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Abstract

One of the most active research areas in computer vision is image classification.

Although there have been many research efforts in this area, it remains a difficult

problem, especially when the number of categories is large. Most of the previous work

in image classification uses low-level image features. We believe low-level features

ignore a lot of the semantic structures of the image classes. In this thesis, we go

beyond simple low-level features and propose new approaches for constructing mid-

level visual features for image classification. We represent an image using the outputs

of a collection of binary classifiers. These binary classifiers are trained to differentiate

pairs of object classes in an object hierarchy. Our feature representations implicitly

capture the hiererarchical structure in object classes. We show that our proposed

approach outperforms other baseline methods in image classification.
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Chapter 1

Introduction

Image classification is a core research area in computer vision. It is a task of

assigning a label to a given image. It is a very challenging problem for computers due

to the dramatic changes in size, position, illumination, and viewpoint of objects. The

basic idea in image classification is to learn a model for classifying new images from a

set of labeled training images. To perform the learning, images have to be transformed

into representations that are understandable by machine, and then a model (called a

“classifier”) has to be trained to predict the labels for these representations.

Most approaches in image classification use low-level feature representation, which

can be extracted directly from images (e.g. color, texture, shape). For example,

the most widely used approach is based on local features, or bag-of-words (BoW)

representation. In this approach, local descriptors (e.g. SIFT [20]) are extracted

from images. Then, the local descriptors from the training images are clustered to

form the “visual words”. Each image is then represented by a BoW representation

by counting the frequency of visual words in the image. Finally, a predictive model

1



2 Chapter 1: Introduction

Figure 1.1: Illustration of the tree-shaped hierarchy. Every leaf node represents an
individual class label; such as, v6, v7, v8. The root node “living thing” is the union
of all leaf nodes’ class labels. Every internal node represents a subset of leaf nodes’
class labels; such as, internal node v4 ∈ V represent the group G4 = v6, v7, v8.

is learned based on this BoW representation of images.

Although BoW models have been very popular, the visual words used in these

models usually have no explicit semantic meanings. So they fail to offer sufficient

discriminative power. This is commonly known as the semantic gap [18] in visual

recognition.

To address this issue, we introduce new semantically meaningful mid-level feature

representations for visual recognition. In this thesis, we use the term “mid-level

features” to mean features that cannot be extracted from images alone. Instead

we need some kind of semantic knowledge to learn those features. We consider the
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Figure 1.2: Intuitive example of our mid-level representation; (top) we have a sub-
set of a hierarchy of object categories; (bottom) number of object pairs range from
coarse pairs (e.g., “Canine” vs “Feline”), to fine-grained pairs: (e.g.,“Shepard dog”
vs “Dalmatian dog”). For the “Shepard dog” image, we use the output scores to form
its mid-level features.

hierarchical structure of object categories as a resource for the semantic knowledge.

We can define the hierarchical structure (see Fig. 1.1) as a tree T = (V,E) with nodes

V and edges E. The leaf nodes in the tree represent individual class labels, and each

internal node v ∈ V is associated with group of class labels lv corresponding to all

leaf nodes in the subtree rooted at v.

Object categories naturally have a hierarchical structure (i.e. taxonomy) with

different levels of abstraction. For example, a path in the object hierarchy could be

“living thing → animal → mammal → dog”. In computer vision, object hierarchies

have been used to organize images [19], provide fast run-time algorithms [4], enable

novel applications [8]. However, there is little work on using object hierarchy to

construct semantic features.
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Figure 1.3: The basic procedures for our classification system. Given a labeled dataset
with K class labels, we first extract the low-level features from every image, then we
build the tree-shaped hierarchy. Next, we exploit the semantic relations between
object classes to construct the mid-level features, and then we learn a model to
predict a class label for every image.

In this thesis, we propose new approaches for constructing mid-level feature repre-

sentations by exploiting the hierarchical structure of object categories. Our mid-level

representation is based on a collection of output scores from a set of binary classi-

fiers, which differentiate between pairs of object categories in the hierarchy. To give

an intuitive example, suppose we have a sub-set of a hierarchy as in Fig. 1.2. We first

learn a set of binary classifiers to differentiate between every pair of object categories

which range from coarse object categories (e.g. “Canine” vs “Feline”) to fine-grained

object categories (e.g. “Shepard dog” vs “Dalmatian dog”). Then, to represent the

“Shepard dog” image with mid-level representation, we collect the output scores from

these binary classifiers. The output scores are then used to form the mid-level features

representation for the “Shepard dog” image.

