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Abstract

In this paper we propose a method to consistently recover
the pose of an object from a known class in a video se-
quence. As individual poses estimated from monocular im-
ages are rather noisy, we optimally aggregate pose evidence
over all video frames. We construct a graph where nodes
are values sampled from the pose posterior distributions
computed by a continuous pose estimator in each frame
of the sequence. We then find the globally optimum pose
path through the graph that best explains the pose evidence
for the whole sequence. As a result, we recover the cor-
rect object orientation at each frame even if single-frame
pose evidence is sometimes inaccurate. We evaluate our
approach on two publicly available car datasets, which en-
compass busy street scenarios and car races with significant
changes in car orientation, blur and occlusions. We show
that our method outperforms state-of-the-art approaches re-
ducing the error by 40% on the challenging KITTI dataset.

1. Introduction
Object pose estimation using category models has in-

creasingly gained attention in the last decade, following the
improvement of object recognition methods and the emerg-
ing interest in dealing with more complex scenarios. The
orientation of generic objects, like beds or chairs, is ex-
ploited in scene understanding tasks for the correct labeling
of scene items, as well as in robotic applications for grasp
and control. While for some applications only a coarsely
quantized pose value is enough, thus reducing the pose es-
timation problem to a simpler multi-view classification, for
some others the output pose needs to be real-valued. This
is the case of autonomous driving and augmented reality
applications, where the object pose must be accurately es-
timated. Most of the approaches proposed in the literature
address the pose estimation problem of object classes for
still images [19, 3, 10, 11], while just a small number of
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Figure 1: We propose a method for pose estimation in video
sequences that finds the globally optimum pose trajectory
given the single-frame pose distributions learned using re-
gression. We create a graph where the nodes are sampled
from single-image pose distributions (black circles). By
finding the best pose path through the graph (marked by
orange circles and arrows), we are able to recover from er-
rors in the distribution as in frame t. Poses marked by a
blue star are the result of taking the maximum mode of the
single frame distribution.

works have treated the same problem for videos.
A natural strategy is to use a single-frame pose estimator

and then combine the tentative estimations to obtain a final
value for the pose in each frame, so that temporally incoher-
ent results are filtered out or corrected. Some approaches
rely on 3D-based pose estimators trained using CAD mod-
els and possibly deliver a real-valued pose [25, 18, 17, 27].
Since the availability of 3D models cannot be guaranteed,
others have successfully explored the possibility of relying
only on 2D data [20, 5]. Regardless of the pose estima-
tor used, the combination in the temporal domain of single-
frame results is in most cases obtained through suboptimal
strategies, such as aggregation and fusion of pose estima-
tion pdf’s over consecutive frames, or computationally ex-
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pensive techniques, such as particle filtering.

1.1. Contributions

We propose a method that combines a state-of-the-art
2D-based pose estimator [3], which provides a posterior
probability distribution for the pose at each frame, with a
linear programming formulation to exploit the temporal in-
formation and find the best pose trajectory for the entire
video sequence. As our pose estimator exploits feature re-
gression, we do not need to recur to 3D models to be able
to provide a real-valued pose. Thanks to the usage of linear
programming, we are able to handle inconsistencies in the
output pose by estimating the globally optimal pose trajec-
tory over the whole video sequence.

