
UC Davis
UC Davis Previously Published Works

Title
GPU-Accelerated and Efficient Multi-View Triangulation for Scene Reconstruction

Permalink
https://escholarship.org/uc/item/4nf4n0bc

Authors
Mak, Jason
Hess-Flores, Mauricio
Recker, Sean
et al.

Publication Date
2014

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nf4n0bc
https://escholarship.org/uc/item/4nf4n0bc#author
https://escholarship.org
http://www.cdlib.org/

GPU-Accelerated and Efficient Multi-View Triangulation for Scene
Reconstruction

Jason Mak1, Mauricio Hess-Flores2, Shawn Recker3, John D. Owens4, Kenneth I. Joy5

University of California, Davis
(1jwmak, 2mhessf, 3strecker, 4jowens)@ucdavis.edu, 5kenneth.i.joy@gmail.com

Abstract

This paper presents a framework for GPU-accelerated
N -view triangulation in multi-view reconstruction that im-
proves processing time and final reprojection error with re-
spect to methods in the literature. The framework uses an
algorithm based on optimizing an angular error-based L1

cost function and it is shown how adaptive gradient descent
can be applied for convergence. The triangulation algo-
rithm is mapped onto the GPU and two approaches for par-
allelization are compared: one thread per track and one
thread block per track. The better performing approach de-
pends on the number of tracks and the lengths of the tracks
in the dataset. Furthermore, the algorithm uses statisti-
cal sampling based on confidence levels to successfully re-
duce the quantity of feature track positions needed to tri-
angulate an entire track. Sampling aids in load balanc-
ing for the GPU’s SIMD architecture and for exploiting the
GPU’s memory hierarchy. When compared to a serial im-
plementation, a typical performance increase of 3–4x can
be achieved on a 4-core CPU. On a GPU, large track
numbers are favorable and an increase of up to 40x can
be achieved. Results on real and synthetic data prove that
reprojection errors are similar to the best performing cur-
rent triangulation methods but costing only a fraction of the
computation time, allowing for efficient and accurate trian-
gulation of large scenes.

1. Introduction

Triangulation is a key step in multi-view scene recon-
struction. It aims to determine the 3D location of a scene
point, X , from its imaged pixel location, xi, in two or more
images. When X reprojects exactly onto its xi coordinates,
such that epipolar constraints [11] on the matches are per-
fectly satisfied, triangulation is trivial through even the sim-
plest methods. However, in the presence of image noise, the
reprojected coordinates ofX will not coincide with each re-
spective xi. In settings with an arbitrary number of cameras,

noisy camera parameters, and inexact image measurements
(feature tracks), the goal becomes finding the point X that
best fits a given track. To this end, linear triangulation [11]
is a fast method to solve for 3D points based on linear least
squares, but given noisy inputs, the final result can be very
inaccurate. The midpoint method [11] is by far the fastest
method given two views, but it is very inaccurate in general.
More recent methods have focused on achieving higher ac-
curacy, typically by minimizing the L2-norm of reprojec-
tion error through non-convex constrained optimization to
achieve an optimal solution. This norm corresponds to the
maximum-likelihood estimate for the point assuming inde-
pendent Gaussian image noise.

A number of optimal algorithms have since been de-
veloped, some of which involve direct, closed-form solu-
tions and others which seek to optimize a cost function, as
described in Section 2. Current direct polymonial meth-
ods solve for just two or three views [5, 10, 12, 13, 25].
A polynomial solver has not been achieved for more than
three views. Multi-view triangulation has traditionally been
treated in two phases, where an initial linear method such
as N -view linear triangulation [11] is applied to obtain an
initial point followed by non-linear bundle adjustment op-
timization to reduce the sum-of-squares L2-norm of repro-
jection error [1]. This procedure is prone to local minima,
so a very accurate initialization is required. A triangulator
presented by Recker et al. [18] optimizes a novel L1-based
error cost function derived from the angles between cam-
era rays and is smoothly-varying in a large vicinity near the
global optimum. The cost function is optimized with adap-
tive gradient descent [24] given an initial estimate. It shows
a significant performance increase and better final reprojec-
tion errors than other triangulators, such as N -view linear
triangulation, but is not provably optimal. A few N -view
optimal triangulators have been proposed, but with very
limited results. The work of Agarwal et al. [3] is based
on fractional programming and branch-and-bound theory.
There are also a few methods based on convex optimiza-
tion on an L∞ cost function, such as Hartley and Kahl [9],
Min [14], and most recently Dai et al. [7]. However, in