Both of our approaches exploit the semantic hierarchy to define a collection of

object pairs to extract the mid-level features. The main difference between them
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lies in the way of unifying these mid-level features. In the first approach (approach

A), we construct the mid-level representation for an image by concatenating all out-

put scores from all binary classifiers which differentiate between all object pairs in

the hierarchy. In the second approach (approach B), we limit our attention to con-

struct the mid-level representation by concatenating the output scores from binary

classifiers of object pairs that produce meaningful disscrimintive scores. Meaningful

disscrimintive scores can be acquired by considering only object pairs along the path

of the given image. An overview of our two approaches is illustrated in Fig.1.4. Both

of our approaches require a tree-shaped hierarchy of object classes. In many cases,

this hierarchy is given, e.g. based on the WordNet hierarchy However, to propose a

complete classification system, we proposed a method for constructing the hierarchy

from data when the hierarchy is not readily available. The basic procedures for our

classification system are shown in Fig.1.3.

Our work is motivated by the observation that visual features might have different

discriminative power at various levels in the hierarchy. For example, certain features

might be useful for differentiating high-level abstract categories (e.g. “animal” vs

“plant”), while others are useful for more fine-grained object categories (e.g. Shepard

dog vs Eskimo dog). By constructing object pairs at different levels of the hierarchy,

we are able to learn a diverse set of discriminative mid-level features.
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Figure 1.4: General overview of our two approaches. (bottom), we are given a
tree-shaped hierarchy for object categories (the light blue line represent all possible
comparison pairs between objects). We exploit this hierarchy to form the mid-level
feature representation. In approach A, we represent the “Cat” image by differentiating
it from all other objects in the tree-shaped hierarchy, where in approach B we only
consider objects along its path.



Chapter 2

Related work

Image classification is a classic problem in computer vision. A comprehensive

review of the image classification literature is beyond the scope of this thesis. Here

we only go over the works most related to our proposed method.

2.1 Image classification/object recognition

The most popular approach for image classification is the bag-of-words method(BoW).

It involves extracting local descriptors from interest points found in an image (e.g.

SIFT descriptors [20]), quantizing the descriptors into visual words by clustering the

descriptors, and counting the occurrences of each visual word to construct the his-

togram of word frequencies for each image (see Fig.2.1). The histogram representation

is then used as the feature vector of the whole image and fed to a classifier. The BoW

representation ignores the spatial layout of local descriptors.

Spatial Pyramid Matching (SPM) was proposed by Lazebnik et al [17] to overcome

7
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Figure 2.1: Illustration of the standard BoW image representation.

the limitation of BoW model by capturing the spatial information of local descriptors.

SPM divides an image into several regions at different spatial resolutions and repre-

sents each region using BoW. The whole image is represented by the concatenation

of BoW representations for all subdivided regions. SPM is considered as one of the

most effective image classification techniques.

2.2 Large scale image classification

Datsets are crucial for the development of image classification systems. In the

computer vision community, a lot of efforts have been made in collecting and anno-

tating large-scale image datasets. One representative example is the ImageNet dataset

[9], which organized according to the WordNet hierarchy, and consists of more than
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5247 object categories (also called “synset” in ImageNet) and more than 3.2 million

images. Images in each synset are obtained by querying the web. The results are

human verified. WordNet [21] is one of the most popular semantic networks for En-

glish language. It groups words into sets of synonyms and define different semantic

relations between them. For example, two connected nodes in the hierarchy indicate

the “is-a” relationship between them. For example, a “dog” is a “mamanal”, an

“animal”, and a “living thing”.

Deng et al. [8] conducted the first experimental study of image categorization

on large scale ImageNet dataset. They showed that as the number of categories

increases, accuracies of standard classifiers decrease. Also, they showed that classi-

fication based on hierarchal cost is significantly more informative when working on

large scale dataset. For example, classifying a dog image as “cat” should incur a lower

cost than classifying it as “helicopter”, since “cat” is closer to “dog” in the object

hierarchy than “helicopter”.

Lin et al. [19] were motivated by the fact that existing algorithms consume a

significant amount of time when dealing with large dataset of about 1.2 million images.

Thus, they worked to enhance the efficiency of large scale image classification by

developing a fast feature extraction and fast classifier training method. For feature

extraction, they achieved efficient performance by allowing data to be stored in a

distributed way using Hadoop (an open-source software framework that supports

data-intensive distributed application). For classification, they achieved fast SVM

training using parallel averaging stochastic gradient descent(ASGD) where classifiers

can be learned in parallel and the training data are shared through careful memory
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sharing.

2.3 Hierarchy

There are many approaches in image classification that focus on proposing faster

and memory efficient classifiers for large dataset. In particular, Bengio et al. [4]

proposed the label tree model to reduce the complexity of classifying larger scale

dataset. The label tree consists of internal nodes and leaf nodes, where each leaf

node corresponds to a single class label, and each internal node is associated with a

linear classifier. The test image traverses the tree from the root to a leaf. At each

internal node, the linear classifier associated with that node determines which child to

visit. The label tree method is efficient because the run-time in testing is logarithmic

to the number of object categories.

