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Abstract

We propose a vision-based highway border detection
algorithm using structured Hough voting. Our approach
takes advantage of the geometric relationship between high-
way road borders and highway lane markings. It uses a
strategy where a number of trained road border and lane
marking detectors are triggered, followed by Hough voting
to generate corresponding detection of the border and lane
marking. Since the initially triggered detectors usually re-
sult in large number of positives, conventional frame-wise
Hough voting is not able to always generate robust bor-
der and lane marking results. Therefore, we formulate this
problem as a joint detection-and-tracking problem under
the structured Hough voting model, where tracking refers to
exploiting inter-frame structural information to stabilize the
detection results. Both qualitative and quantitative evalua-
tions show the superiority of the proposed structured Hough
voting model over a number of baseline methods.

1. Introduction

Detecting road borders has broad applications in future
autonomous vehicles and intelligent transportation systems
as an important component of scene understanding. It can
provides cues about road structure that benefit motion plan-
ning and cruise behavior control. In autonomous driving,
the detection of road border is often done by GPS, high
quality road map and some other active sensors such as
Radar and Lidar. This, however, can sometimes be limited
by the accuracy of GPS positioning signal as well as the res-
olution of active sensors. A natural question is whether we
can address the problem with computer vision.

Besides detecting the physical road border, part of our
task also includes robustly detecting the shoulder region
in order to provide necessary maneuver guidance for fu-
ture autonomous driving systems. In the United States,
highways often contain a so-called “shoulder region” usu-
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Figure 1. Examples of the proposed system. The red line indicates
the physical road border while the blue line is the lane marking.
They together defined the green shoulder region.

ally defined as the region between the outer-most solid lane
marking and the physical road border. This shoulder re-
gion serves as a buffer zone before the physical limit of the
road. Non-emergency vehicles are mostly not allowed to
drive on shoulder regions. But under emergency conditions,
they may be allowed on shoulder regions for purposes such
as evasive maneuver and emergency parking.

We start from the most basic setting where a side-view
production camera' looks out from the right side of a ve-
hicle, as illustrated in Fig.1. The detection problem is ap-
proached as the problem of detecting the road border (e.g.,
guard rails, concrete barriers, etc.) and detecting the clos-
est lane marking on the shoulder-side of the vehicle. The
expectation is that the algorithm will return an estimate of
the drivable regions before the physical road border. If the
vehicle is on the right-most lane, the shoulder region is ex-
pected to be detected, while if the vehicle is on inner lanes,
the detection also include available lanes on the right. We
will assume that the shoulder is on the right side of the car,
but we can easily apply our approach to the shoulder on the
left side provided that the side camera is mounted on the left
side of the vehicle. We emphasize that the current system is
just one part of a future surround view system where side-
view detection and front-view detection can jointly support

'Here production cameras refers to the cameras that have been mass
produced in the transportation industry, often with low cost but also with
relatively low image resolution and quality.



and improve each other. The current system can also ben-
efit future autonomous driving systems by providing infor-
mation about road structure. Our goal is to achieve robust
detection within 0.5 to 6 meters detection range, while be-
ing able to handle various challenging scenarios including
strong shadows, diverse border types/appearances and com-
plicated scenarios such as highway entrances and exits.

In the United States, typical highway borders can be clas-
sified into three types: concrete barrier, guard rail and soft
shoulder. Given this observation, our key assumption is that
the types of highway border are not as diverse as the borders
in urban or other uncontrolled scenarios and can be learned
from a set of labelled images. This assumption, however, by
no means makes the problem trivial: the border and shoul-
der detection problem still needs to address the limited res-
olution challenge, meet the required speed constraints, deal
with complicated border situations and contend with a num-
ber of other challenges such as strong shadows, dynamic
appearances and other patterns that look like borders.

