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Abstract

The color of a material is one of the most frequently used
features in automated visual inspection systems. While this
is sufficient for many “easy” tasks, mixed and organic ma-
terials usually require more complex features. Spectral sig-
natures, especially in the near infrared range, have been
proven useful in many cases. However, hyperspectral imag-
ing devices are still very costly and too slow to use them
in practice. As a work-around, off-the-shelve cameras and
optical filters are used to extract few characteristic features
from the spectra. Often, these filters are selected by a hu-
man expert in a time consuming and error prone process;
surprisingly few works are concerned with automatic selec-
tion of suitable filters. We approach this problem by stating
filter selection as feature selection problem. In contrast to
existing techniques that are mainly concerned with filter de-
sign, our approach explicitly selects the best out of a large
set of given filters. Our method becomes most appealing for
use in an industrial setting, when this selection represents
(physically) available filters. We show the application of
our technique by implementing six different selection strate-
gies and applying each to two real-world sorting problems.

1. Introduction
At the present time, automated visual inspection of bulk

material is primarily achieved by utilizing color informa-
tion. Such solutions ensures high throughput and economic
feasibility, but hit a wall when the materials under inspec-
tion are of similar color (low inter-class variance) or when
the materials simultaneously occupy many regions of the
color space (large inter-class variance). Both is commonly
the case with organic materials, like fruit and crop, but also
applies to inorganic substances such as minerals and alloys.
Often, reliable discrimination is still possible by exploiting
reflectance-characteristics outside of the visible spectrum,
especially the near infrared, or by utilizing narrow banded,
faint fluorescence and luminescence effects. One might be

tempted to use the full “spectral fingerprint” of a material
for classification by including a hyperspectral imaging de-
vice in the inspection pipeline. However, such devices are
more expensive, have a low spatial resolution and require
brighter illumination or longer exposure times than exist-
ing off-the-shelve industrial cameras. Furthermore, these
devices produce much higher data volume, which in turn
increases the time required for data transfer and processing.
These factors make such systems impractical in an indus-
trial setting. A common workaround solution combines off-
the-shelve cameras with optical filters. Spectral signatures
of the materials under inspection are obtained in the labo-
ratory and analyzed to determine discriminative wavelength
bands. Suitable optical filters are acquired or manufactured
accordingly. The resulting visual inspection system uses
only the reduced, usually one- to four-channel image to per-
form the sorting task. This approach is all the more attrac-
tive, since existing solutions can often be repurposed with
minimal effort.

There are two general methods to determine the filters:
top-down (design) and bottom-up (selection). In the design
approach, filter transmission functions are designed based
on the results of the analysis and realized using e.g. thin-
film optical filters. The resulting solution is optimal for
the task at hand, but – depending on the complexity of the
transmission function – relatively expensive. Selection, on
the other hand, chooses the best few from a pool of fil-
ters. While this pool may contain arbitrary transmission
functions, an interesting case emerges when it is matched
with optical filters in a catalogue. This solution is often
sub-optimal, but since the filters can be mass-produced, it
is generally more cost-effective than the design approach.
This work focuses on the second approach, selection, for
application in an industrial setting.

1.1. Related Work

The visual inspection community has long since ac-
knowledged the usefulness of filter selection based on hy-
perspectral imaging. For example, Kleynen et at. selected



a combination of four band-pass filters from a pool of 24
possibilities in order to detect defects in “Jonagold” apple
fruits [9]. They rated each combination using the correct
classification rate of a quadratic discriminant analysis clas-
sifier on the filter responses. In [16], Piron et al. use a simi-
lar method to select up to four filters (out of 22) to discrim-
inate weeds from crop. While this exhaustive search works
with a small pool of filters, it does not scale well due to
combinatory explosion.

