost function optimiza-
tion (GTM) without sampling, the previous triangulator
starting with linear (GTL), midpoint/linear triangulation
with sampling at ¢% and cost function optimization with
a ‘full finish’ (SFGTM(75,90,95,99) and SFGTL(95,99),
respectively), midpoint/linear triangulation with sampling
at ¢% and cost function optimization using just the sam-
ple (SGTM(75,90,95,99) and SGTL(75,90,95,99), respec-
tively), and standard linear triangulation with sampling at
% (SLT95 and SLT99). For the ‘full finish’ (') methods,
the difference is that near convergence, as determined by
the relative step sizes between consecutive iterations of gra-
dient descent, the sample 7 is replaced by the full set of rays
N, in order to evaluate if this made any difference.

4. Results

A number of tests were designed to test the accuracy,
processing time and general behavior of the proposed trian-
gulators on both real and synthetic data. Code for our meth-
ods, and also for linear and midpoint triangulations [6], was
written using C++. All tests were conducted on a MacBook
Pro with an Intel Core i7 processor at 2.66 GHz with 4 GB
of RAM, running Mac OS X Lion 10.7.3. For matrix oper-
ations such as eigen-analysis and SVD, the efficient Eigen
library (http://eigen.tuxfamily.org) was used.

4.1. Synthetic tests

Synthetic tests were designed to observe the behavior
of the proposed triangulators versus ground-truth structure
in the presence of feature track noise and with very long
tracks. The main parameters evaluated in all tests were pro-
cessing time and reprojection error. Our triangulators were
compared against LT and our midpoint method, MP, but not
against the optimal methods. In two-view methods [5, 7] the
tracks are corrected so we cannot compare directly, and for
three views we discuss further in Section 4.1.1.

The first experiment consisted of analyzing our proposed
triangulators under noise. Results for processing time ver-
sus feature tracking error are shown in Fig. 3. For this
test, 100 synthetic points were rendered, with ground-truth
tracks created over 1000 cameras, placed in an evenly-
spaced circular configuration. For each run, feature tracking
errors were simulated synthetically by adding image plane
noise to the ground-truth tracks, in random directions, up
to M% of the image plane diagonal dimension, from inte-
gers 0% to 6%. All 100 points were triangulated at each
noise level, and the average was obtained. The bottleneck
of our algorithm is the gradient descent step. However, it
can be seen that triangulators SGTL*, SGTM* and SLT* are
faster than LT, except when using ¢ = 99%, across all fea-
ture tracking error values. Results for average and standard

deviation of reprojection error versus feature tracking error
are shown in Fig. 4 and Fig. 5. The behavior is, in general,
linear for all methods, showing stability in the presence of
noise. However, the values are slightly better for our ‘full
finish’ methods SGTFM* and SGTFL* than for LT. Process-
ing time versus feature track length is shown in Fig. 6. It can
be seen that our triangulators show a much slower increase
in processing time than L7, as the feature track length is
increased. For example, SGTM95 is more than 150 times
faster than LT for 100000 cameras. This is key towards tri-
angulation in large scenes with long feature tracks.

2500
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e SFGTLIS
1500 ~==SFGTL99
e SFGTM75

e SFGTMI5

Time (ms)

1000 SFGTM90

= SFGTM99
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SGTM75
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===SGTM95
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Figure 3: Feature tracking error versus computation time
(ms), for all tested triangulation methods. For comparison,
a dotted line is used for standard linear triangulation, LT

4.1.1 Three-view triangulation and bundle adjustment

In the implementation of Byrdd’s optimal three-view
method [2], projection matrices and feature tracks are pro-
vided from which they claim to have obtained the 10 ex-
act ground-truth 3D values. Our triangulators agree with
the ground-truth values up to at least 8 decimal places,
except in the third case. With very noisy initial inputs,
our method can yield an inaccurate result, such as the un-
likely occurrence of this case. As for processing time,
Stewénius et al. [14] took 20 hours to triangulate the Di-
nosaur dataset [10] on 128-bit arithmetic, and Byrdd et al.
took 2.5 minutes, whereas for example SGTM95 takes 0.5
seconds on hardware that is not much newer.

We also compared our SGTFM90 to LT when followed
by bundle adjustment. In fountain-P11 [15], SGTFM90 was
9% faster than LT in obtaining 455 initial 3D positions, and
both point clouds were optimized using SBA [8]. Our points
converged to a final total reprojection error of 1.479 pixels
in 21 iterations, whereas the LT points took 74 iterations
and five times longer, converging to an error of 16.57 pixels.
This shows that SBA likely converged to a local minimum
when starting with LT. Our triangulation, though not opti-
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Figure 5: Feature tracking error versus standard deviation
of reprojection error (pixels), for all tested triangulators.

mal, yields more-accurate points in less time, and this also

Table 1: Processing times ¢; and ¢,, (ms) and average re-
projection errors ¢; and ¢, (pixels) respectively for LT and
SGTM95, with number of cameras C, for real datasets.

aids in the convergence of bundle adjustment.

4.2. Evaluation on real data

For real scenes, processing time and reprojection error
were evaluated. These included castle-P30, fountain-P11
and Herz-Jesu-P25 [15], Dinosaur [10], Notre Dame [13],
and our own datasets Palmdale, Stockton, Walnut Creek and
Canyon. Our results demonstrated SGTFM90 and SGTM95
to be two of the overall best-performing triangulators. Ta-
ble 1 displays processing time and reprojection error results
for LT versus SGTM95. Our triangulators always outper-
formed LT, and especially in Palmdale-dist, where the im-
ages present a strong radial distortion. However, standard
deviation of reprojection errors is slightly lower when us-
ing a linear triangulation start, perhaps indicating that cer-
tain initial midpoints misguide optimization. Finally, recon-
structions obtained with SGTFM90 are shown in Fig. 7.

In summary, we present a triangulation framework that
presents excellent behavior both in real and synthetic test-
ing, and based on these results we can claim that it out-
performs the only proven and standard method for more
than three views, IN-view linear triangulation, while also



(a) (b) Palmdale-u (11 views)
fountain-P11
(10 views)

(©) (d) Canyon-dense (2 views)
Dinosaur
(36 views)

Figure 7: Scenes reconstructed with triangulator SGTFM90.

behaving excellently for two and three views. If guaranteed
optimality is required, optimal algorithms [5, 7, 14, 2] for
those cases may give slightly more accurate results, but at
potentially much higher processing times. Ultimately, our
framework is very flexible and its use depends on what the
end user wants. For fast but not very accurate results, use a
lower confidence and a midpoint start. For better accuracy
but a slower result, use a linear start and a higher confidence
level. We do not guarantee optimality, but present our work
as a very competitive alternative to other triangulators, and
especially for general N-view triangulation.

5. Conclusions

This paper presented a framework for triangulation in
multi-view scene reconstruction, which outperforms the
only standard tool for N views, linear triangulation, in
processing time and final reprojection error. We provide
two main contributions. First, a robust, inexpensive and
smoothly-varying cost function that allows for reliable con-
vergence to the global optimal solution with simple adaptive
gradient descent. Additionally, we present a statistical sam-
pling strategy designed to decrease the processing time by
using a small sample from the total set of rays for a feature
track. In general, the implemented triangulators outperform
N-view linear triangulation in real and synthetic testing,
and are especially attractive for large numbers of cameras.
Despite no guaranteed optimality, our triangulators are also
very competitive in practice for two and three-view trian-
gulation, and up to several orders of magnitude faster than
optimal solvers.
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