We show that our problem can be theoretically formu-
lated as a joint detection-and-tracking problem under a
graphical model called “structured Hough voting”. Our
contribution in this paper lies in the fact that the proposed
structured Hough voting model exploits a variety of inter-
frame and intra-frame structural information to achieve very
robust performance, while using multiple candidate hy-
potheses and mode selection to retain necessary flexibility.
We will show that the proposed model performs very well
on the highway border and shoulder detection problem.

2. Related work

The problem of vision-based scene understanding for au-
tonomous driving has been widely studied. Many seek to
address the problem of general object detection, such as
the detection of pedestrians [13], bicycles [18], motorcy-
cles and vehicles [11]. There has also been a consider-
able amount of work regarding scene parsing where each
pixel/superpixel in an image is labeled with a certain object
class [3, 17]. However, most of them focus on the under-
standing of general objects and the algorithms are often not
possible to run in real-time” on a regular CPU.

Some relevant works try to understand the structure of
road and these works are indispensable parts of the au-
tonomous driving system. Considerable effort has been de-
voted to automatically detect roads [, 2] and lane mark-
ings [12], or to find vanishing points [10]. Others have
addressed the problem by exploring more capable sensors,
including stereo vision sensors [ 4] and Lidar sensors [16].
These sensors provide extra depth information which makes
the tasks considerably easier. Thus they have been adopted
in some autonomous systems [15]. While these sensors are

by “real time” we mean at least 10 frames per second.

able to provide more information than monocular cameras,
their costs are often very high.

The problem of road border detection has been previ-
ously addressed [4—9] but none has addressed the highway
scenario where border detection can become particularly
difficult with concrete barriers due to their textureless na-
ture. In addition, most of them focus on features and detec-
tors while our work also presents a novel robust model.

3. Proposed model

Given a video from the side camera, we investigate both
the inter-frame and intra-frame structural information in-
stead of performing Hough voting independently for each
frame. Our high-level intuition here is that these structural
cues are the key to robust performance. To utilize such cues
we formulate our model under a conditional random field
(CRF). We shall see that independent Hough voting cor-
responds to unary prediction in our CRF model, returning
how likely the hypotheses are. The inter-frame and intra-
frame structural information corresponds to pairwise poten-
tials, introducing additional constraints to refine the results.

3.1. Hough voting background

Geometrically, a straight line in a 2-D (z,y) space can
be represented by the following equation:

sin(f)y + cos(@)z —r =0, (1)

where 7 is the algebraic distance between the line and the
origin, 6 is the angle of the vector orthogonal to the line.
Voting points are the points indicating where a line should
be. Given a set of voting points whose coordinates are
{(zs,y:)|i = 1, ..., N}, the voting weight is defined as:

sin(0)y; + cos(f)x; — r)?
202

. (
v(f,r) = Zwi exp(— ). 2)
i=1

where w; is the weight associated with each voting point. o
is the bandwidth parameter that adjusts how sensitive vot-
ing is to relatively far away voting points and is empirically
fixed as 5 in this work for its good performance.

Let (6,7) £ h, conventional Hough voting seeks to find
a hypothesis h that maximizes the voting weight:

h* = arg max v(h). 3)

Finding h* with continuous optimization is difficult as it is
non-convex. A common way is to discretize h and search
for the one with the maximum vote weight. The remaining
questions are: 1. How are the voting points defined? 2.
How to obtain these voting points?

Type 1 voting points: Voting points are returned by trig-
gered border or lane marking detectors. Here we adopt



scanning window detection where each detected positive
window returns an equally weighted voting point estimat-
ing where the border/lane marking is®. We deliberately al-
low multiple dense triggers (See Fig. 2) and the returned
voting points are the main source of detection information.

Type 2 voting points: These are voting points whose
coordinates are simply the coordinates of all pixels, while
the Hough voting is now weighted by the gradient of each
pixel. The intuition is obvious: borders and lane markings
often have relatively strong vertical gradients. In case where
detectors have failed and very few Type 1 voting points are
returned, estimating with gradient might be a good approx-
imate strategy to obtain a reasonable result.
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Figure 2. Examples of triggered detectors and their voting points.

