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Abstract

We evaluate the performance of a widely used tracking-
by-detection and data association multi-target tracking
pipeline applied to an activity-rich video dataset. In con-
trast to traditional work on multi-target pedestrian track-
ing where people are largely assumed to be upright, we use
an activity-rich dataset that includes a wide range of body
poses derived from actions such as picking up an object, rid-
ing a bike, digging with a shovel, and sitting down. For each
step of the tracking pipeline, we identify key limitations and
offer practical modifications that enable robust multi-target
tracking over a range of activities. We show that the use
of multiple posture-specific detectors and an appearance-
based data association post-processing step can generate
non-fragmented trajectories essential for holistic activity
understanding.

1. Introduction
We explore the task of multi-target multi-pose person

tracking for activity-rich surveillance videos using the cur-
rent tracking paradigm of tracking-by-detection and data
association. Advances in robust category-specific object
detectors [5, 6] have motivated the tracking-by-detection
paradigm, where robust detectors can act as strong obser-
vation models in tracking frameworks. In particular, re-
cent work has shown that a single coarse part-based model
(e.g., 5 to 15 parts) [7, 10, 22] is well-suited for detecting,
representing and tracking upright people. While these ap-
proaches are effective for urban scenarios, such as pedes-
trians walking on sidewalks or people in subway stations,
difficulties arise when people perform other activities like
riding a bike, digging a hole, or pushing a cart. Although
methods exist for full body pose estimation [21, 8, 24], they
often assume full body part visibility. In this work, we tar-
get surveillance videos that contain a range of human activ-
ity, beyond walking and standing. We evaluate the strengths
and limitations of state-of-the-art multi-target tracking and
offer practical modifications to improve performance.
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Figure 1. DARPA Mind’s Eye Y2 activity dataset

We proceed with our analysis by dividing the tracking
pipeline into two stages: person detection and data associa-
tion. In the person detection stage, we compare the results
of standard pedestrian detectors against richer models that
encode variations in pose. In particular, we compare four
different deformable part-models (DPMs) and show that
training models explicitly for different postures improves
performance. In the data association stage, we use a state-
of-the-art multi-target data association framework [20] and
examine how the choice of parameters affects the resulting
trajectories. Specifically, we evaluate the tradeoff between
the recall rate and the number of ID switches as a function
of the parameters. To prevent frequent ID switching and to
preserve longer trajectories, we propose an instance-specific
trajectory merging process as a post-processing step, that
uses appearance-based cues to make associations over long
periods of time.

The contributions of this paper are as follows: (1) step-
by-step analysis of detection-based data association track-
ing for activity-rich videos; (2) a multi-pose deformable
parts model that allows for robust tracking over pose vari-
ations; and (3) long term data association using target-
specific appearance-based regressors.

Work on multi-pedestrian tracking is a significant field
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Figure 2. Examples of detections for different models: (a) INRIA
single mixture DPM, (b) VOC09 three mixture DPM, (c) Mind’s
Eye six mixture DPM, and (d) multi-pose DPMs (Proposed). De-
tection score visualized with colored bounding boxes from -0.9
(blue) to -0.3 (green), where higher scores are stronger detections.

of research, driven by many applications in surveillance,
monitoring and human activity understanding. In the past
decade, we have seen progress in two significant directions:
(1) pedestrian-specific detection and (2) batch data associa-
tion to recover trajectories.

Inspired by the success of the histogram of gradients
(HOG) pedestrian detector [5], the use of a category-
specific detector as an observation model in a tracking
framework has become a standard approach for many
pedestrian tracking algorithms. The two advantages of
person-specific tracking are the discriminative power of a
pedestrian detector and the elimination of a manual initial-
ization step. Although standard pedestrian detectors, such
as the DPM [7], robustly detect upright pedestrians, they
faces difficulties when applied to activity-rich datasets that
include non-upright postures.

The second direction of research is the transition from
online filtering-based algorithms, such as Kalman filtering
and particle filtering [3], to batch smoothing algorithms
[2, 11, 15, 25, 19, 9, 1, 20, 23] that analyze all pedestrian
detections as a batch process. While the latter approaches
are not well-suited for online tracking applications, batch
approaches find trajectories by allowing the algorithm to
look forward and backward in time. However, most ap-

proaches assume that people are only walking or standing in
the scene, and therefore use activity-agnostic features such
as velocity, location and appearance.