2. Related Works
Pose estimation in single images While some works tackle
the pose estimation problem as a classification problem by
providing only a coarsely quantized value [19, 16, 7, 24],
others have focused on delivering a continuous estimation
for the pose. Among the latter, some exploit 3D informa-
tion, either by training their algorithms with commercial
CAD models [15] or by computing 3D sparse models us-
ing Structure-from-Motion techniques [26, 8]. Even if the
usage of 3D models in pose estimation methods naturally
leads to a real-valued pose, other approaches have been suc-
cessful in delivering a continuous value by relying only on
2D models. In [9], the pose is refined by continuously de-
forming a view template after using a coarse view classifier,
while [22] and [2, 3] apply feature regression on the whole
set of object features or on each single patch, respectively.
[11] learns a continuously pose-parametrized object model
using structural SVM and then solves for the pose by find-
ing the maximum in the inference problem. [10] trains a
K-ary regression random forest by applying K-means at
each splitting node on the basis of the training labels.
Pose estimation in video sequences As labeled video
datasets are increasingly made available [6, 25] and single-
frame pose estimation approaches are now a mature tool to
rely on, works have started to address the video-based pose
estimation problem. In [18], a statistical manifold is learned
from short video sequences of different class instances as a
function of appearance and viewpoint, then a test video is
divided in short sequences and a discrete pose is estimated
by KL-divergence for each sequence. In [17], a statistical
manifold is learned for spatio-temporal object parts, whose
selection is driven by a twofold criterion of descriptiveness
and distinctiveness, and then a discrete pose is estimated
through KL-divergence. These works differ significantly
from our method as they deliver only a very coarse view-
point and no temporal information is actively employed.

The works which are closest to our method are [20] and
[25]. [20] relies on a modified Hough regression forest that

estimates the pose distribution at each frame, and then fuses
it with a smoothed average of the past n distributions before
determining the maximum a posteriori pose. This approach
can be prone to error accumulation due to a sequence of
wrongly estimated distributions. In contrast, our optimal
formulation allows us to recover the correct pose even if
the pose distribution is inaccurate for several consecutive
frames. [25] estimates a probabilistic distribution at each
frame combining the results of a pose estimator [24] and a
motion prior on the viewpoint change. This work differs
from ours in two aspects: (i) the pose estimator is based
on parts learned from training images rendered from CAD
models using a structural SVM optimization, while we only
use 2D information; (ii) the maximum a posteriori pose is
prone to error accumulation as it is obtained using a particle
filtering framework that relies only on the past frame infor-
mation, while we estimate the optimum pose over the whole
sequence. Finally, a very different approach is presented in
[5], where, within a traffic scene understanding framework,
the pose estimation of vehicles is based upon the combi-
nation of vehicle tracklets, semantic scene labeling, scene
flow and egomotion, and vanishing point estimation.
Tracking The problem of pose estimation in video se-
quences can also be viewed as a tracking problem, where
the goal is to find object pose trajectories in videos. Multi-
ple object tracking has been commonly solved by express-
ing the problem as a linear program, either in monocular
sequences [12] or multi-view sequences [13]. Human pose
estimation can also benefit from the fusion of temporal in-
formation as shown in [21, 4], where both methods use dy-
namic programming to find the best pose trajectory for the
video sequence.

3. Pose estimation of object classes

In this section, we provide a description of the method
by [3] that we leverage in our paper to obtain a posterior
distribution for the object pose in each video frame. By us-
ing feature regression, we use only 2D information to derive
the real-valued pose of the object.

3.1. Generative Feature Modeling

At the very core of the method lie generative feature
models, i.e., feature regressors that predict the appearance
of each object patch as a function of the viewing angle. Fea-
ture regression relies on the smooth behavior of feature de-
scriptor components when the corresponding patch under-
goes a small change in viewpoint.

Let ti = {(f i1, αi1), (f i2, α
i
2), . . . , (f in, α

i
n)} be a feature

track collecting the appearance of patch i under different
viewpoints, i.e., a set of feature descriptors f ij and corre-
sponding viewpoint labels αij . For each feature track ti, we



define a generative feature model F i as

F i(α) =

n∑
j=1

G(α, αij)w
i
j , (1)

i.e., a linear combination of Gaussian radial basis func-
tions G centered at the training poses. Each basis func-
tion G(α, αij) weighs the contribution of the vector coeffi-
cient wi

j according to the distance between the input pose
α and the training pose αij . The vector coefficients wi

j are
obtained as the solution of the following regularized linear
least squares problem

(Gi + λI)Wi = Zi, (2)

where Gi is a n × n matrix such that Gi
lm = G(αil , α

i
m),

I is the identity matrix, Wi is the unknown coefficient ma-
trix and Zi contains the feature descriptors arranged in row
order.