3.2. The structured Hough voting model

We seek to treat the Hough voting hypotheses jointly,
exploring their probabilistic and structured relations with a
graphical model*. CRF is a highly suitable model for our
problem. Suppose X denotes the aggregate of observations
(i.e., the coordinates and weights of voting points) in all the
frames and H the aggregate of all the Hough hypotheses,
CREF discriminatively defines the joint posterior probability
P(H|X) and the inference of CRF is to find the joint hy-
pothesis configuration that maximizes P(H|X):

H* = argmax P(H|X), (€))
H

Different from many conventional models, our struc-
tured Hough voting model first generates three different
candidate hypotheses’ in every frame (except the initial
one). We will show how they are generated later. The in-
tuition is that we want to handle certain situations where:
1. Borders and lane markings can “jump” suddenly due to
entrances and lane changes and 2. Failures of border/lane
marking detectors can return very few Type 1 voting points.
We hope that at least one of them can return a good “guess”
of the border/lane marking in every situation and that the
model can appropriately select the best expert.

Once the candidate hypotheses are obtained, the model
selects the best one as the detection output. Finally, we also

3We will illustrate how to train these detectors later.

4 [20] also adopted the term “structured Hough voting” but is different.

SHere we mean both generating three border candidate hypotheses and
three lane marking candidate hypotheses.

check whether the chosen hypotheses for border and lane
marking in each frame have violated certain structure re-
strictions (e.g., whether they have intersected). If violations
occur, perturbation is performed on the border hypothesis
candidates to guarantee that such structural restrictions are
followed. Again, one of the perturbated hypothesis candi-
dates is selected as the final detection result.

Let “bd” and “In” denote “border” and “lane marking”
for short, we define the following notations to better
describe our model®. In the ith (i > 2) frame, we have:

Bd candidate hypotheses: IA{deZ- £ {flbdlm flbdz’i, flbdgyi}
Ln candidate hypotheses: fllm £ {fllnu, ﬁlmﬂv, fllng,i}
Selected bd/In hypotheses: hyq ; /hy,, ;

Observations (bd, In, grad): x; £ {Xpd.i, Xin,i, Xgrad.i }-

Figure 3. The graphical model of the structured Hough voting.

Let N > 2 be the number of video frames. We model
the log CRF conditional probability as a set of potentials’:

Bd Hough voting

log P(H|X) = ¢(hea,1,%Xbd,1) + d(Nin,1, Xin,1)

Candidate bd hypo generation

Ln Hough voting

Candidate In hypo generation
N

+ Z Dy (hpai—1, Hpai, xi) + Z D1 (Nynyie1, Hini, X3)

=2 =2

Bd mode selection Ln mode selection

N N
+ Z \I]bd(I:Ibd,i, hpai, xi) + Z ‘Pzn(ﬂln,i, hin i, xi)

=2 =2

Coupled structure

—
+ Z Q(hya,i, hin )
=1
—log Z(X).
©)

The graphical model is shown in Fig. 3. Let ®,4,; denote
Dpa(hpg,i-1, I:Ibd,i, x;), and similarly for @, i, Upa,i, ¥in,; and
Q;, We will give detailed definition and intuition for each term in
our model. To better illustrate each term, we decompose the model
and show them in Fig. 4.

6 A hat symbol indicates the hypothesis is a candidate one.

7Here the potentials are functions with the bd/In (candidate/output) hy-
potheses being the variables. They are modeled in such a way that a larger
function value generally indicates better hypothesis configurations.



Figure 4. Some decomposed parts of the graphical: (a) Candidate
hypothesis generation unit. (b). Mode selection potential. (c)
Coupled structure potential.