1

general it is not clear how algorithms based on L∞ behave
under noise and for arbitrary numbers of cameras. It is also
not justified why L∞ was chosen over L1, which behaves
very well in Dai et al. [7]. The main issue with all previous
triangulation algorithms is scalability. Improved data col-
lection capabilities are increasing both the quality and quan-
tity of data used as input for triangulation. Advancements
in camera technology produce high-resolution images and
the mobile revolution coupled with improved data storage
and sharing techniques enable numerous users to generate
images of the same scene. As the image resolution, number
of images, and number of features within images grow, the
process of triangulation can become intractable with current
methods. Such issues arise for example in aerial reconstruc-
tion from UAVs. In addition, the ability to perform real-
time processing is becoming desirable. Addressing issues
of performance requires embracing modern tools for high-
performance computing in software and hardware. Graph-
ics Processing Units (GPUs) are increasingly ubiquitous in
high-performance parallel computing. Originally designed
to accelerate graphics, GPUs are now widely used as accel-
eration tools for a variety of applications. NVIDIA’s CUDA
Programming Model [16] has greatly expedited this tran-
sition, allowing developers to write general purpose pro-
grams for the GPU in a language based on C/C++. GPUs
are well-suited for image processing and computer vision
problems due to their high memory bandwidth, which en-
ables efficient access of large image data, and their ability
to exploit data parallelism. Additionally, numerous cores
allow for a divide and conquer approach on high-resolution
images. Furthermore, GPUs are becoming more widely
found in smartphones and tablets, bringing their computa-
tional power into the hands of ordinary users. Program-
ming GPUs predominantly follows the Single-Instruction-
Multiple-Data (SIMD) model, where multiple threads run
the same operations on different data in lockstep. An algo-
rithm to be accelerated by the GPU must map well to this
computational model. Sánchez et al. [20,21] present a GPU
triangulator based on Monte Carlo simulations. Compared
against Levenberg-Marquardt, they achieve the same preci-
sion but in much less time. However, the authors neither
test their implementation on large-scale images with many
features nor analyze how noise affects their results.

The main contribution of this paper is to introduce a
fast and accurate GPU N -view triangulator. It is based
on the cost function of Recker et al. [18], which is ideal
for parallelization because it consists of abundant indepen-
dent work. Using the CUDA programming model, we de-
velop and compare two parallelization approaches for the
GPU: using one thread to process one track and using one
thread block to process one track. We show that the better-
performing approach for a given dataset depends on the
number of tracks and track lengths. Furthermore, our al-

gorithm uses statistical sampling based on confidence levels
to successfully reduce the quantity of feature track positions
needed to triangulate an entire track. We discuss how this
sampling aids in our parallel implementation by improving
load balancing and exploiting the GPU memory hierarchy.
Finally, we test our GPU implementation on synthetic and
real data. Our runtimes are faster than contemporary se-
rial and multi-core CPU implementations, with final repro-
jection errors that are comparable to existing triangulators.
This opens the door to triangulating large data very accu-
rately and efficiently, a combination yet unseen in the trian-
gulation literature.

2. Related work
Multi-view scene reconstruction involves a number of

stages applied sequentially, where the output of one stage
directly affects accuracy in the following steps. A compre-
hensive overview and comparison of different methods is
given in Strecha et al. [26]. Triangulation is one of the final
stages in reconstruction and its accuracy is a direct function
of previously-computed feature tracking, camera intrinsic
calibration, and pose estimation [11]. Typically, 3 × 4 pro-
jection matrices are used to encapsulate all camera intrinsic
and pose information. The most widely-used method in the
literature is linear triangulation [11]. A system of the form
AX = 0 is solved by eigen-analysis or Singular Value De-
composition, where the A matrix is a function of feature
track and camera projection matrix values. The obtained
solution is a direct, best-fit, and non-optimal solve, regard-
less of how noisy the inputs are. Numerical stability issues
are possible, especially with near-parallel cameras. A re-
cent triangulator by Recker et al. [18] proved to be faster
and more efficient than linear triangulation. The method
obtains an initial position through the midpoint method and
applies adaptive gradient descent [24] on an angular error-
based L1 cost function. This function is shown to have a
large basin in the vicinity of the global optimum, making it
more robust to outliers and local minima than the L2 norm
of reprojection error. Furthermore, a statistical sampling
component is introduced to increase efficiency without sac-
rificing accuracy. A significant speed increase and better
reprojection errors were obtained than with other triangula-
tors. However, the results are not provably optimal, and rely
on a possibly inaccurate midpoint-based initialization.