By collecting tracks stemming from a training sequence
of a specific object, we can only predict the appearance of
its patches. To move to a class level representation, we clus-
ter all the training tracks of different instances on the basis
of their similarity in descriptor and pose space using spec-
tral clustering. As each cluster contains similar tracks, we
can now predict a more general patch descriptor, thus ac-
commodating for intra-class variations. The cluster regres-
sor is based on a weighted linear combination of the re-
sponses of the individual regressors grouped in the cluster.

3.2. Estimation of the Pose Posterior Distribution

Once we have learned a model as described above, we
want to find correspondences between test and model fea-
tures. After the matching step, we estimate the pose pos-
terior distribution for each single frame as detailed in the
following.

Matching After extracting a set of features F = {f}Mm=1

from the query frame, we need to establish matches between
them and the class model, where the model is represented
by a set C = {c}N1 of feature cluster representatives. As
our model includes no geometric information, we enforce
feature-to-model correspondences to respect some loose ge-
ometric relation by using graph matching. Graph matching
permits to disambiguate good and wrong matches at once
on the basis of both feature descriptor distance and feature
pairwise geometry.

We interpret our test feature set and model feature set as
the two graphs to be matched. Each test feature represents a
node in the test graphG, while only a selection of the model
features is used for the model graphG′. In order to keep the
problem tractable, we prune the model graph by considering
only the K nearest neighbors for each test feature. K can

be a small value (K = 5 in our experiments) as we rely on
the distinctiveness of gradient-based feature descriptors to
directly prune wrong matches.

The test graph is defined by G = (V,E,A), where V
is the set of vertexes, E is the set of edges and A is the
attribute matrix. A is defined such that

Aij =

{
fi for i = j

αij for i 6= j
, (3)

where fi is the test descriptor, αij is the angle between the
x-axis and the directed segment Pij connecting the two test
feature locations. In [3], the off-diagonal entry is the pair
(αij , rij), where rij is the length of the segment Pij . By
dropping this information, we make our matching approach
scale-invariant. Therefore, we can handle a much larger
range of object sizes, as is the case with images taken from
real scenes. The model graph G′ is defined analogously,
i.e., we consider the cluster representative as the model fea-
ture descriptor and the mean location of all the features in
the cluster as its 2D location.

Following our formulation, graph matching amounts to
determine a mapping M = {(i, i′)|i ∈ V, i′ ∈ V ′} that
maximizes the following score

S =
∑

(i,i′)∈M,(j,j′)∈M

g(Aij , A
′
i′j′), (4)

where g is a function that evaluates the similarity between
two attributes. If we rewrite M as the binary vector x ∈
{0, 1}nn′ , such that n = |V |, n′ = |V ′|, and xii′ = 1 if
(i, i′) ∈M , the solution is

x∗ = arg max
x

S = arg max
x

xTWx,

s.t . x ∈ {0, 1}nn′ and ‖x‖2 = n,
(5)

where W is a nn′ × nn′ matrix such that Wii′,jj′ =
g(Aij , A

′
i′j′) and is defined as

Wii′,jj′ =


log(m− dii′ + 1) if i = j and i′ = j′

m
(

1− β
τ1

)2

if β ≤ τ1 and

(i 6= j or i′ 6= j′)

0 otherwise

(6)

For individual matches, g evaluates the descriptor distance.
Since dii′ = ‖fi − fi′‖ is the Euclidean distance in de-
scriptor space and m = max dii′ , a high diagonal entry re-
flects a plausible individual match. For pairwise matches, g
evaluates the geometric consistency of the feature locations.
Since β = |αij − αi′j′ | is the angular distance, a high off-
diagonal entry reflects a pair of matching features that are
consistent in their respective orientation. In Eq. 5, we fix the
norm of the solution so that each test feature is matched to a



model feature, although the assignment may not be one-to-
one. We are not concerned about this, as wrong assignments
will be penalized in the graph matching result.