3.2.1 Candidate hypotheses generation unit

The term @pq(hpa,i—1, I:Ibd,i7 x;) seeks to generate multiple can-
didate border hypotheses based on the observations in current
frame and the selected hypotheses in the previous frame. The intu-
ition here is that the first hypothesis candidate flblﬂ,i is generated
by performing unconstrained® Hough voting with Type 1 bd voting
points. It is able to discover sudden border changes. The second
candidate is also generated by Hough voting with Type 1 bd voting
points, but is additionally constrained (smoothed) by the previous
frame. The third candidate concerns the constrained Hough vot-
ing with Type 2 voting points (image gradients). It specifically
handles the case of very few returned Type 1 voting points due to
occlusions and faded lane markings. The graphical representation
is shown in Fig. 4 (a).

Note that the unit is not a clique potential. However, it is a
composition of a set of potential functions:

Dpa,i = d(hpar,i, Xpa,i)
+ ¢(pan,i, Xpa,i) + Poa(Npa,i—1, Doaz,i) (6)
+ ¢ (pas,i, Xgrad,i) + ©oa(Dod,i—1, pas,),

where ¢ is the Hough voting function defined in Eq. (2). Let
AG £ |01 — 02| and Ar £ |r1 — 72, @ is the inter-frame pairwise
potential defined as a binary loss function:
wpa(hi, hy) =
{ 0, if AO<Xge and Ar<Xpa, ()

. )
—o00, otherwise

where Apq,0 and Apq,» are the potential parameters to be learned.
They respectively describe the tolerance of the inter-frame offset
and angle difference of the hypotheses.
Similarly, @, (hin,i—1, Hini, ;) is defined as:
Dy = ¢(ﬁ1n1,i,xzn,i)
+ ¢(Nin2.i, Xin.i) + in(Min i1, Dina.i) ®)
+ ¢(flln3,i7 Xgrad,i) + (Pln(hln,i—lv ﬁlnS,i)a

3.2.2 Mode selection potential

The mode selection potential \I!bd(I:Ibd,i, hya,i, X;) seeks to select
the best candidate bd hypothesis. A decision tree is used to guide

Stherefore there is no associated pairwise potential

the selection. Since the voting weights of candidates can indicate
the hypotheses confidence, the decision tree takes such input to
predict the best candidate. Let QS(ﬁbdl’i, Xbd,;) be denoted as ¢pq1
for short, the decision tree diagram for border is shown in Fig. 5:

Dbd2

— < 0.1, or
DObd1

Oba1 — Opaz > 160

Yes No

Select Candidate #1 Select Candidate #3 Select Candidate #2 Select Candidate #3

Figure 5. Decision tree for border candidate hypothesis selection.
The decision thresholds are selected based on empirical search for
optimum performance.

Let fl;d’i denote the candidate selected by the decision tree,
and I:IbC:“ the candidates not selected by the decision tree. The
mode selection potential is defined as:

0, if hpas = hia,
Ui = — Amode, if hpa; € Hiy, s (©)
— 00, otherwise

where \,,04e 1S @ nonnegative penalty parameter to be learned. It
controls how sensitive the model is to the violation of decision tree
output. The mode selection potential basically forces the output to
be one of the candidate hypotheses, but allows discrepancy with
the decision tree prediction with a penalty. The graphical model
of the mode selection potential is shown in Fig. 4 (b).

The decision tree for lane marking is similarly defined. The
condition for the root decision node is chosen as: ¢;n1—@in2 > 50
and the conditions for the two child decision nodes are respectively
¢ln1 > 16 and (JSMQ > 10.

3.2.3 Coupled structure potential

The coupled structure potential 2(hpq s, hyp ;) further regularizes
the results by exploiting the intra-frame structure. With this po-
tential, border and lane marking are no longer independent but
coupled and it can significantly improve the results under certain
cases. The graphical representation of the coupled structure po-
tential is illustrated in Fig. 4 (c).