It is interesting to note that work on pedestrian track-
ing has largely progressed independent of work on pose-
level human activity analysis. Few researchers [17, 4] have
examined the relationship between tracking and activity
analysis. In this work, our goal is to evaluate the current
paradigm of detection-based multi-pedestrian tracking and
to understand how this approach performs applied to an
activity-rich dataset. As a result of our analysis, we make
the case for a recall-based evaluation metric, that gives pref-
erence to temporally persistent (non-fragmented) trajecto-
ries. On a practical level, we propose two modifications
that allow for more robust multi-pose multi-target tracking,
by using multiple pose detectors and an appearance-based
data association post processing step.

2. Multi-Pose Multi-Target Tracking
Many tracking pipelines can be divided into two stages:

person detection and data association. In the following sec-
tion we describe the strengths and shortcomings of each
stage and propose modifications that improve overall track-
ing performance.

2.1. Multi-Pose Person Detection
In a standard tracking-by-detection framework, a single

person detector is applied to each image frame to create a
set of potential detections. Then detections are chained to-
gether in a data association step to generate full trajecto-
ries. For many surveillance applications, such as pedestri-
ans in a parking lot or a subway, a single model tuned to
detect upright people is sufficient to capture people in the
scene. However, when people engage in activities, such as
bending down or sitting down, a single model is not expres-
sive enough to represent various poses. Therefore, to enable
more robust detection of people while performing such ac-
tivities, it is essential that the person model be modified to
include various poses. To this end, we extend the repre-
sentational power of a single DPM by generating multiple
DPMs. Specifically, we train six models: standing, strad-
dling, walking, sitting, squatting and bending over. These
pose categories were derived from a set of low-level pose el-
ements used in the HOMINE ontology [18] to reason about
higher level activities.

We show qualitative examples of detection with our
model against several baseline models in Figure 2, and
quantitative results are discussed in Section 3. Notice that
our model trained for specific poses returns a strong score
for a person sitting, while the single mixture DPM (DPM1)
and three mixture DPM (DPM3) either miss or return only
weak responses. The six mixture DPM (DPM6) learned
automatically from all poses only loosely models different
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Figure 3. Evaluated DPM models: (a) DPM1: INRIA single mix-
ture DPM, (b) DPM3: VOC09 three mixture DPM (c) DPM6:
Mind’s Eye six mixture DPM and (d) P6: Proposed multi-posture
DPM models of person squatting, bending over, sitting, straddling,
walking, and standing.

postures and tends to generate a high number of false posi-
tives. Each model is visualized in Figure 3.

2.2. Graph-based Multi-Target Tracking
The second stage of the pipeline is batch data associa-

tion. In this stage, each detection is treated as a node in a
graph with various edge potentials. In this work, we adopt
the graph-based approach of [20] to obtain continuous tra-
jectories. Each detection is instantiated as a node in a graph.
Nodes are connected by edges depending on distance and
scale differences between associated detections. The opti-
mal set of edges can be computed in a greedy way such
that the obtained solution is globally optimal. In Section
3, we perform a quantitative analysis of this approach and
observe the trade-off between the recall rate and the num-
ber ID switches as parameters are adjusted. Our analysis
shows that this approach has a strong tendency to fragment
trajectories into smaller tracklets.

2.3. Detection Propagation
In order to prevent the fragmentation of trajectories,

we propose a pre-processing step that aims to generate a
smooth set of detection hypothesis to make it easier for the
data association algorithm to find continuous trajectories.
Specifically, we increase the pool of confident detection

proposals by tracking the top scoring detections forward
and backward in time, similar to [1]. We use a conserva-
tive template matching approach to instantiate new, yet tem-
porally consistent detections. Propagated detections near
the original detection are assigned a score that scales lin-
early with time (10% decrease per time step). We refer to
these additional detection instances as ‘propagated detec-
tions.’ Section 3 provides a quantitative analysis of detec-
tion propagation.