Since Integer Quadratic problems are NP-hard, we de-
cide for an approximate solution through linear relaxation,
following [14]. For arbitrary fixed norm, the maximization
problem is equivalent to

x∗ = arg max
x

S = arg max
x

xTWx

xTx

s.t . x ∈ [0, 1]nn
′

and ‖x‖2 = n.

(7)

This expression is a classical Rayleigh quotient problem
whose solution is x∗ =

√
nvmax, where vmax is the

dominant eigenvector of W . Since the linear relaxation
has changed the matching constraint from many-to-one to
many-to-many, now only the relative amplitude of the so-
lution components is relevant. Therefore, we can enforce
the solution to have unit norm without loss of generality,
so that x∗ = vmax and |x∗ii′ | ≤ 1. Since W has only
non-negative entries, the Perron-Frobenius’ theorem guar-
antees that x∗ii′ ≥ 0. Therefore, we fully meet the constraint
x ∈ [0, 1]nn

′
and, as a byproduct, we can directly interpret

the solution in probabilistic terms.

Pose Estimation Since we are interested in estimating the
pose distribution, we interpret the pose estimation problem
in a probabilistic fashion. More specifically, we define a
probability p(α, c|f) for each test feature f that expresses
the likelihood of observing f from viewpoint α and that c
is a correct match for f . By applying the probability chain
rule, we obtain

p(α, c|f) = p(α|f, c)p(c|f). (8)

The first factor p(α|f, c) is defined in terms of the gen-
erative feature model as

p(α|f, c) =
∑
i:ti∈c

ui

U
exp

(
− (ei)T (Ri)−1ei

2

)
G(α, βi),

(9)
where ui weighs the contribution of the i-th regressor andU
is a normalization constant; e = f−F i(α) is the prediction
error made by the i-th regressor in cluster c with respect to
f ;Ri is the covariance matrix of the i-th regressor estimated
during training; βi = arg minj |α − αij | weighs the view
consistency of the i-th regressor in cluster c to the tentative
pose α. In a nutshell, a high value will result if the regressor
prediction agrees with the query feature at the tentative pose
α and α is consistent with the regressor training views.

We derive the term p(c|f) in a straightforward manner
from the matching step. Since ‖x∗‖2 = 1 and x∗fc ∈ [0, 1],
we can express our confidence about the correctness of the
match as

p(c|f) = (x∗fc)
2. (10)

We extend our reasoning from one query feature to all
query features F = {f}Mm=1 by assuming a mixture model
where each feature contributes equally in order to avoid can-
cellation problems. Therefore, the posterior distribution for
the pose is

p(α, c|F) ≈
∑
m

p(α|fm, c)p(c|fm) (11)

Once we have this distribution for each frame of the
video sequence, our goal is to find the most consistent set
of poses over all frames. We do this in a globally optimum
way by constructing a graph, where each node consists of a
pose sampled from the distribution of Eq. (11). The goal is
to find the best path in the graph, which we do by solving a
linear problem, as explained in the next section.

4. Temporal pose estimation
In this section, we present how to solve the pose esti-

mation problem in video sequences by taking into account
the evidence of all the frames, as computed in the previous
section, to find a globally optimal pose trajectory.

Let O = {otk} be a set of pose observations with
otk = (αtk, s

t
k), where αtk is the estimated pose and stk is

the score or probability of that pose in that frame obtained
from the distribution of Eq. (11). A path is defined as a
list of ordered pose observations T = {ot1k1 ,o

t2
k2
, · · · ,otNkN }

with t1 ≤ t2 ≤ . . . ≤ tN and our goal is to find the path T∗
that best explains the pose observations.

This is equivalent to finding the T that maximizes the
posterior probability given the set of pose observations O,
which is known as the maximum a posteriori or MAP prob-
lem.