The potential mainly captures two properties of structural re-
strictions between border and lane marking:
Parallelism: The border and lane marking hypotheses are approx-
imately parallel to each other. The closer they are, the stronger
such property holds. Most important of all, they can not intersect.
Distance: A border often keeps certain distance from the lane
marking. They can not be too close to each other.

Let AG; £ ‘ebd,i — 9;M| and Ar; £ Tbd,i — Tlin,i- The coupled



structure potential is defined as:

Qhpa,i, hin i) =
0, if A7 > Dmin(Tin,:),d1 < Ar; < d2, AO; < Asir1
0, if A7 > Dpmin(Tin,i),d2 < Ar; < dz, A0; < Astro
0, if Ars > ds

otherwise
(10)

where Ag¢r1 and As¢ro are the potential parameters learned from
training data to control the level of parallelism. d1, d2 and d3 are
empirically set to 10, 17 and 35 respectively. Dumin(Tin,:) is a
piecewise-linear function defined as:

Donin(Tin,i) = max(min(ary, ; + b, 27), 10), (11

where a and b are parameters that can also be learned through a
linear regression from training data.

3.3. Inference

The online updating nature (real-time requirement) of this
problem limits our scope of observations to the past frames. Sup-
pose at time ¢ the set of available observations is denoted as X.¢.
The inference problem is to:

HI., = arg max P(H1.¢|X1.t).
Hiy.¢

12)

However, conducting the above whole inference each time
given a new frame is computationally infeasible. A relaxation is to
initialize with the inferred state variable configuration of the pre-
vious ¢t — 1 frames and infer the current state variables, updating
in an incremental way. At ¢ = 1, the inference is to optimize the
following problem:

HI = arg maxlog P(H1|X1)
H;

(13)
= argmax ¢(hpa1,%Xpd,1) + O(hin,1,Xin,1) + Q1

hyg,1,h0 1

This is to search the maximum Hough voting for border and lane
marking based on Type 1 voting points, subject to the constraint
from the coupled structure potential.

Att > 1, the log probability can be represented as:

P(Hl:t|X1:t) o8 108; P(Hl:tfl‘xlztfl)

(14)
exp(Poa,t + Pin,t + Yoa,e + Vin,e + Q).

Since we reuse the previously inferred results, the inference prob-
lem becomes:

H; = argmaxlog P(H1.¢|X1:t)
e (15)
= argmax Ppq¢ + Pin,t + Yoa,t + Vin,s + s,

H;

where H;, £ {ﬂbd,t7I:Iln,t,hbd,t,hln,t}- The —oco penalty in
the potential functions essentially serve as hard constraints on the
search space of Hough voting hypotheses. To perform inference
one needs to follow these constraints and conduct the following
4-step optimization:

)

Step-1: Optimize with I:Ibdﬂg and I:Iln’t.

O x gk
(Hbd,t7 Hln,t) = argmax (I)bdﬂg -+ q)lnﬂg

- 16
Hyg,¢,Hin,t (16)

Given hyg ;1 from the previous frame, generate the candidate hy-
pothesis flbdl,t using unconstrained Hough voting and flbdgyt and
flbdgyt using constrained Hough voting. Similar for lane marking
candidate hypotheses.

Step-2: Optimize with hyq ¢, hip .

(hyg,s, hi, ) = argmax Ueq + Upp

hya,t.hin ¢

an

This step selects the candidate indicated by the decision tree for
both border and lane marking.
Step-3: Back perturbation with I:Ibd,t. (Optional)

Check whether Q(hyq, ¢, hyn ) equals to —oo. If it is then one
needs to go back adjust I:Ibd,t such that the three candidates also
follow the structure restriction with hy,, ;:

(Hi) = argmax ®pa,¢ + Q(hvar,e, b y)
Hpg,¢

(18)
+ Q(hyaz.e, hine) + Qbas,e, by, )

Step-4: Optimize with hyq +. (Optional)
Given the adjusted border hypotheses Hyq ¢, again perform
mode selection with the decision tree.