Deng et al. [11] developed an improved method by learning the hierarchy jointly

with the classification model. Gao et al. [12] further improved the method by allowing

overlapping object classes at different child nodes.

Object hierarchy has also been used to improve image retrieval [7] and to provide

accuracy-specificity trade-offs in large scale recognition [10], where a testing image

can be recognized at various levels in the tree with different confidence. For example

if the main object in the testing image is a smart car , the system might predict it as

a car with 90% confidence, a vehicle with 95% confidence, etc.

To achieve better trade-off between efficiency and accuracy with the object hier-

archy, Sun et al. [25] proposed to use the branch-and-bound technique for efficient

classification. The test image in the standard tree-based algorithm traverses only
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Figure 2.2: An example of Cao et al. [6] image representation.

single path in the tree from the root to a leaf based on the linear classifiers associated

with every internal node. This implies that if a mistake occurs at one node, it will

be propagated to a leaf node and cannot be recovered. Sun et al. [25] overcame this

limitation by exploring more than one path in the tree-shaped hierarchy and typically

finish in sublinear time.

2.4 Mid-level features

Most work in image classification use low-level visual features. These features do

not have much high-level semantic information about the object categories. In order

to address this limitation of low-level features, researchers have been developing mid-

level features that encode semantic information about the objects. Two representative

examples are Cao et al. [6] and Li et al. [18]. Cao et al. [6] proposed a learning-

by-focusing method. Given a dataset with many classes, this approach learns a set
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of one-vs-one classifiers between every pair of object classes. The responses of these

classifiers are then used as features for recognition. For example, to build a cat

classifier (Fig.2.2), they consider number of concept pair; such as, “cat” vs “dog”,

“cat” vs “horse”, “dog” vs ”horse”, etc. For each pair, they learn a binary classifier

differentiating the two object categories. The outputs of these classifiers are the

discriminator for the cat object. Such mid-level representation had enhanced the

performance of image classification systems. Li et al. [18] proposed a representation

called “Object Bank” for scene recognition. This representation first learns a large

collection of object detectors. For a given image, these detectors are applied and their

responses are used as mid-level features for recognition. This image representation

has been shown to be effective for high-level vision tasks, such as scene classification.

An extension of object bank, called action bank [23], is proposed to represent

complex activities in videos. Torresani et al. [26] developed a similar representation

called classme for object classification. Classme first learns classifiers for a set of basis

classes. Any new object category is then represented as combinations of these basis

classes.



Chapter 3

Our approach

Most image classification methods use low-level features, which do not capture

much semantic information about the object categories. Cao et al. [6] and Li et

al. [18] use mid-level features, but do not consider the valuable semantic knowledge

on object hierarchy. We propose two approaches to show how a taxonomy could be

exploited to help object category recognition.

Given an input image belonging to a leaf node of a hierarchy, we first represent

the image as a vector of standard low-level features (e.g., color, texture, etc). We

then apply a large number of binary classifiers on this low-level feature vector. Each

classifier will output a score. In approach A (Sec.3.1) , we concatenate the scores of

all binary classifiers from all the internal nodes in the hierarchy to form a mid-level

feature representation of the image. In approach B (Sec.3.2), we propose an alterna-

tive way to form a mid-level feature representation of the image by concatenating the

scores of binary classifiers that are associated with the most “relevant” internal nodes

in the hierarchy. Our approaches require a tree-shaped hierarchy of object classes.

13
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In many cases, this hierarchy is given, e.g. based on the WordNet hierarchy [9]. In

Sec.3.3, we describe how to construct the hierarchy from data when the hierarchy is

not readily available.

3.1 Approach A

An overview of our approach A , which has been published as [2], is illustrated in

Fig. 3.1. Given an input image, we first represent the image as a vector of standard

low-level features (e.g. color, texture, etc). We then apply a large number of binary

classifiers on this low-level feature vector. Each classifier will output a score. We con-

catenate the scores of all binary classifiers to form a mid-level feature representation

of this image. We then apply a non-linear classifier on this mid-level representation

to predict the class label.

Our image representation is constructed from the responses (i.e. scores) of many

binary classifiers. Similar to Cao et al. [6], we learn each classifier to differentiate one

pair of semantically exclusive concepts 1 (one-vs-one). An alternative is to learn a

classifier that differentiates between one concept from all other concepts (one-vs-all).

As demonstrated by Cao et al. [6], the former (one-vs-one) is preferable, since it is

easier for the learning algorithm to find the discriminative features that distinguish

two concepts. The latter (one-vs-all) is arguably more challenging for the learning

algorithm, since it has to learn features that distinguish a concept from a diverse set

of other concepts. In our work, we choose the one-vs-one strategy.