There exist a number of optimal triangulation algorithms
in the literature. One class of algorithms is based on poly-
nomial methods [9], where all stationary points of a cost
function are computed and evaluated to find the global min-
imum. The cost function must be expressed as a rational
polynomial function in the parameters. The function’s ex-
trema are located where the derivatives with respect to the
parameters become zero. The degree of the polynomial
grows cubically with the number of views [25]. This im-

plies a cubic growth in the number of local minima to eval-
uate, so this procedure has only been feasible for two and
three views so far. Hartley and Sturm’s optimal two-view
method [10] applies an epipolar geometry-based Sampson
correction on feature match positions x and x′ to correct
them such that they lie at the closest positions to epipo-
lar lines. The correction requires solving for the stationary
points of a 6th-order polynomial and then evaluating each
real root. Lindstrom’s “fast triangulation” algorithm [13]
expresses the same set of equations in terms of Kronecker
products, which by allowing terms to cancel out reduces
the function to a quadratic equation and results in a one-
to-four order-of-magnitude performance increase. Polyno-
mial methods for three-views differ from two-view methods
in that feature track positions are left intact. Stewénius et
al. [25] applied the Gröbner basis method for solving poly-
nomial equation systems. The real solutions for 47 × 47
action matrices are evaluated, where up to 24 minima may
exist. Arithmetic operations are performed with 128 bits
of mantissa to avoid round-off error accumulation. The
method by Byröd et al. [5] alleviates such numerical issues
by using the relaxed ideal modification for Gröbner bases,
but at the expense of an even greater processing time.

A second class of algorithms is based on optimizing
a cost function without seeking a direct solution like the
polynomial-based algorithms. In general, these methods
are promising but lack solid experimental results as far as
error and processing time against different noise and cam-
era configurations. Agarwal et al. [3] use fractional pro-
gramming and a branch and bound algorithm to find a
position arbitrarily close to the global optimum. Hartley
and Kahl [9] as well as Min [14] perform convex opti-
mization on an L∞ cost function making use of second-
order cone programming (SOCP). Dai et al. [7] describe
an L∞ optimization method based on gradually contract-
ing a region of convexity towards computing the optimum.
Sánchez et al. [20,21] present an algorithm based on Monte
Carlo simulations, performed on a GPU. Compared against
Levenberg-Marquardt [1], it achieves the same precision
but in much less time. In the next section, we propose an
N -view triangulator, which outperforms the existing algo-
rithms in speed while yielding comparable reprojection er-
rors, though it is not provably optimal. It can be applied
on an arbitrary number of cameras and does not suffer from
numerical stability or precision issues.

3. GPU-accelerated triangulation

3.1. Triangulation cost function

There are a number of cost functions in the vision liter-
ature. The L2 least-squares solution is the maximum likeli-
hood (ML) estimate under Gaussian image noise, but typi-
cally contains many local minima. The L∞ model assumes

uniform bounded noise and commonly results in a single
solution. However, the L1 norm measures the median of
noise and is more robust to outliers than L2 or L∞, with de-
sirable convergence properties. Recker et al. [18] proposed
an L1 triangulation cost function based on an angular error
measure for a candidate 3D position, p, with respect to its
feature track t. Its inputs are a set of feature tracks across
N images and their respective 3× 4 camera projection ma-
trices Pi. The error for p is computed as follows. A unit
direction vector vi is first computed between each camera
center Ci and p. A second unit vector, wti, is computed as
the ray from each Ci through its 2D feature track t in each
image plane. Since t generally does not coincide with the
projection of p in each image plane, there is frequently a
non-zero angle between each possible vi and wti. Finally,
the average of the dot products vi · wti across all cameras
is obtained. Each dot product can vary from [−1, 1], but
only points that lie in front of the cameras are taken into
account, corresponding to the range [0, 1]. We use the same
nomenclature as in Recker et al. [18] to define the cost func-
tion. Given Ci cameras, T the set of all feature tracks, and
p = (X,Y, Z) a 3D evaluation position, the cost function
for p with respect to a track t ∈ T is displayed in Eq. 1.