3.4. Learning

Much of the potential parameters in our model can be automati-
cally learned from training data. We use Gaussian models to fit the
differences of 7 and # from ground truth hypotheses in consecutive
frames. This gives a statistical estimate of how quick the hypothe-
ses can change. Thus Apq,6, Aod,r, Aba,0 and Apq, - are learned as
twice of the model standard deviation. The estimation of g1 and
Astr2 1s conducted similarly. ;o4 is learned to be larger than the
largest vote weight loss caused by back perturbation, such that one
would not risk violating the decision tree to generate a candidate
that does not follow the coupled structure restriction but with a
larger voting weight.

4. Implementation
4.1. Voting point extraction

We first describe how to obtain the Type 1 voting points. We
extract the filter bank responses and histogram of oriented gradi-
ent (HOG) to perform scanning window detection. The filter bank
we used is the same as in [3], while the adopted HOG descriptor
follows the work of [19]. We divide each image patch into up-
per and lower two cells, and concatenate their mean filter bank
responses. In addition, we also divide each image patch into 8
cells for HOG, where the normalized gradient histogram of all the
cells are concatenated. The final feature for each detector window
is the concatenation of the above filter bank responses and HOG
features. Fig. 6 illustrates our feature extraction method.

It is worth mentioning that the computation of filter bank and
HOG features for scanning windows can be conducted in an ex-
tremely efficient way using integral image. Thus the proposed
feature extraction method has the potential to work real time.



Figure 6. Illustration of feature extraction.

We train two classifiers, one for border detection and the other
for lane marker detection. In detail, we perform Fisher discrimi-
nant analysis on both the border training set and the lane marker
training set, where the features of each training set are extracted
as described previously. Then, we train two Radial Basis Function
(RBF) Kernel SVMs on the dimensionality reduced training sets.

4.2. Highway entrance and lane state detection

In addition to the basic border and shoulder detection, we in-
clude highway entrance detection and lane state tracking which
allow us to jointly estimate the position of merging/neighboring
lane and tracking the lane state of the vehicle (e.g., whether it is
the right-most lane). Figure 7 shows some example results re-
turned by the algorithm, where yellow regions in (a) and (b) indi-
cate non-shoulder merging/neighboring lanes. The true shoulders
on the other hand are detected as green regions in (c).

Figure 7. Examples of entrance detection and lane state tracking.

5. Dataset

We collected 4200 highway road shoulder images. Among
them, 1592 images are used for training where the images come
from the frames of multiple video segments. The remaining 2608
images are used for testing and all the images form a complete
video. The dataset contains many challenging and complicated
scenarios. Example images from the dataset are shown in Fig. 8
(a)-(d). The number of training images containing concrete barri-
ers, guard rails and soft shoulders are 839, 300 and 453, respec-
tively.

We use the MIT LabelMe open annotation tool to label borders
and lane markings. We label the borders into “concrete barriers”,
“guard rails” and “soft shoulders”. A set of well-aligned border
image patches can be extracted from each annotated border and
lane marker region (See Fig. 8 (e)). These patches form the pos-
itive training samples for the scanning window detectors, while
negative samples are randomly mined from the background of the
training images. The ratio between the number of positive samples
and number of negative samples is set as 1 — 3. Fig. 9 illustrates
some examples of the training patches.

For test sequence, we label shoulder regions where the upper
edges are the ground truth of highway borders. In the experimental

(@
Figure 8. Examples data collection and labelling. (a)-(d) are exam-
ple images from the collected dataset. (e) illustrates labeling and
training patch alignment. (f) shows our system for data collection.

Figure 9. Examples of the training patches. Top row: positive
patch examples. From left to right are respectively: concrete bar-
rier, soft shoulder, guard rail and lane marker. Bottom row: mined
negative samples

LT s

section, we will use such ground truth to generate a set of bench-
marks for quantitative comparison.