1In this thesis, “concept” and “object class” are used interchangeably.
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Figure 3.1: An overview of our approach A. Top: we are given a hierarchy of object
categories. From this hierarchy, we construct L pairs of object categories and learn
a binary classifier for each pair (details in Sec. 3.1.1). Bottom: for an image, we
apply these L binary classifiers and treat the scores of these L binary classifiers as
mid-level feature representation of this image. We then learn a non-linear classifier
to recognize the image category corresponding to a leaf node in the hierarchy based
on this mid-level image representation (details in Sec. 3.1.2).

3.1.1 Selecting concept pairs

Suppose we have a set of K concepts C = {C1, C2, ..., CK}. These concepts corre-

spond to the leaf nodes in the object hierarchy. The method in [6] constructs K(K−1)
2

concept pairs by considering every possible combination of two concepts. For each

concept pair (e.g. “bicycle” vs “bus”), it then learns a linear SVM classifier that

differentiates these two concepts.

We propose a new way of constructing concept pairs by exploiting the semantic
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Figure 3.2: Illustration of how to construct the scores at a single node (“animal”) in
the hierarchy. We consider each pair between two children of this node, e.g. “cat”
vs “dog”, “cat” vs “fox”, “dog” vs ”fox”, etc. For each pair, we learn a binary
classifier differentiating the two object categories. The outputs of these classifiers are
the mid-level features constructed at this node.

hierarchical structure of object categories. Let us consider a non-leaf node V in the

hierarchy, e.g. V might correspond to the concept “animal”. Suppose the node V

has t child nodes. The child nodes of “animal” might correspond to concepts such

as “dog”, “cat”, “horse”, etc. For the node V , we construct t(t−1)
2

concept pairs by

choosing all pairs of concepts from the child nodes of V . For example, the concept

pairs for “animal” will include “dog” vs “cat”, “dog” vs “horse”, “cat” vs “horse”,

etc.

We repeat the process for all internal nodes in the hierarchy. In the end, we
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Figure 3.3: Illustration of how to construct the mid-level feature from the entire
hierarchy for an image. We apply the process illustrated in Fig. 3.2 to every internal
node of the hierarchy. Each internal node will give a set of scores. The concatenation
of scores across all internal nodes forms our mid-level feature representation.

will get a collection of concept pairs. Some of the concept pairs will correspond to

abstract concepts, such as “animal” vs “plant”. Others will correspond to fine-grained

concepts, such as “Shepard dog” vs “Eskimo dog”.

We then use standard techniques to learn a classifier to differentiate the two

concepts in each concept pair. We first extract some standard low-level image features

from the images, such as color histogram, SIFT histogram [20], GIST [22], LBP [1],

etc. We will describe in detail the low-level features we used on each dataset in

the experiment later (Sec. 4.1). For a concept (e.g. “dog”) in the hierarchy, its

training examples are those labeled as descendants of this concept. In other words,
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all the images that are labeled as specific species of dogs in the training data will be

considered as “dog” images. We then learn a binary linear SVM classifier for each

concept pair. We represent the classifier for the i-th concept pair as fi. Given a new

input image x, this classifier will return a score fi(x). We can interpret this score

as the confidence of differentiating x between the positive/negative class in the i-th

concept pair. If fi corresponds to the “dog” vs “cat” concept pair with the “dog”

being the positive class, we would expect fi(x) to be high if x is an image of a dog.

Similarly, we would expect a low score it is an image of a cat, and a score close to

zero if it is neither a dog or a cat image. Figs. 3.2 and Fig.3.3 illustrate the whole

process.

3.1.2 Image representation

The method in Sec. 3.1.1 gives us a collection of L binary classifiers f1, f2, ...,

fL. We can interpret these binary classifiers as defining a L-dimensional semantic

concept space. Due to the way we construct these binary classifiers, this concept

space encodes information about the hierarchical structure of object categories.

For an image x, we encode this image as a L-dimensional vector F (x) by concate-

nating the scores of these binary classifiers applied on x, i.e. F (x) = [f1(x), f1(x), ..., fL(x)].

We treat F (x) as the mid-level feature representation of the image x. Using this

L-dimensional feature representation on training data, we then learn a K-class non-

linear SVM classifier to predict the class label of any given image.

During testing, we are given an unseen image x. Similarly, we encode x using

the L binary classifiers as F (x) = [f1(x), f1(x), ..., fL(x)]. We then apply the learned
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K-class non-linear SVM to predict the class label of this new image.