ft∈T (p) =

∑
i∈I(1− v̂i · ŵti)

||I||
(1)

Here, I = {Ci|t “appears in” Ci}, ~vi = (p − Ci), and
~wti = P+

i ti. The right pseudo-inverse of Pi is given
by P+

i , and ti is the homogeneous coordinate of track t
in camera i. The equation can be expanded with vi =
(vi,X , vi,Y , vi,Z) = (X −Ci,X , Y −Ci,Y , Z −Ci,Z), with
normalized v̂i = vi

||vi|| and ŵti = wti

||wti|| . Gradient values
are defined in Eqs. 5–7 of Recker et al. [18].

To analyze the convexity properties of this function, we
step away from a purely mathematical approach and apply
a more practical procedure. Fig. 1(b) shows a scalar field,
consisting of the L1 cost function measured for a dense
set of test positions near a known ground-truth position in
Fig. 1(a). The scalar field shows a very smooth variation in
a large vicinity surrounding this position, where the cost has
zero value. This is key since there is a high chance of con-
vergence to the global optimum even from large distances.
Such scalar field renderings are not as mathematically rig-
orous as a direct convexity analysis, but the large basin typ-
ically seen in all of our tests indicate a strong convergence
towards the global minimum. Intuitively, a dot product can
vary from [−1, 1], but if we choose to deal only with points
that lie in front of the cameras, the range becomes [0, 1],
over which the dot product is convex. A sum of convex
functions is convex, such as the the cost function of Eq. (1),
shown rendered via a scalar field in Fig. 1(b). Optimization
is performed with adaptive gradient descent [24], starting
from an initial midpoint estimate [18].

(a) Bounding box (b) Scalar field

(c) Sample size

Figure 1: (a) Multi-view reconstruction of the castle-P19
dataset [26], with cameras in dark blue. (b) A volume view
of a scalar field representing an L1 cost function [18] eval-
uated at a dense grid inside a bounding box encasing a po-
sition in the reconstruction, with purple closer to zero cost.
(c) Sample size (y-axis) using Cochran’s formula [6] with a
95% confidence level on different population sizes (x-axis).

3.1.1 Statistical sampling

We use a statistical sampling procedure to choose a statis-
tically meaningful sample of rays as opposed to the entire
available set, N . This procedure differs from RANSAC [8]
since we do not seek to fit a model, and therefore deal with
outliers based on statistics. We use Cochran’s formula [6]
to compute sample size n0, as shown in Eq. 2. The value σ2

is an estimate of the variance contained in the sampled data,
and we used σ = 0.5 as the fixed value. Cochran’s formula
assumes that it is constant and known. In the general case,
we do not know how far off the feature tracks are from the
ground truth position, so σ = 0.5 says that these positions
may vary from the ground truth with a standard deviation
of ±0.5 pixels. The value for ‘d’ corresponds to the maxi-
mum error of estimate for a sample mean, which we fix at
5%, or 0.05. In case the obtained sample size exceeds 5%
of N , Cochran’s correction formula [6] should be used to
calculate the final sample size, n, as shown in Eq. 2. In our
algorithm a 95% confidence level with a 5% margin of error
is used. Notice in Fig. 1(c) that sample size stabilizes with
large numbers, which is key towards our algorithm’s speed.

n0 =
t2σ2

d2
n =

n0
1 + n0

N

(2)

3.1.2 Initialization based on clustering

It is worth noting that we attempted implementing a much
more robust and exhaustive initialization than that of Recker
et al. [18], which is a simple midpoint start with a fixed
threshold. First, the total possible number of pairs among a
sample ofN cameras is computed asN(N−1)/2. Next, the
midpoint algorithm is used to compute a point between ev-
ery camera pair from the sample. Clustering is then applied
on the computed midpoints. If there are no outliers, a sin-
gle cluster should result. With the presence of outliers, due
either to inaccurate feature tracking or a track ‘jumping’ to
a different scene point, multiple clusters could result, each
of which is triangulated separately.