Other approaches do not focus on finding the best per-
forming filter combination, but rather identify the most dis-
criminative wavelengths to guide a subsequent (manual) fil-
ter selection. Osborne et al. use the regression coefficients
obtained in partial least squares analysis as proxy to rank
wavelengths [12]. This approach can be used to select both
an optimum (with respect to discriminative power), or fixed
number of wavelengths. In [5], Feyaerts and van Gool rank
wavelengths using the Fisher criterion, i.e. the ratio of vari-
ability between, and variability within classes. The highest
ranking wavelength is selected automatically, while lower
ranking wavelengths are only considered when they are po-
sitioned “sufficiently far” from the already selected ones.
Similarly, Chao et al. perform a stepwise selection accord-
ing to the Fisher criterion in a five-class classification prob-
lem [3]. However, unlike Feyaerts and van Gool, the rank-
ing in each step is computed with respect to the already se-
lected wavelengths. Similar ideas can be found in the re-
mote sensing field: Pal uses the coefficients of the weight
vector of (i) a support vector machine and (ii) sparse multi-
nomial regression to create a ranking. The intuition is that,
similar to the approach of Osborne et al., both parameters
encode the relative importance of each wavelength [13, 14].
Guo et al. utilize mutual information of each band with a set
of key-spectra that they expect to find in the hyperspectral
images [7].

Alternative methods lend ideas from filter design:
De Backer et al. parameterize a set of band-pass filters by
their central wavelength and band-width [4]. The parame-
ters are jointly optimized by adaptive simulated annealing
using the Bhattacharya bound (which is an upper bound on
the Bayes error) as merit function. Similarly, Nakauchi et
al. optimize band-pass parameters – lower and upper wave-
length – by a global, random sampling based search fol-
lowed by local optimization [11]. In both steps the Fisher
criterion serves as merit function.

All these band selection and parameter optimization ap-
proaches show promising theoretical developments in their
respective application areas. However, there is no guarantee
that matching physical optical filters are available or even
realizable in an economically feasible way. Therefore it is
worth to take a step back and look at the problem in a dif-
ferent light.
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Figure 1. Schema of the different approaches to feature selection.
Top: Wrapper methods, Middle: Filter Methods, Bottom: Embed-
ded Methods.

2. Methods

Filter selection can be formalized in the following way:
Given a set of filter transmission functionsF , a ground truth
dataset T , and a merit function γ, the goal is to select an op-
timal set of filters, i.e. a subset S ⊆ F so that γ(S, T ) is at a
maximum. By simply replacing the words “filter transmis-
sion functions” with “features” one arrives at a formal defi-
nition of feature selection as known from machine learning
research. This is an important insight, as it allows to use
the numerous methods found in literature. Generally, these
methods can be divided into three classes: wrapper, filter
and embedded methods (see Fig. 1).

Wrapper methods select a feature-subset according to
some selection parameters or feature ranking. A model is
trained using the subset, and its prediction performance is
used to re-parameterize the feature selection. The process
is repeated until some stopping criterion is reached. While
straightforward, this method can be very time consuming
and tends so over-fit the selection to the chosen predictor.
Filter methods on the other hand select a subset according
to some classifier-independent, objective criterion. Since
the election contains the (globally) most relevant features,
it is expected to work equally well on different classifiers.
However, the selection may be suboptimal when only a spe-
cific model is concerned. Finally, embedded methods com-
bine wrappers and filters by embedding the feature selec-
tion process in a learning algorithm in a fundamental way –
hence the name.

2.1. Preliminary Considerations

Before developing wrapper, filter and embedded fea-
ture selection methods, it is necessary to fill in some de-



tails in the definitions of the preceding paragraphs: The
ground truth dataset T = {(si, yi)|i = 1, . . . , N} consists
of N training samples, where si ∈ Rb denotes a measured
point spectrum with b spectral bands, and yi = ±1 de-
notes the associated class. The K filter transmission func-
tions (features) f ∈ F map a spectrum to a scalar, that is
g = f(s) maps s to a total light intensity g that would be
observed by a camera1. S ⊆ F denotes the set containing
the filter selection and the complement S = F \ S contains
the K − |S| unselected features.

Some selection methods require discrete features to be
efficiently computable. The discretization of the feature fk
will be denoted hk. The method can be chosen arbitrarily,
but in this work, features are binarized according to

hk(s) =

{
1 if fk(s) ≤ τk
−1 otherwise,

(1)

where τk is chosen to minimize training error of Gaussian
MAP classification using only fk as feature.