3.2 Approach B

In this section we propose an alternative approach which better exploits the hi-

erarchical structure. The approach A (Sec. 3.1) has to evaluate all the binary linear

classifiers on an image. But intutively, only a subset of these classifiers will produce

meaningful scores on a given image. As an example, let us consider an image of “shep-

ard dog”. If a concept pair (e.g. “apple” vs “banana”) is irrelevant to “shepard dog”,

the score of the corresponding linear classifer will likely to be close to 0. This suggests

that we only need to evaluate a subset of the binary classifiers and approximate the

scores of the remaining ones with 0.

An overview of our approach B is shown in Fig. 3.4. For a given image, we first

extract standard low-level visual features (e.g. color, texture, shape, etc). We then

apply a large collection of binary classifiers on the low-level features. The responses

of the most “relevant” binary classifiers are used to construct a mid-level image rep-

resentation. The “relevant” binary classifiers correspond to the concept pairs of every

internal node V along the path of the image.

3.2.1 Image representation using object hierachy

In this approach, we use the same process in approach A (Sec.3.1.1) to learn the

collection of binary classifiers, since it allows exploiting the hierarchical structure of

object classes.

For a new image, we construct its representation using the output scores of these
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Figure 3.4: An overview of approach B: (left) Given a tree-structured hierarchy, we
construct a set of binary classifiers. Each dash blue line represents a classifer between
two concepts in the hierarchy; (right) For a given image, we represent the image
using a vector of mid-level features. The entries of this vector are the responses of
the corresponding binary classifiers on this image.

linear classifiers. However, in contrast to approach A (Sec. 3.1.2), we propose to

construct the image representation by only considering the most relevant concept

pairs. We first describe how to construct the image representation for training images,

for which we know the ground-truth labels. In Sec. 3.2.2, we will explain how to handle

test images for which the ground-truth labels are unknown.

Given a training image, since we know its ground-truth label, we can find the path

(from the root to a leaf) of its object class in the hierarchy. For each internal node

V along the path, we consider the concept pairs between each pair of its children to

be “relevant”. Our intuition is that these concept pairs are most likely to provide

discriminative information for this path. For example, let us consider a training image

of “collie dog” in the hierarchy in Fig. 3.5. We first find the ground-truth path (from

the root to a leaf node) corresponding to “collie dog”. In this case, the path is “v0 →

v1 → v5 → v13 → v21”. The relevant concept pairs at v0 are (v1, v2), (v1, v3), (v2, v3).

Similarly, the relevant concept pairs at v1 are (v4, v5), (v4, v6), (v6, v5).
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Figure 3.5: For each training image, we form its mid-level representation by collecting
scores from the set of binary classifiers Li that associated to internal node Vi along
its ground-truth path. Using these scores, we learn non-linear SVM to recognize to
which class this image belongs to. (See Sec. 3.2.1 for more details).

The final image representation is a vector of SVM scores. An entry of this vector

is nonzero only when its corresponding concept pair is “relevant”. Note that the

number of relevant concept pairs can be different for different object classes. But the

length of the image representation is identical for all classes. If the total number of

linear SVMs (from Sec. 3.1.1) is M , the length of this vector is M . This vector is

also sparse, since a lot of the entries correspond to irrelevant concept pairs and will

be set to zero.

In the end, each training image is represented as a M -dimensional sparse vector.

We then learn a non-linear multi-class SVM to classify the image into one of the K

classes. Given the image representation, we can also use this non-linear classifier to

obtain the score of predicting each of the K classes.
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Figure 3.6: To find a path for a testing image, a näıve approach traverses each of
the K possible paths from the root to leaves in the search tree. For example, the
näıve approach will explore all 8 paths in this hierarchy. The näıve approach gives
reasonably good results (see Table. 4.2), but it is very computationally expensive
since we need to repeatedly traverse paths in the hierarchy.

3.2.2 Prediction on unseen images

For an unseen image during testing, we cannot directly construct the image rep-

resentation in Sec. 3.2.1 since we do not know its ground-truth path in the hierarchy.

A näıve approach is to traverse each of the K possible paths from the root to leaves.

For the i-th path, we can construct the image representation using the method in

Sec. 3.2.1. We then use the K-class non-linear classifier to obtain a score of predict-

ing the i-th class. After traversing all paths, we will have the score for each of the

K classes. In the experiments (Sec. 4.2.1), we will show that this näıve approach

gives reasonably good results. But the limitation of this approach is that it is very

computationally expensive, since we need to repeatedly traverse paths in the hierar-

chy. The näıve approach (Fig.3.6) requires traversing the hierarchy starting from the

root. At each internal node, it recursively visits all of the children of this node in a

depth-first search manner. This procedure is repeated recursively until all nodes in

the hierarchy are processed. In contrast, our approach (Fig.3.7) only chooses a subset

of the children to visit at each internal node. In other words, we effectively prune



Chapter 3: Our approach 23

Figure 3.7: To find a path for a testing image, we prune many branches in the search
tree. For example, our approach will explore 4 out of the 8 possible paths in this
hierarchy. In contrast to the näıve approach (Fig. 3.6), our approach only chooses a
subset of the children to visit at each internal node.

many branches in the search tree.