Unfortunately, this procedure leads to an order of magni-
tude slowdown. Also, due to the nature of the cost function
and its single (global) minimum, this initialization does not
lead to better accuracy. Therefore, we consider it an impor-
tant result that the original initialization method is in gen-
eral better because of speed and equal accuracy than this
seemingly more robust procedure.

3.2. GPU implementation

Nickolls et al. [15] describes the CUDA programming
model in detail; we now highlight the features of CUDA that
are most relevant for our work. CUDA programs are called
kernels, which are run on a collection of parallel blocks,
each of which contains up to 1024 threads. The GPU as-
signs blocks of threads to one of its many streaming mul-
tiprocessors (SMs), which runs groups of 32 threads called
warps in lockstep under SIMD control. Threads within a
block can also share data through a small shared memory
that is over 100 times faster than off-chip DRAM (global
memory). Efficient GPU programs must fill the machine
with work by launching a large number of threads; must
minimize thread divergence (threads that take different con-
trol flows) within warps; and must efficiently use the mem-
ory hierarchy, using fast shared memory in preference to
global memory if at all possible.

Our contribution is a triangulation algorithm which ex-
ploits GPU properties to efficiently perform arithmetic com-
putations derived from the L1 cost function and its gradi-
ents. There are two main ways in which parallelization can
be achieved, as discussed further in Sections 3.2.1 and 3.2.2.
The simple approach is to parallelize across tracks and trian-
gulate each track independently in a separate thread. Each
thread is responsible for recomputing the gradient term for
its assigned track. A second approach exploits parallelism
within a track. The gradient of the cost function is com-
puted as a sum of per-feature terms formed from the angles
between rays. Instead of assigning one thread per track, an
entire block of threads is assigned to each track, where in-
dividual threads compute the term for each feature in the
track. The terms are then summed via a parallel reduction.

Block 0

t0 ...t1 t2 tn

Block 1 Block m

...t0 ...t1 t2 tn t0 ...t1 t2 tn

(a) One thread per track

Block 0

t0 ...t1 t2 tn

Block 1 Block n

...t0 ...t1 t2 tn t0 ...t1 t2 tn

(b) One block per track

Figure 2: Two approaches to parallelizing our triangulator.

3.2.1 One Thread Per Track

The first implementation, shown in Fig. 2(a), is straight-
forward and parallelizes across tracks, since each track can
be triangulated independently of others. Each thread is re-
sponsible for recomputing the gradient for the cost function
of its assigned track until convergence is reached. Consider-
ing the GPU’s SIMD model, there are two drawbacks to this
approach. First, some tracks may converge in fewer itera-
tions of gradient descent than others. Second, since differ-
ent tracks can vary widely in length, as is the case in many
real datasets, the gradient term may be more expensive to
recompute for some tracks than for others. This creates a
load-balancing issue, as threads in a warp that have finished
computing its term would have to wait idly for other unfin-
ished threads in the same warp. Some threads could perform
a substantially larger amount of work than other threads.

Differing convergence rates among tracks cannot be ad-
dressed easily, as it is difficult to estimate beforehand the
number of gradient steps needed for convergence. However,
we can improve load balancing among threads. One way to
accomplish this is already inherent in our algorithm: the use
of sampling. By sampling with a 95% confidence level, an
upper bound is placed on the number of features used to
triangulate a track, greatly reducing track length variation
since it stabilizes with large numbers.

Even after sampling, however, different tracks may vary
widely in length, leading to excessive thread divergence
within a warp. To handle this problem, we opt to do a prior
sorting of the tracks based on track length, so that threads
within the same warp are likely to be assigned tracks with
similar length. We can use the track lengths as integer sort
keys, which allows us to use radix sort, an algorithm that
maps well to the GPU [22]. We use the radix sort routine
from the GPU Thrust library [4] for sorting. Sorting can

reduce the divergence within warps, thereby improving per-
formance. Fig. 3(a) compares the performance of triangu-
lating randomly generated, variable-length tracks with and
without prior sorting. Radix sort on the GPU is fast, and we
find that sorting contributes an insignificant amount of time
to the overall process.

3.2.2 One Block Per Track

Although the GPU can support thousands of concurrent
threads, individual threads have high latency. Even with
sampling, a single thread that is assigned a long track could
be overburdened with work. In addition, if there are few
tracks, assigning one thread per track would not fully uti-
lize the large number of available threads on the GPU.