Note that while this binarization is relatively straightfor-
ward, it also discards a great deal of information. For the
purpose of this paper this is of little concern, however in
practice one should either use finer grained discretization or
some technique capable of handling continuous data.

2.2. Wrapper: Linear Discriminant Analysis

A simple wrapper method can be derived from Fisher’s
linear discriminant analysis (LDA). Briefly, LDA deter-
mines a projection direction w so that class separation of
the projected training samples w>fi is maximal (here fi de-
notes a feature vector extracted from si). The solution to w
is obtained by maximizing the Fisher criterion

J(w) =
w>SBw

w>SWw
. (2)

Here SB and SW are the between-class and within-class
covariance matrices of the training samples. By differenti-
ating J(w) with respect to w, it can be shown that J(w) is
maximized by

w ∝ S−1W (m1 −m−1), (3)

where my denote the means of training samples in the re-
spective classes [1]. A linear classifier is constructed by
choosing a threshold τ to separates the projected features.

Wrapper methods usually utilize cross-validation to eval-
uate feature subsets by means of classification error. While
generally applicable, this process is relatively slow since a
classifier has to be trained and evaluated for each fold and

1Note that the filter functions can be chosen arbitrarily; if only one band
is extracted, the resulting method will in fact be a band selection technique.

subset. LDA, however, allows for an elegant shortcut: Pro-
vided that an optimal threshold was chosen, the classifica-
tion error depends only on w. Therefore J(w) acts as a
surrogate of the classifier performance. This motivates the
following greedy feature selection method: Starting with
an initially empty selection S0 = ∅, features are iteratively
added to maximize the Fisher criterion, i.e.

ft+1 = arg max
f∈St

J(wt+1). (4)

The projection direction wt+1 is computed using the fea-
ture candidate f and the selection of the last step St. After
each selection step features may be unselected (to ensure
minimality of the selection) if the removal has negligible
impact on the selection criterion eq. (2).

2.3. Filter: Conditional Likelihood Maximization

In contrast to wrappers, filter methods evaluate a given
subset of features by means of some utility function that
does not depend on a specific classifier. Well known meth-
ods include RELIEF [10], Correlation-based Feature Se-
lection [8] and measures derived from information theory.
Many of the latter methods were unified in the Conditional
Likelihood Maximisation (CLM) framework presented by
Brown et al. [2]. They derive a ‘root’ criterion by develop-
ing the log-likelihood of a hypothetical parametric model.
This root criterion is conditional mutual information (CMI)
of a feature candidate fk with the class labels yi conditioned
on the already selected features S,

Jcmi(fk,S) = I(Fk;Y |FS). (5)

Here, Fk, FS , and Y are random variables correspond-
ing to the feature fk, the selection S, and the class labels y
respectively. Similar to the LDA approach above, features
are iteratively selected to maximize eq. (5), that is

ft+1 = arg max
f∈St

Jcmi(f,St). (6)

Iteration is stopped if Jcmi(ft+1,St) < τ , that is if
adding the feature does not provide sufficient additional in-
formation. Similarly, a feature may be removed from the
selection if omission does not result in losing too much
discriminative information. Since the criterion in eq. (5)
is computationally intractable when many features are con-
sidered, it is assumed that the selection is independent and
class-conditionally independent given the unselected fea-
ture candidate fk. Under these assumptions Jcmi can be
replaced by an equivalent criterion,

Ĵcmi(fk,S) = I(Fk;Y )−
∑
fj∈S

I(Fj ;Fk)

+
∑
fj∈S

I(Fj ;Fk|Y ).
(7)



Brown et al. provide an interpretation for each term: The
first term encodes relevance, that is good features should ex-
plain the class labels. The second term encodes redundancy,
i.e. features that do not add new information about the class
labels should not be selected. The third term encodes con-
ditional redundancy: Redundant features may still be se-
lected, provided that the correlation inside the classes is
stronger than the overall correlation. Using these interpreta-
tions, successful methods can be analyzed by reformulating
them in the context of CLM.

The Minimum-Redundancy Maximum-Relevance
(MRMR) criterion [15], for example, can be expressed as

Jmrmr(fk,S) = I(Fk;Y )− 1

|S|
∑
fj∈S

I(Fj ;Fk). (8)

Eq. (8) can be interpreted such that MRMR assumes
class-conditional pairwise independence of selected fea-
tures (thereby dropping the conditional redundancy term),
and with a growing selection gradually adopts the belief of
pairwise independence of the selected features [2].

