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Abstract

Human re-identification remains one of the fundamen-
tal, difficult problems in video surveillance and analysis.
Current metric learning algorithms mainly focus on find-
ing an optimized vector space such that observations of the
same person in this space have a smaller distance than ob-
servations of two different people. In this paper, we pro-
pose a novel metric learning approach to the human re-
identification problem, with an emphasis on the multi-shot
scenario. First, we perform dimensionality reduction on
image feature vectors through random projection. Next, a
random forest is trained based on pairwise constraints in
the projected subspace. This procedure repeats with a num-
ber of random projection bases, so that a series of random
forests are trained in various feature subspaces. Finally, we
select personalized random forests for each subject using
their multi-shot appearances. We evaluate the performance
of our algorithm on three benchmark datasets.

1. Introduction

Recognizing the same person across a network of
cameras with non-overlapping views, also known as re-
identification (re-id), is a major issue in surveillance appli-
cations. This is a fairly challenging task, since the appear-
ance of the same person may vary significantly in differ-
ent camera views. Inter/intra camera illumination changes,
occlusion, and pose changes aggravate the already difficult
problem.

Most of the previous research on re-id is focused on the
single-shot scenario [34, 22, 19, 20]. That is, there is only
one image available for both the tagged person and each
matching candidate. However, real-world re-id problems
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map much more naturally onto a multi-shot problem. That
is, there are multiple images available to describe both the
target and the matching candidates. For example, after a
person of interest is detected in the field of view of one cam-
era, he/she is usually tracked until leaving the current view.
Similarly, candidates detected in other views will generally
be tracked continuously. Thus, re-id in practice is actually
a multi-shot probe and multi-shot gallery problem.

Current metric learning algorithms for the re-id prob-
lem are hindered by several difficulties. First, the dimen-
sion of the feature vectors used to represent images is usu-
ally very large, which makes the training process both time-
and space-consuming. Moreover, most of these algorithms
solve an optimization problem constrained by sparse pair-
wise distances of samples, and it is difficult to avoid over-
fitting. Lastly, they are only designed for single shot re-id
problems, and are not able to take advantage of multiple
images of the same person. That is, they represent unified
models for all the targets and are unable to incorporate intra-
class information extracted from a multi-shot scenario.

In this paper, we propose a novel metric learning method
based on random forests [1, 10] to specifically address the
multi-shot re-id problem. The intuition is that the voting
nature of a random forest’s output makes decision isolation
and aggregation very easy. We build an ensemble of ran-
dom forests, trained by feature vectors randomly projected
onto different subspaces. By taking into account the outputs
from discriminatively selected random forests, a similarity
measurement is computed for each testing sample pair.

The main contribution of this paper is a robust and ef-
ficient algorithm to address the multi-shot re-id problem.
This algorithm not only inherits the advantages of random
forests such as interpretability, scalability and robustness
to over-fitting, but also addresses the difficulty of high-
dimensional feature vectors via random projection. Since
it operates in a very low dimension, the training process
is extremely fast and tremendous storage space is saved
compared to current techniques. More importantly, the
random projection enhances the classifier diversity of the
random forests, which makes it outperform other dimen-



sionality reduction approaches such as Principal Compo-
nent Analysis (PCA). Based on this framework, we fur-
ther developed a person-specific random forest method to
exploit the discriminative information from the multi-shot
samples. Our algorithm demonstrates superior performance
compared with state-of-the-art algorithms on multi-shot re-
id benchmark datasets.

2. Related Work

Feature-based approaches aim to construct descriptive
and distinctive representations from images. Gray et al. [16]
learned an ensemble of color and texture features via
the AdaBoost algorithm. The same technique has also
been used to learn Haar-based discriminative features [3].
Schwartz et al. [27] selected discriminative features using
partial least squares (PLS). Farenzena et al. [7] developed an
unsupervised method to build an appearance-based descrip-
tor. They exploited perceptual symmetry principles and
tried to augment maximally stable color regions (MSCR).
Zhao et al. [33] proposed an unsupervised learning method
based on salient information to extract discriminative fea-
tures. Ma et al. [21] combined Gabor filters and covari-
ance descriptors to improve the robustness to illumination
variation. Recently, Wu et al. [31] proposed an appearance
model integrating camera viewpoint and human pose infor-
mation.