To address this, a second approach to parallelizing the
triangulator assigns a block of threads to process each track.
This implementation, shown in Fig. 2(b), is more suitable
for data with long feature tracks. Each thread in a block is
responsible for one feature in the gradient computation, and
a parallel sum reduction produces the final gradient value
for the track. Since the amount of work to compute the gra-
dient depends on track length, and the gradient may have
to be recomputed multiple times until convergence, this ap-
proach can improve performance in long tracks.

Another advantage of this approach is that it allows us
to use GPU shared memory. In modern GPUs, each thread
block has access to 48 KB of shared memory. When assign-
ing one track per thread, there is not enough shared memory
to store track data for all the tracks in the thread block, even
when we use sampling. Assigning an entire block to a track,
combined with sampling, reduces the amount of memory
needed per thread. Thus, a block’s working set of track and
camera data can fit in shared memory, enabling it to be used
as a cache. We also perform the parallel sum reduction for
the gradient in shared memory, as threads within the block
must communicate to perform the reduction.

4. Results
The processing times and general behavior of the pro-

posed GPU triangulator were compared against a serial
CPU triangulator and a multi-core CPU triangulator on
both synthetic and real data. The tested CPU was a 4-
core 3.40 GHz Intel Xeon E3-1275, and the GPU was a
NVIDIA Tesla K40, which features 15 SMs, for a total of
2880 cores. Tesla GPUs have improved performance for
double-precision arithmetic, a feature we use in our trian-
gulator. We find that the different double-precision support
in GPU and CPU architectures leads to no significant differ-
ences in results for the triangulation algorithm under con-
sideration. To parallelize the triangulator on the multi-core
CPU, we use the OpenMP programming model to assign
a group of tracks to each CPU thread. Furthermore, our

CPU code uses the Eigen library for matrix and vector op-
erations [2]. Eigen takes advantage of the SIMD units in
modern CPUs (provided by SSE instructions) by using sep-
arate SIMD lanes to add or multiply more than one element
in a vector or matrix for some extra parallelism. This SIMD
parallelism is small, however, compared to that offered by
our GPU implementation.

4.1. Synthetic tests

The first test on synthetic data measures the processing
times as the number of tracks is increased, for the GPU im-
plementation that assigns one thread per track vs. the multi-
core CPU implementation. Track count is increased in in-
crements of 50,000, while a fixed length of 100 is used for
all tracks. We add image plane noise of 1% of the image
diagonal dimension to the ground-truth tracks, in random
directions, to ensure that gradient descent requires multiple
iterations to converge. Results are shown in Fig. 3(b). The
performance of the GPU scales better than that of the multi-
core CPU as the number of tracks increases.

Next, we test GPU runtime vs. track error using four
types of camera configurations: circle, semi-circle, line and
random. For example, in circle, the cameras form a circle
looking at the features in the center. The random configu-
ration represents a set of unstructured images such as those
in the Internet, where images are not acquired sequentially.
Track length is fixed at 100, and the number of tracks is
fixed at 10,000. Fig. 4(a) shows that runtime is hardly af-
fected with small increases of track error.

Finally, we compare the performance of the two GPU
implementations. A variable track length from 10–100 is
used. The number of tracks tested were 20,000 and 100,000.
In Fig. 4(b), the performance crossover point occurs at a
track length of 21. Since a thread block always consists of
a multiple of 32 threads (a warp), when the sample size is
not a multiple of 32, extra threads are idle in one-block-per-
track. As track length increases, the performance penalty
for idling threads becomes smaller because there are more
warps per block, and therefore a lower fraction of threads
idling within a block. In addition, the use of shared mem-
ory to store track and camera data in one-block-per-track is
more beneficial with longer track lengths. However, when
track lengths are short, one-thread-per-track performs better
even with a large number of tracks. One-thread-per-track
works better for track lengths less than 21 and with lots of
tracks. Otherwise, one-block-per-track is more scalable.