The Joint Mutual Information (JMI) criterion [18] can be
seen as introducing conditional redundancy to MRMR, i.e.

Jjmi(fk,S) = Jmrmr(fk,S) +
1

|S|
∑
fj∈S

I(Fj ;Fk|Y ). (9)

However, the effect conditional redundancy is again
gradually weakened with growing the feature selection.

In the context of this work, both criteria can be slightly
altered to introduce prior knowledge about the features:
Two features are likely pairwise and class-conditionally
pairwise independent, if the corresponding filters do not
overlap. This gives rise to the similarity-MRMR (SMRMR)
and similarity-JMI (SJMI) criteria,

Jsmrmr(fk,S) = I(Fk;Y )−
∑
fj∈S

skj I(Fj ;Fk), and (10)

Jsjmi(fk,S) = Jsmrmr(fk,S) +
∑
fj∈S

skj I(Fj ;Fk|Y ). (11)

Here skj encodes the overlap of the filters fj and fk.
Specifically skj = 0 denotes no overlap, whereas skj = 1
means that fj and fk are the same filter.

2.4. Embedded: AdaBoost

Embedded methods position themselves between wrap-
pers and filters. Like wrappers, they utilize a model to select
features. However, the selection is not based on predictive
performance, but rather a direct result of the learning algo-
rithm. In the following, feature selection is embedded into
Freund and Schapire’s AdaBoost algorithm [6].

The goal of AdaBoost is to combine of several weak
classifiers ht, that may perform barely better than chance,

to a strong classifier H . This classifier predicts class labels
according to a weighted sum of the votes of each ht,

H(s) = sign

(
T∑

t=1

αtht(s)

)
. (12)

The weak classifiers and corresponding weights αt are
selected in an iterative process: A weight distribution Wt,
i.e. Wt(i) ≥ 0 and

∑
iWt(i) = 1, encodes the importance

of each training sample, where initially each training sam-
ple is equally important. In the t-th iteration, ht is selected
to minimize the weighted error rate on the training samples,

ht = arg max
h

∣∣∣∣12 − ε(h)
∣∣∣∣ , where (13)

ε(h) =

N∑
i=1

Wt(i)
[
h(si) 6= yi

]
. (14)

The weight αt is computed from the weighted training
error ε(ht), typically as log-odds of the (weighted) correct
classification rate,

αt = log
1− ε(ht)
ε(ht)

. (15)

Finally, the weight distribution is updated so that the
training samples that ht classified incorrectly will be more
important in the next round:

Wt+1(i) =
Wt(i) exp

(
αt

[
ht(si) 6= yi

])
∑N

i=1Wt+1(i)
. (16)

Iteration is stopped if either a maximum number of clas-
sifiers is selected, or if ε(ht) is not significantly different
from random choice.

By recalling the feature discretization in Section 2.1 it is
apparent how AdaBoost can be used for feature selection:
Each discretized feature is itself a weak learner. The clas-
sifier ensemble then represents the feature selection, where
|αt| encodes the importance of the feature ft.

3. Application
We now turn our attention to the application of the pro-

posed methods to two real-world sorting problems: (a) dis-
criminating tobacco from cotton string, feathers, and grass
and (b) discriminating maize polluted with the carcinogenic
mycotoxin Aflatoxine B1 from uncontaminated kernels.

Spectral measurements of tobacco, cotton string, feath-
ers and grass were obtained using a hyperspectral line-scan
camera sensible in the short-wave infrared spectrum with a
spectral resolution of 256 bands from 905nm to 2513nm.
215 band-pass filter candidates with a central wavelength λc



Figure 2. Filter model and sampling for feature computation.

between 1050nm and 2380nm and full width at half max-
imum (fwhm) of 10nm, 25nm and 50nm were chosen ac-
cording to an optics catalogue.