Let x be an unseen image, v be an internal node with n children {c1, c2, ..., cn}.

Sec. 3.1.1 gives us a binary linear SVM classifier between each pair ci and cj (i, j ∈

{1, 2, ..., n}). Suppose we consider ci to be the positive class and cj to be the negative

class. We use fij(x) to denote the score of this classifier on the image x. Note that

fij(x) = −fji(x) for any i and j. Using these binary classifiers, we first define the

score of picking ci as a child to visit: hi =
∑

j:j∈{1,2...,n},j 6=i fij(x). We will visit the

child ci only when hi is greater than a certain threshold T . In our experiment, we

choose the threshold as the median of these scores, i.e. T = mediani∈{1,2,...,n}hi. The

same procedure is iteratively applied to all child nodes. In the end, we would have

traversed a subset of of the K possible paths in the hierarchy. We use the K-class non-

linear SVM (see Sec. 3.2.1) to obtain a final score for each traversed path. The path

with the maximum score will give us the final prediction. For example (see Fig. 3.8),
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Figure 3.8: For each test image, we explore more than one path, and construct more
than one mid-level representation. We feed these mid-level representations to the
learned non-linear SVM (Sec. 3.2.1) which predicts the best path of the given image.
Please refer to Sec. 3.2.2 for details.

suppose we have a test image “Collie dog”. Starting from root node v0 = “carnivore′′,

we collect the output scores L0 from the corresponding binary classifiers (“Canine”

vs “Feline”, “Canine” vs “Bear”, “Feline” vs “Bear”). Suppose the scores of visiting

“Canine” and “Feline” are greater than the threshold T . We will then prune “Bear”

and only visit “Canine” and “Feline” at the next level in the hierarchy. We repeat

this process. At each visited internal node vi, we collected scores Li from its binary

classifiers, and pick some children to visit until leaf nodes are reached. At the end,

we will have explored more than one path in the hierarchy. Each path will result in a

mid-level representation. Then, we feed this representation to the learned non-linear

SVM (Sec. 3.2.1) which gives a score for predicting the class k. After traversing

several paths, we will pick the class with the best score from the non-linear SVM as

the best predicted class label for the given image.
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3.3 Building the tree-shaped hierarchy

Our methods are based on a tree-shaped hierarchy. In many applications, this

hierarchy of object categories is given, e.g. based on the WordNet hierarchy [9]. In

this section, we describe how to construct the hierarchy from data when it is not

readily available.

Figure 3.9: An overview of building a tree-shaped hierarchy: (left) we recursively use
k-medoid clustering to group class labels into k super-classes; (right) the resulting
tree-shaped hierarchy.

Given a labeled dataset with K class labels, we first learn a regular multi-class

SVM with K classes based on the low-level image features. Using a separate vali-

dation set, we can get a confusion matrix C ∈ RK×K for this multi-class SVM. The

confusion matrix Cij counts the number of images from class i which are misclassified

as belonging to class j.

Based on the confusion matrix between classes, we group the class labels so that

classes in a group are similar and classes in different groups are dissimilar. A standard

k-medoids clustering algorithm [13] is applied to group the class labels into k super-

classes. We set (k ≈ 2

√
k/2 :≈ k/2), where k is the number of class labels [14]. This
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process is then recursively applied to group the super-classes, until all class labels are

group together in a single cluster. The result of this hierarchical clustering will give

us a tree-shaped hierarchy (see Fig. 3.9).
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Experiments

Our experiments demonstrate the performance of our proposed approaches on

several image classification datasets.

4.1 Datasets

We evaluate our proposed approaches on four publicly available datasets. On each

dataset, we randomly choose 90% of the examples for training and use the remaining

ones for testing. For simplicity, we use the pre-computed low-level features that come

with some of the datasets. But it is important to note that our proposed approaches

can be used together with any low-level features.

ImageNet65:

ImageNet [9] is a large scale dataset with 22 thousand visual categories and 14 million

images, covering visual categories that range from living things, artifacts, people, and

scenes to activities and events. The categories have been organized into a semantic

27
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Figure 4.1: Sample images of the ImageNet65 dataset.

hierarchy based on the “is a” relation provided by WordNet .

ImageNet65 dataset is a subset of the ImageNet [9]. It contains 39600 images of

65 leaf nodes from the “plant” “animal” and “vehicle” subtrees in ImageNet. Some

sample images from ImageNet65 are shown in Fig.4.1, and a subset of its hierarchy

is shown in Fig.4.2.