2.4. Tracklet Association

Even with the introduction of propagated detections, the
tracks produced by chaining together detections are sig-
nificantly fragmented due to missed detections and occlu-
sions. Furthermore, the framework of [20] is not able to
handle large gaps, such as an individual exiting and re-
entering. This limitation suggests the need for an addi-
tional level of data association to connect fragmented track-
lets over long periods of time. Indeed, layered track-
let association schemes have been proposed for several
multi-target algorithms [16, 9]. Traditional association ap-
proaches have used generic appearance-based features, such
as color histograms, local texture histograms or part ap-
pearance models as a means of defining a generic distance
metric. However, recent work has shown that discrimina-
tive object-specific descriptors can be beneficial for robust
tracking [10, 12, 14, 22]. Following the direction of pre-
vious work, we implement an additional data association
step that merges shorter tracklets over long temporal du-
ration by leveraging invariant appearance information. In
particular, our proposed approach is a greedy algorithm that
builds discriminative appearance classifiers online from a
color histogram to find the best matches between an active
tracklet and a list of terminated tracklets. We used color
histograms because they are invariant to large variations in
pose and scale. Due to potentially large variations in pos-
ture, we have not used gradient-based spatial histogram fea-
tures (e.g., HOG, SIFT).

For each tracklet j, we train a random forests regressor
fj : x → y, y ∈ [−1, 1], where the detection boxes are used
as positive examples and negative examples are generated
from neighboring patches of equal size and other detections
from the same frame.

Our appearance feature is a (64 × 16) × 2 dimensional
joint color histogram over hue (64 bins) and saturation (16
bins) for the top and bottom portions of the detected bound-
ing box. To remove the effect of the background included in
the bounding box, we use a Gaussian mixture background
model [26] to generate a foreground mask to retain only
foreground appearance. We also found that removing tra-
jectories that include detections with no foreground pixels
greatly reduces the number of false positives.

Our greedy algorithm merges the current tracklet i with



the best matching tracklet ĵ according to

ĵ = argmax
j

D(i, j), (1)

where the score between two tracklets is computed as a
two-way cumulative mean sum of regressor responses. The
score is defined as

D(i, j) =
1

Mi

Mi�

m

fj(xm) +
1

Nj

Nj�

n

fi(xn), (2)

where Mi and Nj are the number of detections in trajectory
i and j, respectively. If the maximum score falls below a
threshold (0.50 in our experiments), trajectory i is consid-
ered to be a new trajectory.

3. Experimental Analysis
To quantify tracking performance we report the CLEAR-

MOT [13] metrics: Multiple Object Tracking Accuracy
(MOTA) and Multiple Object Tracking Precision (MOTP),
on four sequences from the Mind’s Eye Y2 dataset (Figure
1). MOTA is a score that jointly quantifies the number of
missed detections, false positives, and ID switches. MOTP
measures the precision of object location estimates, inde-
pendent of ID switches, and trajectory gaps. We also in-
clude the precision, recall and number of ID switches. The
precision and recall of a trajectory is computed from the
number of overlapping bounding boxes (between detection
boxes and ground truth boxes) where any overlap greater
than 50% is considered a true positive.

Although many tracking frameworks use the MOTA
score as a general measure of overall performance, we argue
that from the perspective of activity analysis, the number of
ID switches and the trajectory recall rate have the great-
est impact on end-to-end performance. A high number of
ID switches (IDS) implies that the full trajectory has been
fragmented into many small trajectories. Since traditional
action recognition approaches have no mechanism for deal-
ing with multiple trajectory fragments, it is only possible
to classify the action for a single fragment (i.e., losing all
information about other fragments), resulting in an incom-
plete understanding of a specific individual’s activity. Sim-
ilarly, the recall rate is also an important metric as it quanti-
fies the number of lost detections. However, the recall rate
alone can be deceiving as it does not encode ID switching.

3.1. Detector Analysis
To evaluate the benefit of using our multiple pose detec-

tion approach, we compare our proposed model against (1)
DPM1: a single mixture DPM trained on the INRIA pedes-
trian dataset, (2) DPM3: a three mixture DPM trained on the
VOC 2009 person dataset [7], and (3) DPM6: a six mixture
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Figure 4. Precision-recall curve for DPM1, DPM3, DPM6 and our
proposed P6. ROAD 1 (left) contains predominantly upright peo-
ple, resulting in negligible change in performance. ROAD 2 (right)
contains various postures, resulting in a significant boost in perfor-
mance for our proposed model.