In the maize sorting problem, the grains were illumi-
nated with ultraviolet light in order to cause fluorescence
in the contaminated grains. Since the emitted light falls in
the visible spectrum, images were recorded in the spectral
range of 315nm to 1170nm with a spectral resolution of
270 bands. 113 band-pass filter candidates with λc from
337nm to 1064nm with fwhm of 10nm, 25nm and 50nm
were again sampled from an optics catalogue.

Since in both cases the exact characteristics of the fil-
ters were not known, the transmission spectra were approx-
imated according to

T (λ) = exp

{
−4 log 2 ·

(
λ− λc
fhwm

)2
}
. (17)

Features were then computed as dot product of the char-
acteristic filter vector x, whose components xi = T (λi)
were sampled on the central wavelengths λi of the corre-
sponding components of s, and the spectrum s

f(s) = s>x. (18)

Figure 2 illustrates the relationship between the filter
model T (λ) and sampling xi. In case of filter selection by
SMRMR and SJMI, similarity was computed using the co-
sine measure:

skj =
x>j xk

‖xj‖2 ‖xk‖2
. (19)

3.1. Results

Table 1 shows each method’s suggestion of three filters
for the maize sorting problem. All methods but AdaBoost
selection agree on the filter centered on λc = 775nm with
fwhm = 50nm, but differ in suggestions of complimentary
filters. This shows that, as hinted in Section 2, each method
bases the selection on different underlying assumptions of
the data.

Method Three best filters (λc[nm], fwhm[nm])
AdaBoost (800, 50), (515, 10), (766, 10)

LDA (575, 50), (775, 50), (1050, 50)
MRMR (575, 50), (775, 50), (676, 10)

SMRMR (775, 50), (850, 25), (730, 10)
JMI (750, 50), (775, 50), (800, 50)

SJMI (775, 50), (825, 25), (730, 10)

Table 1. Characteristics of the first three filters selected by the dif-
ferent methods on the maize sorting problem.

To evaluate which assumptions best reflect the given
problem, a random forest classifier was trained using up to
ten selected features and the classification error was esti-
mated in a five-fold cross-validation. To provide a lower
bound on the achievable error rate the classification error
using all available features was also determined. Results on
both sorting problems are shown in Figure 3.

In both sorting problems, feature selection by wrapping
Fisher LDA provides the best selection, while MRMR also
tends to deliver reasonable suggestions. In case of the to-
bacco sorting problem, AdaBoost also selects good fea-
tures. Contrary to expectation, encoding prior knowledge
in form of feature similarity, i.e. SMRMR and SJMI, did
not improve on the selection results.

4. Conclusion
Numerous works have shown the benefit of using optical

filters derived from spectral analysis for visual inspection
tasks. There are two general approaches to automate the
search for suitable filters: design of a specialized transmis-
sion function and selection from a pool of possibilities. The
design approach generally produces filters optimally suited
for the task at hand, but the high manufacturing costs ham-
per application in an industrial setting. Selection, on the
other hand, results in low costs due to the usage of off-
the-shelve filters, although the solution may be suboptimal.
While methods suitable for filter design, especially from
the field of remote sensing, are available, surprisingly few
works are considered with automatic filter selection.

In a comprehensive approach, we explicitly reduced fil-
ters selection to feature selection as known in the machine
learning literature. We then exemplified our approach by
implementing a wrapper method based on LDA, filter meth-
ods using information theoretic measures, and by embed-
ding the selection into the AdaBoost algorithm. Although
targeted at visual inspection at an industrial scale, the pre-
sented approach is flexible enough to also be used for band
selection in remote sensing applications.

Evaluation on two different real world sorting problems
shows the characteristics of each approach. In both cases,
the wrapper method produced the best selection, followed
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Figure 3. Error rate of a random forest classifier trained using up to ten features selected using the different methods presented in Section 2.
The dashed black line marks the error rate when all available features are used.

by MRMR and AdaBoost. JMI, SJMI and SMRMR did
not provide robust selections. One reason that the LDA
method appears to fare better may be explained by the fea-
ture discretization step required by the other methods, but
not LDA – it simply has more information at its disposal.
This suggests that CLM methods may be enhanced by finer
grained estimation of the mutual information terms. Like-
wise, the embedded selection might be improved by using
e.g. Real AdaBoost [17] instead of AdaBoost.
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