Animal-with-Attributes (AwA) [16]:

This dataset consists of 30475 images of 50 different animal classes. This dataset

comes with pre-extracted features which include six different feature types: RGB

color histograms, SIFT [20], rgSIFT [27], PHOG [5], SURF [3] and local self-similarity

histograms [24]. Some sample images from AwA are shown in Fig.4.3, and a subset
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Figure 4.2: Sub-set of the ImageNet hierarchy.
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Figure 4.3: Sample images of the AwA dataset.

of its hierarchy is shown in Fig.4.4.

CIFAR [15]:

This dataset consists of 60000 images of 100 object classes. Each object class belongs

to one of the 20 superclasses. For example, the “fish” superclass contains 5 object

classes: aquarium fish, flatfish, ray, shark, and trout. We build a two-layer hierarchy

according to this superclass relation. In other words, the hierarchy has 20 internal

nodes corresponding to the superclasses and 100 leaf nodes corresponding to the

object classes. Several features have been extracted, such as, SIFT histogram [20],

color histogram [28], and Local Binary Pattern [1]. Some sample images from CIFAR

are shown in Fig.4.5, and a subset of its hierarchy is shown in Fig.4.6.
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Figure 4.4: Sub-set of the AwA hierarchy.
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Figure 4.5: Sample images of the CIFAR dataset.

Yahoo Shoes [29]:

This dataset consists of 5250 images of 107 shoe classes. Each shoe class belongs to

one of the 10 superclasses. For example, the “Boots ” superclass contains 13 shoe

classes: Ariat-Westren boots, Boges-Rain boots, Timber-Land boots , Justin-Western

boots, etc. We build a two-layer hierarchy according to this superclass relation. In

other words, the hierarchy has 10 internal nodes corresponding to the superclasses

and 107 leaf nodes corresponding to the shoes classes. We extract several features

for representing both local and global features including SIFT histogram [20], color

histogram [28], Local Binary Pattern [1], and GIST [22]. Some sample images from
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Figure 4.6: Sub-set of the CIFAR hierarchy.
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Figure 4.7: Sample images of the Yahoo Shoes dataset.

Yahoo shoes are shown in Fig.4.7, and a subset of its hierarchy is shown in Fig.4.8.

4.2 Evaluation methodology

Each dataset in Sec. 4.1 has a hierarchy. This hierarchy is constructed based on

the WordNet (e.g. ImageNet65 dataset [9]) or constructed based on the additional

information of the dataset (e.g. Yahoo shoe dataset). We first evaluate our proposed

approaches A and B (Sec.3.1, and Sec. 3.2) using the predefined hierarchies from the

datasets (Sec.4.2.1). We then evaluate our proposed approaches using the learned

hierarchies (Sec.4.2.2). In our evaluation, we calculate the mean of per-class accuracies

and compare the results with several baseline methods.
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Figure 4.8: Sub-set of the Yahoo Shoes hierarchy.
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XXXXXXXXXXXXMethod
Dataset

ImageNet65 AwA CIFAR Yahoo Shoes

Raw features 23.8% 23.1% 25.7% 57.1%
Cao et al. [6] 29.7% 24.5% 28.6% 60.4%
Our approach A 36.2% 27.5% 30.5% 64.70%
Our approach B 37.85% 29.30% 31.75% 64.85%

Table 4.1: Results of overall accuracies for our approaches A and B (Sec. 3.1, and
Sec. 3.2) compared with two baseline methods: raw features, and Cao et al. [6], on
four datasets.

4.2.1 Experimental results of our approaches

In this section, we use the predefined tree-shaped hierarchies to compare the per-

formance of our proposed approaches (Sec.3.1, and Sec.3.2) with two related methods:

raw features, and Cao et al. [6].

• Raw features: this baseline method learns a non-linear SVM based on the low-

level features.

• Cao et al. [6]: similar to our approaches, this baseline method also uses scores of

binary SVM classifiers as mid-level features. The difference is that it only con-

siders pairs of concepts from leaf nodes. So it ignores the hierarchical structure

of the object classes.

The overall accuracies of these two baselines are shown in the first two rows of

Table 4.1. The overall accuracies of our approaches A and B are shown in the last

two rows of Table 4.1. We can see that our proposed approaches perform significantly

better than the raw features method and Cao et al. method [6]. Also, we can see

that our approach B outperforms our approach A. As we have seen in chapter 3,
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Figure 4.9: Comparison of the average number of nodes visited by test images between
approach B (Sec.3.2) and approach A (Sec(3.1) on the four datasets. Approach B
visits significantly less nodes due to the pruning strategy.

approach A (Sec.3.1) selects concept pairs similarly to approach B. However, it uses

the concatenation of all binary classifiers as the mid-level feature, whereas approach

B uses the concatenation of some relevant binary classifiers. In other words, the

hierarchical structure is used in approach A when selecting concept pairs, but not used

when constructing the final mid-level image representation. The time complexity of

our approaches is linear to the number of the binary classifiers which are associated

with all the internal nodes in the tree-shaped hierarchy. The time complexity for

exploring the paths in our approach B is sub-linear in the number of nodes in the

hierarchy.