T∗ = arg max
T

P (T |O) (12)

By further assuming that the observations are condition-
ally independent, the equation can be rewritten as:

T ∗ = arg max
T

P (O|T )P (T ) (13)

= arg max
T

∏
k

P (ok|T )P (T ), (14)

where P (ok|T ) corresponds to the score of the pose sk ac-
cording to the learned pose distribution, and P (T ) can be
represented by a Markov chain:

P (T ) = Pin(o1
k1) . . . P (otkt |ot−1

kt−1
) . . . Pout(o

N
kN ). (15)

4.1. Mapping to a linear program

This formulation can be directly mapped into a minimum
cost network flow problem. We define a directed graph
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Figure 2: Example of a graph spanning 3 frames, with the
special source s and sink t nodes, and a total of 7 pose ob-
servations represented by two nodes each: beginning ui and
end vi nodes. The optimal path is marked by orange arrows.

G = (V,E) with costs C(i, j) and capacities u(i, j) as-
sociated with every edge (i, j) ∈ E. An example of such a
network is shown in Figure 2; it contains two special nodes,
the source s and the sink t; all flow that goes through the
graph starts at the s node and ends at the t node. Our goal is
to find the best path through the network, i.e., the path with
minimum cost.

Each pose observation oi is represented with two nodes,
the beginning node ui ∈ V and the end node vi ∈ V (see
Figure 2). A score edge connects ui and vi.

Finding the best path can be expressed as a Linear Pro-
gram which is defined by a linear objective function and a
set of linear constraints. Linearization of the objective func-
tion of Eq. (14) is obtained by defining a set of flow flags
f(i, j) = {0, 1} which indicate if an edge (i, j) is part of
the optimum path solution or not. By defining the costs as
negative log-likelihoods and combining Eqs. (14) and (15),
the following objective function is obtained:

T∗ = arg min
T

− logP (T )−
∑
k

logP (ok)

= arg min
f

∑
i

Cin(i)fin(i) +
∑
i,j

Ct(i, j)ft(i, j)

+
∑
i

Csc(i)fsc(i) +
∑
i

Cout(i)fout(i) (16)

subject to the constraint that the flow that enters a node is
equal to the flow that leaves the node:

fin(i) +
∑
j

ft(j, i) = fsc(i)

fsc(i) + fout(i) =
∑
j

ft(i, j). (17)

Furthermore, we know that f(i, j) = {0, 1}, a condition
that we relax into 0 ≤ f(i, j) ≤ 1. This tight relaxation
allows us to have a linear program without losing the opti-
mality guarantee. Finally, the overall flow that leaves s has
to be 1, as well as the flow that enters t.

As we can see in Eq. (16), there are four types of costs
corresponding to four types of edges as shown in Figure 2.
The link or transition costsCt(i, j) corresponding to the link

edges connecting a pose observation from frame t to frame
t+ n. This cost represents the pose difference between the
two observations. Assuming that an object’s pose does not
change a lot from one frame to the next, we define these
costs to be an increasing function of the distance between
pose observations. Therefore, the cost of a link edge is de-
fined as:

Ct(i, j) = − log
(

1− ‖α
t
j−α

t
i‖

Mα

)
+ C(∆f) (18)

where C(∆f) = − log
(
B∆f−1

jump

)
is the cost depending

on the frame difference between pose observations. For all
our experiments we allow matches up to two frames apart,
which allows us to recover from pose estimation errors that
occur on isolated frames. We set the parameterBjump = 0.3.
Edges between observations are only created if their pose
distance is less than Mα degrees apart. This parameters al-
lows us to adapt the algorithm to different frame rates and
object speeds.

The score costs Csc(i) correspond to the pose observa-
tions and express how probable is that particular pose ac-
cording to the learned distribution of Eq. (11). The cost is
defined as:

Cdet(i) = log

(
sti
Ms

)
, (19)

where Ms is a normalization factor equivalent to the max-
imum score of all pose observations. The entrance cost
Cin(i) and exit costCout(i), are set to 0 in our case, since we
do not penalize any of the initial or last pose observations.
The solution can be found efficiently using any solver like
Simplex or shortest path [1].

5. Experimental Results
In this section, we first show results on a toy exam-

ple from the EPFL multi-view car dataset [19]. Later, we
test the proposed algorithm on two real-world sequences,
namely KITTI [6] and Youtube [25] and show the superior
performance of our method.