In addition to feature-based methods, many researchers
also approach the re-id problem through metric learning.
Many of these methods focus on learning a Mahalanobis-
like distance [13, 22, 19, 2]. Another set of approaches
employs k-Nearest Neighbors (k-NN) strategies, such as
Large Margin Nearest Neighbor (LMNN) and its variants
[9, 14, 18]. Prosser et al. [24] proposed an ensemble of
RankSVMs to rank pairwise similarity. Zheng et al. [34]
built a probabilistic model (PRDC) to estimate distance.
Zheng et al. [35] also reformulated this problem as a set-
based verification task. Mignon et al. [22] introduced an
algorithm that learns distance metrics from pairwise con-
straints (PCCA). Bak et al. [4] proposed another similarity
measurement model based on Mean Riemannian Covari-
ance (MRC) patches extracted from a tracked person. Re-
cently, Pedagadi et al. [23] applied Local Fisher Discrim-
inant Analysis to explore local, discriminative spaces for
dimensionally reduced features, improving metric learning
outcomes.

Random forests [1, 10] are a well-known decision tree
based classifier ensemble. Random projection [8] has been
widely applied as a dimensionality reduction method [15].
However, the combination of the two techniques, to the best
of our knowledge, has never been evaluated. While decision
tree classifiers based on feature extraction [25] or manifold
learning based on random projection [6] have been previ-
ously proposed, this paper reveals that random projection

makes it possible to efficiently build a low-dimensional ran-
dom forest ensemble while preserving data information. It
is resistant to over-fitting and acquires even higher classifier
diversity. The ensemble model also enjoys the advantage of
discriminatively selecting random forests for each individ-
ual. In this paper, we introduce this concept into the human
re-id problem and validate it on various challenging datasets
from the surveillance community.

In the following sections, we first review the basic con-
cepts of random forests and random projections. Then
we present the proposed algorithm using ensemble ran-
dom forests and describe how to further build a personally-
discriminative model based on multi-shot information. In
Section 4, we discuss the choice of critical parameters of
the proposed algorithm, and then conduct experiments to
compare it with other multi-shot re-id algorithms.

3. The Proposed Method

In many distance metric learning re-id algorithms, pair-
wise constraints generated from data samples play the fun-
damental role in model construction [34, 22, 13, 24, 19, 20].
The goal is to minimize the distance between data points
from the same class while maximizing the distance be-
tween data points from different classes. Formally, suppose
X = {x1,x2,...,2N} represents a set of image feature
vectors, where z; € R™,i =1,2,..., N is the feature vec-
tor for an image. Divide all sample data point pairs into two
sets, S = {(x;,x;) | «;, x; are from the same class} and
D = {(x;,x;) | i, x; are from different classes}. In gen-
eral distance metric learning methods, the goal is to find
a metric function Dist(z;,z;) to minimize the objective
function
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where (x;, ;) are training sample feature vector pairs.

The re-id problem tries to recognize a target person
among a number of candidates from different camera views;
that is, to compare the target person with each candidate and
determine whether they are the same person (in the same
class). With this interpretation, the re-id problem can be
reformulated into a classification problem. Given a sample
pair (u, v), we decide whether it belongs to S or D.

3.1. Random Forest Classifier

A random forest is an ensemble decision tree trained
with bootstrap samples on the feature space. We denote
a random forest T = {t1,¢9,...,tx }, Where each ¢y, k =
1,2,..., K is a decision tree. Let y represent the label of
training sample pair (z;, «;), and define

1 if(x,3y) €S
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Now given any feature vector pair (x;,;), to determine
whether they belong to the same class/person, the classifi-
cation output of each decision tree can be expressed as

ye =tk (0(2i,25)), k=1,.. ., K

where 6(x;, z;) is a function transferring feature vectors to
the decision tree input vector. Here we employ the approach
Xiong et al. proposed in [32],

i — 24
O(z;,x;) = i — 2)
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which takes both the relative and absolute location of paired
vectors into considerations.

Using a voting scheme we compute a similarity score
defined as

1 K
Y: ?;tk (G(xi,:vj)) (3)

The higher the score is, the more confident we are that the
pair (z;,z;) € S. Generally, for classification problems,
a threshold is used to make the final decision. In the re-
id problem, we usually aim to identify a target person in a
gallery of several different people, so instead of making a
hard decision on classification, we use the similarity score
to describe our confidence about whether two sample im-
ages belong to the same person.

3.2. Random Projection

In order to avoid training using high-dimensional feature
vectors, while preserving the original information, we apply
dimensionality reduction using the multiple random projec-
tion technique [8]. It has been shown [6] that for data points
lying in a low-dimensional manifold in an ambient high-
dimensional space R", their pairwise ambient distances are
well-preserved under random projections from R™ to R™,
where m < n.