DPM model training on a disjoint set of the Mind’s Eye ac-
tivity dataset. The root filters superimposed with part filters
for each model are shown in Figure 3.

We hypothesize that adding multiple pose detectors will
increase the number of detections, effectively increasing
the recall rate, and will therefore allow the data associ-
ation stage to track people that undergo changes in pos-
ture. However, we are also concerned about the number
of false positives that are introduced by simply adding more
models. Figure 4 shows the change in the precision-recall
(PR) curve for the different detection models for two dif-
ferent videos. Since the ROAD 2 sequence contains many
changes in posture, notice the significant increase in recall
and precision for the proposed multi-pose person detector
(P6) versus other models. However, for the ROAD 1 se-
quence, which contains mostly upright people, we see only
modest improvements.

Table 1 shows the scores for each detector after data as-
sociation using [20]. We observe that our proposed detector
P6 consistently generates the highest recall rate among the
models. At this step in the process, a high recall rate is
important because this means that more true detections are
available for the tracklet association step. As we shall see,
the tracklet association step is quite robust at handling many
false positives and consistently improves precision.

3.2. Multi-Target Tracking and ID Switching

To gain a better understanding of the characteristics of
data association using [20], we analyzed the change in per-
formance using a parameter sweep. Figure 5 shows how the
number of ID switches changes as a function of the maxi-
mum cost parameter (maximum cost of a trajectory). No-
tice that the minimum number of ID switches is quite large
despite the change in the maximum cost parameter. This
shows that the data association step is conservative and has
a strong tendency to divide trajectories into smaller frag-
ments.



Table 1. Multi-target tracking results [20] with different detec-
tor models. Scores for a single mixture (DPM1), a three mixture
(DPM3), a six mixture (DPM6), and six posture model (P6). Bold
text indicates best values.

SAFE HOUSE 1 MOTP MOTA Precision Recall IDS
DPM1 73.69 58.01 96.83 60.92 40
DPM3 74.30 59.96 98.50 61.63 32
DPM6 71.62 21.22 70.45 36.83 7
P6 (Proposed) 76.47 56.38 84.95 68.97 16
SAFE HOUSE 2 MOTP MOTA Precision Recall IDS
DPM1 75.80 37.68 96.61 39.70 66
DPM3 76.76 44.65 96.08 47.22 68
DPM6 75.68 20.93 91.74 23.39 38
P6 (Proposed) 71.87 31.65 69.34 58.10 80
ROAD 1 MOTP MOTA Precision Recall IDS
DPM1 74.31 81.26 95.51 86.31 60
DPM3 73.86 48.80 98.37 50.04 25
DPM6 76.78 68.35 99.35 69.02 13
P6 (Proposed) 75.95 36.12 62.63 91.38 45
ROAD 2 MOTP MOTA Precision Recall IDS
DPM1 75.04 64.62 92.41 73.39 46
DPM3 76.68 22.32 97.23 23.03 1
DPM6 75.17 20.23 99.71 20.41 2
P6 (Proposed) 74.76 76.07 83.19 95.94 8
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Figure 5. A parameter sweep of the maximum trajectory cost
shows that a reduction in ID switches comes at the cost of the re-
call rate. Our proposed tracklet association (TA) shown in green,
reduces the number of ID switches to zero with a minimal decrease
in recall.

3.3. Appearance-based Tracklet Association

Based on our analysis, we observed that our multi-pose
detector yields a high recall rate and a high number of ID
switches after data association. While a high recall is fa-
vorable, the high number of ID switches poses a serious
problem for activity recognition. Here, we analyze the ben-
efits of supplementing the data association step with an ad-
ditional tracklet association post-processing step based on a
person’s appearance. Table 2 shows a significant decrease
in the number of ID switches and an improvement in the
overall MOTA score by adding the tracklet association (TA)
post-processing step.