5.1. Toy example - EPFL Dataset

This dataset consists of twenty sequences of cars rotat-
ing on a platform. Since the shooting time is given, it is
possible to compute a precise orientation of the object in
each frame. We consider this as a toy example on which
to test our method because cars have a high variability in
appearance but the change in orientation is smooth and pre-
dictable.

We compare our method to six single-frame state-of-the-
art pose estimators [3, 2, 11, 10, 22, 19] and one video-
based approach that has been recently proposed [20]. We



Method MAE [◦] MAE [◦] MAE [◦]
90th perc. 95th perc.

50% split

Ozuysal et al. [19] - - 46.48
Torki et al. [22] 19.4 26.7 33.98
Fenzi et al. [2] 14.51 22.83 31.27
R.-C. et al. [20] - - 29.7
Hara et al. [10] 7.73 16.18 24.24
Fenzi et al. [3] 12.67 17.77 23.38
He et al. [11] - - 15.8
Proposed 3.91 4.30 4.89

Leave-One-Out split

Torki et al. [22] 23.13 26.85 34.90
Fenzi et al. [2] 14.41 22.72 31.16
Fenzi et al. [3] 15.53 19.27 24.53
Proposed 5.6 6.26 7.10

Table 1: EPFL dataset. Mean Absolute Error (MAE) and its
90th and 95th percentiles. The two leftmost columns show a
clearer insight into the algorithms performance by removing
the influence of large errors from the overall mean.

used the same testing framework as previous works, i.e.,
two different splits for training and testing. (i) 50% Split:
training the model on the first 10 sequences and testing it on
the remaining 10; (ii) Leave-One-Out: training the model
on 19 sequences and testing it on the remaining one.

We build our model according to Section 3 and we es-
timate the pose posterior distribution in each frame as ex-
plained in Section 3.2. For each frame, we extract N = 10
equally spaced pose values from the posterior distribution
and construct the graph over all frames of the sequence. The
best path is found using the Gurobi Library [23].

In Table 1, we show that our method not only outper-
forms all the other single-frame pose estimators, but it also
obtains more accurate results than the other video-based ap-
proach [20]. In particular, our Mean Absolut Error (MAE)
is approximately 80% smaller with respect to the results
published in [11], which is the most accurate method on
this dataset so far. As the results in the first two columns
show, the overall mean is strongly affected by few yet detri-
mental 180◦ flipping errors. As our method does not take
hard decisions in each frame but finds the path of orienta-
tions that best explains the whole sequence, we can reduce
the effect of these wrong estimations to a minimum.

5.2. Youtube and KITTI datasets

In order to test the performance of our method in real-
world scenarios, we evaluate it on two datasets which em-
phasize the topological appearance changes of the target.

The first test set consists of 11 sequences from the KITTI
benchmark dataset [6], which were annotated by [25]. They

show real-world scenarios of busy streets, where target cars
undergo significant viewpoint changes. In some sequences,
the car is partially or even totally occluded by other cars or
pedestrians, making the pose estimation problem very chal-
lenging. An important difficulty of this dataset is that the
car size varies significantly during each sequence, ranging
from 500 pixels down to 40 pixels, as a result of the relative
motion between the moving camera and the car.

We followed the same paradigm as in the toy exam-
ple. We extract features from each test image, we matched
them against the model, which is learned from the first
10 sequences of the EPFL dataset, and then we obtain a
pose posterior distribution. Finally, we sample N equally
spaced values from the posterior distribution, we construct
the graph over all frames, and we find the path that best
explains the sequence. To cope with the small size of the
targets, we upsample the images by 2, since our approach
is based on local sparse features and we need a minimum
amount of features to estimate a reliable posterior distribu-
tion.

In order to evaluate viewpoint estimation, we report two
metrics: (i) viewpoint accuracy, where the estimated view-
point is considered correct if the deviation from the ground
truth viewpoint is less than 15◦; (ii) mean absolute error,
which reports the mean absolute difference in degrees be-
tween the estimated and the ground truth viewpoints for
the entire sequence. As we only tackle the pose estimation
problem, we use the ground truth bounding boxes as input
to our algorithm.