4.2. Evaluation on real data

For real scenes, processing time and reprojection error
were evaluated, as displayed in Table 1. Datasets featur-
ing different scene types were evaluated. For the GPU im-
plementation, we use the one-thread-per-track implemen-
tation with sorting because most of the tracks in the data

(a)

(b)

Figure 3: (a) GPU runtime performance with and without
sorting for datasets with an increasing number of tracks.
Track lengths in a dataset vary from 1 to 100. (b) Per-
formance of a multicore CPU vs. a GPU for an increasing
number of tracks. Track lengths are fixed at 100.

did not exceed 100 cameras and usually had varying length,
except for Brown12, where one-block-per-track was used.
We found that the GPU implementation was at best approx-
imately 9 times faster than multi-core and 40 times faster
than serial. The general trend shows greater speedups as
track count increases, more importantly so than the varia-
tion in track length. In the specific cases of Dinosaur and
Brown12, the multi-core CPU implementation is faster than
the GPU, due to the track lengths and the number of points
being too small to truly utilize the throughput capabilities
of the GPU. No track length is greater than 21 in Dinosaur.
In contrast, in Canyon dense all tracks are of length 2, but
there are hundreds of thousands of them, leading to a large
speedup. When comparing to other triangulators, Stewénius
et al. [25] took 20 hours on the Dinosaur dataset [17] and
Byröd et al. took 2.5 minutes, but ours takes less than 4 ms.
Finally, obtained reconstructions are shown in Fig. 5.

Data set N C tserial tmc tgpu Smc Sgpu ε εL

Brown12 [19] 4429 337 51 15 17 3.4x 3.0x 1.541 1.405
Dinosaur [17] 4983 36 9 2 4 4.5x 2.3x 0.467 0.477
Canyon [18] 103,153 90 288 86 16 3.3x 18x 0.226 0.231
Canyon Dense [18] 997,115 2 1440 342 36 4.2x 40x 1.838 1.841
Palmdale Distorted 58,500 66 244 59 7 4.1x 35x 1.138 1.713
City 16,179 10 110 31 4 3.5x 27x 0.726 0.982

Table 1: Times in milliseconds tserial, tmc, and tgpu with number of tracks N and total number of cameras C, where Smc

and Sgpu show the speedup on a multi-core CPU and a GPU compared to a serial implementation. In the two rightmost
columns, ε and εL compare the average reprojection error in pixels against that of linear triangulation.

(a)

(b)

Figure 4: (a) GPU performance with increasing track error
for different camera configurations. (b) Comparison of the
one-thread-per-track and one-block-per-track implementa-
tions on a 20,000-track dataset and a 100,000-track dataset.
Scaling is measured as track length is increased.

(a) Notre Dame [23] (290 views)

(b) Brown12 [19] (337 views) (c) ET [23] (7 views)

Figure 5: Scenes reconstructed with our GPU triangulator.

5. Conclusion
In this paper, a fast and accurate GPU N -view triangu-

lator is presented. An L1-based cost function, which has

been shown to provide more accurate results for triangula-
tion, maps well to the data-parallel model of the GPU when
combined with statistical sampling. We develop and com-
pare two parallelization approaches for the GPU, including
the use of one thread to process one track, and also one
thread block to process one track. We show that the perfor-
mance of each approach depends on the number of tracks
and track lengths in the datasets, providing flexibility in how
it is used given different input data. The GPU triangulator is
proven to be as accurate as the state of the art, while being
several times faster than a serial implementation on real data
and orders of magnitude faster than optimal algorithms. Our
triangulator is designed to target large-scale reconstruction
with ever-increasing image sizes and quantities, and opens
the door for very accurate and efficient performance.

References
[1] The design and implementation of a generic sparse bun-

dle adjustment software package based on the Levenberg-
Marquardt algorithm. Technical Report 340, Institute of
Computer Science – FORTH, Heraklion, Crete, Greece,
Aug. 2000. 1, 3

[2] Eigen. http://eigen.tuxfamily.org, 2013. 6
[3] S. Agarwal, M. K. Ch, F. Kahl, and S. Belongie. Practical

global optimization for multiview geometry. In Proceedings
of the 9th European conference on Computer Vision, pages
592–605, 2006. 1, 3

[4] N. Bell and J. Hoberock. Thrust: A productivity-oriented
library for CUDA. In W. W. Hwu, editor, GPU Computing
Gems, volume 2, chapter 26, pages 359–371. Morgan Kauf-
mann, Oct. 2012. 5

[5] M. Byröd, K. Josephson, and K. Åström. Fast optimal three
view triangulation. In Proceedings of the 8th Asian Confer-
ence on Computer Vision, ACCV’07, pages 549–559, Berlin,
Heidelberg, 2007. Springer-Verlag. 1, 3