To gain more insight into the improvement introduced
through tracklet association, we performed a parameter
sweep of the maximum trajectory cost parameter of [20]
and analyzed the change in the number of ID switches. Fig-
ure 5 shows that to reduce the number of ID switches to
zero, the cost parameter must be lowered to at least -50 for
DPM6 (red dashed line). In this regime, the recall rate drops

Table 2. Ablative analysis over tracklet association (TA), detec-
tion propagation (dP) and smoothing (s). Bold text indicates best
values.

SAFE HOUSE 1 MOTP MOTA Precision Recall IDS
P6 76.47 56.38 84.95 68.97 16
P6+TA 79.72 57.32 94.58 60.85 2
P6+dP 76.53 56.50 83.51 70.71 11
P6+dP+TA 79.49 54.94 91.34 60.72 1
P6+dP+TA+s 79.62 54.94 91.34 60.72 1
SAFE HOUSE 2 MOTP MOTA Precision Recall IDS
P6 71.87 31.65 69.34 58.10 80
P6+TA 73.14 40.81 92.24 44.77 20
P6+dP 71.73 38.73 73.00 62.86 93
P6+dP+TA 73.50 41.67 89.47 47.49 24
P6+dP+TA+s 73.73 40.75 88.58 47.02 22
ROAD 1 MOTP MOTA Precision Recall IDS
P6 75.95 36.12 62.63 91.38 45
P6+TA 77.96 78.48 97.24 80.88 6
P6+dP 76.00 38.83 63.23 94.42 41
P6+dP+TA 78.26 76.72 98.45 78.02 4
P6+dP+TA+s 78.38 76.96 98.59 78.14 4
ROAD 2 MOTP MOTA Precision Recall IDS
P6 74.76 76.07 83.19 95.94 8
P6+TA 76.90 85.68 95.85 89.56 0
P6+dP 75.11 71.30 79.91 96.36 14
P6+dP+TA 77.32 73.21 93.92 78.28 0
P6+dP+TA+s 76.35 65.33 89.19 74.34 0

by more than 50% for DPM6. This means that many trajec-
tory fragments are simply removed to reduce the number of
ID switches. In contrast, our proposed tracklet association
step can eliminate ID switches with only a 12% drop in re-
call. This means that more trajectory fragments are retained
for the trajectory of a single person.

We also experimented with two minor modifications –
detection propagation (mentioned in section 2.3) and tra-
jectory smoothing – in an effort to improve the smoothness
of trajectories. Table 2 shows that while detection propa-
gation (dP) consistently increased the recall rate of data as-
sociation, there was no significant impact on performance
after the tracklet association step. It is also interesting to
note that while smoothing trajectories (Gaussian smoothing
after data association and after tracklet association) had a
visual impact on the smoothness of the trajectories, the met-
rics show only minor improvement in performance since we
used conservative smoothing parameters.

4. Discussion and Conclusion
In contrast to traditional work on multi-target tracking,

we have evaluated tracking performance in the light of ap-
plications for activity analysis. As mentioned above, the re-
call rate and number of ID switches is a critical factor in suc-
cessfully applying action recognition techniques to tracker
outputs. We believe that the consideration of downstream
action recognition is an important perspective when evalu-
ating tracking algorithms.

Our use of multiple pose detectors also illustrates the
advantage of coupling aspects of action recognition with
tracking to improve joint performance, as shown in work
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Figure 6. Action recognition via detection score aggregation.

such as [17, 4]. Since our proposed approach uses detectors
explicitly trained for different postures, we are also able to
use detection scores as a means of understanding low level
actions. Figure 6 shows the potential for action recognition
by aggregating detection scores within our tracking frame-
work.

We have presented a step-by-step analysis of a tracking-
by-detection and batch data association paradigm for multi-
target tracking over activity-rich videos. We have shown
qualitatively and quantitatively the characteristics of various
aspect of the tracking pipeline. We have identified several
key modifications that extend the state-of-the-art to multi-
pose tracking. In particular, our analysis of multi-pose
multi-target tracking has shown that increasing the number
of pose models increases the number confident detections
over a wider range of postures while adding minimal noise.
We have also shown that the addition of an appearance-
based data association post-processing step is effective for
preserving long-term trajectories. On average, we showed
that our proposed detector improves recall by 23% against
the DPM3 and that our tracklet association yields an 87%
decrease in the number of ID switches.
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