In Table 2, we compare our results on each KITTI se-
quence and the overall mean with [25]. The notation “1.
GT” indicates that the ground truth orientation of the first
frame is used to initialize the method. Not only our method
outperforms [25] reducing the error by approximately 40%
and increasing accuracy by 20 percentage points when the
ground truth of the first frame is used, but we also obtain
better results when this advantage is not used.

As a further insight into our algorithm we provide two
frame-by-frame graphs from the KITTI dataset, where we
plot the results of the single-frame pose estimator, the pose
value selected by the LP tracker, and the ground truth. In
the first graph, the LP tracker is able to completely recover
from the spurious errors of the single-frame pose estimator,
as a correct evidence is provided in most frames. However,
when correct evidence is more counterbalanced by oppo-
site, wrong evidence, as in the second plot around frame
23, the LP tracker adopts a conservative solution and just
outputs the pose in the middle. Additionally, we provide a
visual example of our algorithm in Fig. 4, where we esti-
mate the pose of the car pointed by the red arrow. The pose
estimation is accurate even when the car is fully occluded.

We also perform experiments on the Youtube dataset
[25], which contains 9 sequences where a racing car under-



Proposed 1. GT Proposed Xiang et al. 1.GT [25] Xiang et al. [24] Fenzi et al. [3]

KITTI01 1.00/4.04◦ 0.96/5.54◦ 0.95/6.5◦ 0.57/44.46◦ 0.35/64.87◦

KITTI02 0.81/9.74◦ 0.67/12.81◦ 1.00/5.40◦ 0.33/119.54◦ 0.22/72.45◦

KITTI03 0.81/9.75◦ 0.46/16.33◦ 0.42/15.64◦ 0.50/15.99◦ 0.13/62.81◦

KITTI04 0.72/10.55◦ 0.65/12.10◦ 0.22/27.05◦ 0.17/58.42◦ 0.24/63.11◦

KITTI05 0.93/4.35◦ 0.93/5.93◦ 0.36/23.59◦ 0.64/23.65◦ 0.76/12.82◦

KITTI06 1.00/5.02◦ 1.00/5.08◦ 0.31/21.63◦ 0.59/20.29◦ 0.71/12.72◦

KITTI07 0.78/12.78◦ 0.21/24.8◦ 0.96/6.86◦ 0.70/24.50◦ 0.09/56.80◦

KITTI08 0.70/10.74◦ 0.81/10.00◦ 0.57/15.61◦ 0.67/23.26◦ 0.52/42.00◦

KITTI09 0.90/8.23◦ 0.90/8.33◦ 0.50/21.63◦ 0.50/17.60◦ 0.33/32.85◦

KITTI10 0.92/7.09◦ 0.92/7.18◦ 0.81/7.99◦ 0.44/56.78◦ 0.47/49.20◦

KITTI11 0.54/16.00◦ 0.48/29.7◦ 0.88/9.33◦ 0.68/12.29◦ 0.32/76.17◦

Mean 0.83/8.93◦ 0.73/12.53◦ 0.63/14.66◦ 0.53/37.89◦ 0.38/49.62◦

Table 2: KITTI dataset. Viewpoint accuracy/mean absolute error (MAE) in degrees
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Figure 3: Ground truth pose (red), pose output by choosing
the highest mode of the pose distribution (blue), optimal
solution provided by the proposed method (green).

goes significant orientation changes. In many sequences,
pictures are very blurred as a result of the high speed, and
often the car is surrounded by smoke, due to the sliding
of tires on the ground, making the pose estimation prob-
lem extremely challenging. As we can see, we outperform
[25] also on this dataset. Interestingly, we observe that the
two methods are complementary. As we can see in se-
quences SUV2, KITTI04-06, [25] performs poorly while
our method is able to achieve very high viewpoint accu-
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31°	



75°	
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Figure 4: Visual results of our algorithm when estimating
the pose of the car pointed by the red arrow. Ground truth
in red, algorithm estimation in green.

racy. On the contrary, in sequences KITTI11 or Race3, [25]
outperforms our method. This could lead to a potentially
interesting line of work in which both methods could be
combined for an even better performance.