[6] W. G. Cochran. Sampling Techniques, 3rd Edition. John
Wiley, 1977. 4

[7] Z. Dai, Y. Wu, F. Zhang, and H. Wang. A novel fast method
for L∞ problems in multiview geometry. In Proceedings of
the 12th European conference on Computer Vision – Volume
Part V, ECCV’12, pages 116–129, Berlin, Heidelberg, 2012.
Springer-Verlag. 1, 2, 3

[8] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analy-
sis and automated cartography. Readings in computer vision:
issues, problems, principles, and paradigms, pages 726–740,
1987. 4

[9] R. Hartley and F. Kahl. Optimal algorithms in multiview
geometry. In Proceedings of the 8th Asian conference on
Computer Vision – Volume Part I, ACCV’07, pages 13–34,
Berlin, Heidelberg, 2007. Springer-Verlag. 1, 2, 3

[10] R. I. Hartley and P. Sturm. Triangulation. Comput. Vis. Image
Underst., 68(2):146–157, 1997. 1, 3

[11] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,
2004. 1, 2

[12] K. Kanatani, Y. Sugaya, and H. Niitsuma. Triangulation
from two views revisited: Hartley-Sturm vs. optimal correc-
tion. In Proceedings of the British Machine Vision Confer-
ence, pages 18.1–18.10. BMVA Press, 2008. 1

[13] P. Lindstrom. Triangulation made easy. In Proceedings of
the 2010 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1554–1561, 2010. 1, 3

[14] Y. Min. L-infinity norm minimization in the multiview tri-
angulation. In Proceedings of the 2010 International Con-
ference on Artificial Intelligence and Computational Intelli-
gence: Part I, AICI’10, pages 488–494, Berlin, Heidelberg,
2010. Springer-Verlag. 1, 3

[15] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. ACM Queue, pages 40–
53, Mar./Apr. 2008. 4

[16] NVIDIA. Cuda C programming guide, version 4.2, 2013. 2
[17] Oxford Visual Geometry Group. Multi-view and Oxford

Colleges building reconstruction, Aug. 2009. 6, 7
[18] S. Recker, M. Hess-Flores, and K. I. Joy. Statistical angu-

lar error-based triangulation for efficient and accurate multi-
view scene reconstruction. In Workshop on the Applications
of Computer Vision (WACV), 2013. 1, 2, 3, 4, 7

[19] M. I. Restrepo, B. A. Mayer, A. O. Ulusoy, and J. L. Mundy.
Characterization of 3-d volumetric probabilistic scenes for
object recognition. IEEE Journal of Selected Topics in Signal
Processing, 6:522–537, Sept. 2012. 7

[20] J. R. Sánchez, H. Álvarez, and D. Borro. GFT: GPU fast tri-
angulation of 3D points. In Proceedings of the 2010 Interna-
tional Conference on Computer Vision and Graphics: Part
II, ICCVG’10, pages 235–242, Berlin, Heidelberg, 2010.
Springer-Verlag. 2, 3

[21] J. R. Sánchez, H. Álvarez, and D. Borro. GPU optimizer:
A 3D reconstruction on the GPU using Monte Carlo simula-
tions – how to get real time without sacrificing precision. In
Proceedings of the 2010 International Conference on Com-
puter Vision Theory and Applications, pages 443–446, 2010.
2, 3

[22] N. Satish, M. Harris, and M. Garland. Designing efficient
sorting algorithms for manycore GPUs. In Proceedings of
the 23rd IEEE International Parallel and Distributed Pro-
cessing Symposium, May 2009. 5

[23] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3d. ACM Transactions on
Graphics, 25(3):835–846, July 2006. 7

[24] J. A. Snyman. Practical Mathematical Optimization: An
Introduction to Basic Optimization Theory and Classical
and New Gradient-Based Algorithms. Applied Optimiza-
tion, Vol. 97. Springer-Verlag New York, Inc., second edi-
tion, 2005. 1, 2, 3

[25] H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is
3-view triangulation really? Computer Vision, IEEE Inter-
national Conference on, 1:686–693, 2005. 1, 2, 3, 6

[26] C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and
U. Thoennessen. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In Proceed-
ings of the 2008 IEEE Conference on Computer Vision and
Pattern Recognition, 2008. 2, 4

http://eigen.tuxfamily.org