6. Experimental results

We conducted an experiment on the 2608 frames of the test
video using structured Hough voting. The test sequence contains a
variety of challenging situations, including complicated scenarios
such as entrances and exits, as well as interfering visual manifes-
tations such as strong shadows, dynamic appearances, drastic illu-
mination change, weak border/lane marking and fake border/lane
marking patterns.

To illustrate the performance of the proposed method, we
compare our method with 3 baseline methods: 1. Independent
Hough voting in each frame using the fired detector voting points,
2. Hough voting using the triggered detector voting points con-
strained by previous frame and 3. Adding gradient tracking to
Baseline 2. We also compare to results obtained by the Kalman fil-
ter which is a standard method widely used in lane marking track-
ing.

6.1. Adding coupled structure restrictions

We first illustrate examples that show the difference brought
by the coupled structure restrictions. One can see that such re-
strictions have successfully corrected results where the detection
of border failed. Some typical examples are illustrated in Fig. 10.
The first row corresponds to the method without coupled structure



restriction, while the second row corresponds to the method with
such restriction.

Figure 10. Examples of results successfully corrected by the cou-
pled structure restriction.

6.2. Quantitative evaluation

We conducted a series of evaluations based on the annotated
test sequence ground truth and benchmarks’. The quantitative re-
sults of the baselines and the proposed method (Proposed2 denotes
with coupled structure restriction, while Proposed1 denotes with-
out the restriction.) are listed in the table in Table 1. Again, one
can see the performance of the proposed method is the best one.

6.3. Qualitative evaluation

We also select some challenging frames where the baseline
methods usually fail. The results obtained by the baseline meth-
ods and the proposed method are shown in Fig. 11. The 6 sets of
images (from left to right and top to bottom) correspond to ground
truth, baselinel, baseline2, baseline3, Kalman filter and the pro-
posed method.

One can see that our model performs more robustly than the
baseline methods in normal situations and is more responsive to
drastic border changes in case of highway entrance due to the
model flexibility achieved by the scheme of generating multiple
hypothesis candidates.

6.4. Failure cases

We finally show some failure cases in Fig. 12. The failure cases
are mostly caused by false positive voting points and there is little
a model could do given such input. This shows that the next step
to the improve the method is to enhance the quality of voting point
input.

9Bd_Pxl: Average vertical pixel distortion between the detected border
and hand annotated border ground truth.
Ld_Pxl: Defined similarly to Bd_PxI for lane markings.
Bd_Ang: Angle distortion between the detected border and the Hough con-
figuration fit to the border ground truth.
Ln_Ang: Defined similarly to Bd_Ang for lane markings.
Bd_Pen: Pixel distortion penalized by angle distortion:
Bd_Pen = max(1, Bd_Angle) * Bd_Pxl.
Ln_Pen: Defined similarly to Bd_Pen for lane markings.
Accept_Ratio: Percentage of good frames defined by thresholding both

Bd_Pen and Ln_Pen. A frame is “good” if both are within the threshold.

. __ Detection-RegionNGround.-Truth
Overlap_Score. Score = Detection-RegionUGround-Truth*

Figure 12. Some failure cases

7. Conclusions

In this paper, we have proposed a novel model called Struc-
tured Hough voting, and reported its application on vision-based
highway border and shoulder detection. Experimental results have
validated the good performance of the proposed model and its su-
periority over some popular models such as Kalman filter.

Our proposed method is also computationally efficient. First,
the feature extraction unit can be implemented with integral image
operations where the extraction of both mean filter bank responses
and HOG in every scanning window is extremely fast. Second, our
proposed inference method performs incremental (online) update,
which also requires very few computation. The algorithm com-
plexity of Hough voting is O(M N) where M is the number of
possible hypotheses and N the number of voters. Voting with im-
age gradients takes the most computation among the three candi-
date hypotheses generation methods. But it is still highly efficient
since both hypotheses and voting points are significantly truncated
by previous frame. In general, the method is able to run real-time
without any GPU acceleration.
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