6. Conclusions
In order to solve the pose estimation problem for object

categories in videos, we proposed a method that embeds the
results of a single-frame pose estimator in a linear program-
ming formulation. We create a pose graph by sampling val-
ues from the posterior probability distributions delivered at
each frame and we find the pose trajectory that best explains
the entire video sequence. Unlike previous approaches that
suffer from error accumulation in case of wrongly estimated
distributions, our optimal formulation allows us to recover
the correct orientation even if distributions are inaccurate



Proposed 1. GT Proposed Xiang et al. 1. GT [25] Xiang et al. [24] Fenzi et al. [3]

Race1 0.58/16.64◦ 0.54/18.47◦ 0.67/18.73◦ 0.52/42.62◦ 0.09/79.88◦

Race2 0.80/9.51◦ 0.74/10.35◦ 0.77/10.83◦ 0.53/44.30◦ 0.36/54.26◦

Race3 0.55/16.20◦ 0.55/16.29◦ 0.83/9.28◦ 0.64/46.08◦ 0.22/66.63◦

Race4 0.69/10.87◦ 0.56/17.85◦ 0.69/15.83◦ 0.79/13.37◦ 0.20/62.47◦

Race5 0.73/11.39◦ 0.55/18.01◦ 0.71/10.75◦ 0.54/57.79◦ 0.23/45.92◦

Race6 0.68/15.54◦ 0.47/16.93◦ 0.43/18.47◦ 0.31/37.08◦ 0.43/44.90◦

SUV1 0.94/4.88◦ 0.93/5.29◦ 0.82/7.81◦ 0.47/78.38◦ 0.14/78.65◦

SUV2 0.89/6.42◦ 0.61/15.14◦ 0.57/19.56◦ 0.39/63.41◦ 0.44/36.07◦

Sedan 0.72/12.20◦ 0.71/12.32◦ 0.76/9.87◦ 0.79/20.84◦ 0.40/23.05◦

Mean 0.71/12.18◦ 0.63/13.86◦ 0.69/13.46◦ 0.54/47.24◦ 0.28/54.67◦

Table 3: Youtube dataset. Viewpoint accuracy/mean absolute error (MAE) in degrees.

for several consecutive frames. Experiments on two chal-
lenging datasets encompassing urban scenes and car races
show that our approach significantly outperforms state-of-
the-art algorithms.
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[2] M. Fenzi, L. Leal-Taixé, B. Rosenhahn, and J. Ostermann.
Class Generative Models based on Feature Regression for
Pose Estimation of Object Categories. In CVPR, 2013.

[3] M. Fenzi and J. Ostermann. Embedding Geometry in Gen-
erative Models for Pose Estimation of Object Categories. In
BMVC, 2014.

[4] M. Fergie and A. Galata. Dynamical pose filtering for mix-
tures of gaussian processes. BMVC, 2007.

[5] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d
traffic scene understanding from movable platforms. TPAMI,
2014.

[6] A. Geiger, P. Lenz, and R. Urtasun. Are We Ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In
CVPR, 2012.

[7] A. Ghodrati, M. Pedersoli, and T. Tuytelaars. Is 2D Informa-
tion Enough For Viewpoint Estimation? In ECCV, 2014.

[8] D. Glasner, M. Galun, S. Alpert, R. Basri, and
G. Shakhnarovich. Viewpoint-Aware Object Detection and
Pose Estimation. In ICCV, 2011.

[9] C. Gu and X. Ren. Discriminative Mixture-of-templates for
Viewpoint Classification. In ECCV, 2010.

[10] K. Hara and R. Chellappa. Growing Regression Forests by
Classification: Applications to Object Pose Estimation. In
ECCV, 2014.

[11] K. He, L. Sigal, and S. Sclaroff. Parameterizing object de-
tectors in the continuous pose space. In ECCV, 2014.
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