In addition, compared with approach A (Sec.3.1), approach B (Sec.3.2) has the

additional advantage that we only need to apply a subset of the binary SVM classifiers

on a given image. In Fig. 4.9, we visualize the average number of nodes visited on



38 Chapter 4: Experiments

XXXXXXXXXXXXMethod
Dataset

ImageNet65 AwA CIFAR Yahoo Shoes

Single path [4] 28.14% 24.50% 27.41% 59.43%
All paths 36.70% 29.30% 31.10% 63.88%
Our approach B 37.85% 29.30% 31.75% 64.85%

Table 4.2: Overall accuracies for our approach B (Sec.3.2) compared with two baseline
methods: single path method, and all paths method, on four datasets.

test images for both approach B and approach A. We can see that approach B visits

significantly less nodes than approach A. This demonstrates that our pruning strategy

is very effective.

To further illustrate the trade-off between accuracy and efficiency in our approach

B (Sec.3.2), we also consider the following two hierarchy-based baseline methods:

• Single path: this method is essentially the same as Bengio et al. [4]. At each

internal node, it chooses only one child to visit. In the end, we will reach a leaf

node. This leaf node will give the predicted label. This method is very efficient,

since it only needs to explore one single path in the hierarchy.

• All paths: this method is the extreme case of our approach, whereas no children

are pruned.

The comparison with these two baselines is shown in Table 4.2. We can see that

although exploring a single path is efficient, the performance is much worse. The

reason is that if any internal node picks the wrong child to visit, the error cannot be

corrected by any descendants. This issue can be addressed by exploring more paths

in the hierarchy, which is what our approach B does (Sec. 3.2.2). We show examples

of some predictions of our approach B compared with the single path method in
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AwA CIFAR

ImageNet65 Yahoo Shoes

Figure 4.10: Confusion matrices of approach A (Sec.3.1) on four datasets.

Fig. 4.12, .

To show the per-class accuracies of our approaches, we illustrate the confusion

matrices for the four datasets using approach A (Fig. 4.10), and approach B (Fig.

4.11).

To demonstrate the the overall performance of our approaches, we show some ex-

amples of predictions of our approaches compared with baseline methods (Fig. 4.13).

4.2.2 Experimental results of building tree-shaped hierarchy

In this section, we evaluate the performance of our approaches with learned tree-

shaped hierarchies (Sec.3.3), and compare it with the performance when using the
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predefined tree-shaped hierarchies.

XXXXXXXXXXXXMethod
Dataset

ImageNet AwA CIFAR Yahoo Shoes

Our approach A (Sec.3.1) 36.24 27.50% 30.53% 64.70%
Our approach B (Sec.3.2) 35.85% 29.30% 31.75% 62.85%
Our approach A (learned hierarchy) 38.70% 30.54% 32.90% 66.85%
Our approach B (learned hierarchy) 39.63% 33.72% 32.20% 65.12%

Table 4.3: Comparison of the performance of our approaches using the predefined
tree-shaped hierarchy (first two rows), and using the learned tree-shaped hierarchy
(last two rows).

The results in Table 4.3 show that using the learned tree-shaped hierarchies give

better results than using the predefined tree-shaped hierarchies on these datasets.
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AwA CIFAR

ImageNet65 Yahoo Shoes

Figure 4.11: Confusion matrices of our approach B (Sec.3.2) on four datasets.
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Figure 4.12: Some examples of our approach B predictions (Sec. 3.2) compared with
single path method.
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Figure 4.13: Some examples of our approaches predictions compared with baseline
methods.
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Conclusion

Although low-level image features have shown promise in many applications, their

use is inherently limited since they do not capture high-level semantic information

about object classes. When we move towards high-level recognition tasks, these low-

level features often do not offer enough discriminative powers.

In this thesis, we have proposed two approaches that construct new mid-level

feature representations for image classification. Our proposed approaches exploit the

rich semantic information in the hierarchical structure to construct a rich set of binary

classifiers for every object pair.

In approach A, we have constructed the mid-level representation by concatenating

the output scores from all the binary classifiers in the hierarchy. In approach B, we

have only considered the object pairs along the path of the given image to construct

the mid-level representation. We have also proposed a method for constructing the

hierarchy from data when the hierarchy is not readily available.

Our experimental results have shown the effectiveness of our approaches compared

44
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with other methods in the literature. Also, our experimental results have shown the

effectiveness of using the learned tree-shaped hierarchy compared with the predefined

tree-shaped hierarchy.
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