Again, denote X = {z1,z2,...,2n} as the set of im-
age feature vectors, where z; € R", ¢ = 1,2,..., N. Let
p be an n-dimensional random vector in which each co-
ordinate is independently sampled from the normal distri-
bution N'(0,1). Independently sampling m such vectors,
P1,P2, - - -, Pm, and normalizing each to a unit vector, the
matrix P = [p; p2 -+ pm] is an n x m random projec-
tion matrix that maps data vectors from R™ to R™, where
m < n. In the proposed method, we orthogonalized the
matrix P based on the theory in [6]. Then, for each fea-
ture vector in X, we project it onto R™ by x = PTx;,
:c; € R™, so that the dimensionally reduced feature vector
setis X' = {xf, 2}, ..., 2\ }.

3.3. Multiple Random-Projection-Based Random
Forest Algorithm

Since random projection has no bias on dimension se-
lection, different sets of projection vectors can lead to un-

even classification results. The ensemble nature of the ran-
dom forest algorithm leads us to improve the original sin-
gle random forest classifier by aggregating multiple random
forests, each with a different random projection matrix. The
overall algorithm for learning the random forest classifier is
shown in Algorithm 1.

Algorithm 1: Learning the random forest classifier
with multiple random projections

Input: R: number of random projections

{z1,z2,..., 2N}, z; € R™: feature vectors extracted from each training
person’s image
{l1,1l2,...,In},1; € C: class label for each image, C is the set of all

classes
m: projected dimension number
Output: A set of random forests {T,.},» =1,..., R
for r = 1 to R do
Generate an n. X m orthoprojector matrix P;.;
Compute dimensional reduced feature vectors
N3
for each data pair (7}, x;), i > j do
if [; # 1; then
| put(z],z})inset D;
else
| put (=],
end
end
Randomly sample the same number of elements from S and D without
replacement, such that |S| = |D|;
Form the constraint set C = {6(x7, ), y} with (1), where
(z},2}) € SUD;
Train random forest T',- with constraint set C;

o T s
v, =P xi,i=1,...

A .
x}) inset S;

end

We should point out that the class label set
{l1i,la,...,Ix} is taken as input to Algorithm 1 for
the simplicity of the formulation. It is not actually neces-
sary to have the class information for each image. Only
the pairwise similar or dissimilar relationship is required to
form the data pair sets S, D and the constraint set C.

An important issue is the dimension of the random pro-
jection subspace m. In [6], the authors estimated the
projected subspace dimension that preserves the pairwise
points’ ambient distances, but this requires the parameters
of the underlying manifold such as its dimension and vol-
ume, which are difficult to determine. Hegde et al. [17]
proposed a manifold learning algorithm to estimate the pro-
jection subspace dimension. In fact, most dimension re-
duction algorithms for manifold-modeled data involve man-
ifold learning [29, 26, 11]. However, when the training
points are not sufficiently representative, they may fail to
describe the whole structure, which can mislead the mani-
fold learning result.

In our algorithm, since we aggregate results from mul-
tiple random projections, which is equivalent to increasing
the projection dimension, it is unnecessary to learn the un-
derlying structure. Thus, there exists a trade-off between
the projected dimension number m and the number of ran-
dom projections R. We will show in the experiments that



different choices of (m, R) can result in similar classifica-
tion accuracies.

Algorithm 1 only employs a subset of the similarity set
S and dissimilarity set D to reduce the computational com-
plexity. With N feature vectors, there will be O(N?) vector
pairs in total. Depending on the number of training samples
and number of classes, the number of pairs is usually very
large. Also, the sizes of S and D tend to be uneven; i.e.,
positive pairs are much less common than negative pairs. It
is unrealistic to train the random forest with all these con-
straints, which requires a huge computational effort. We
thus randomly sample the same number of elements from
both sets to build balanced sets S and D. Moreover, multi-
ple runs based on different random projections will result in
diverse, complementary random selections of constraints.
In our experiments, we fixed the number of sampled ele-
ments from the sets S and D as 1000.

It is natural to question why Principal Component Anal-
ysis (PCA) could not be used to perform dimension reduc-
tion in this case. One important reason is that PCA is not
a suitable feature selection method for classification prob-
lems, since it discards the discriminative information. Some
literature [28, 30] also proposes ensemble methods based
on PCA. They either keep all the components generated by
PCA but use different subsets of components to train clas-
sifiers, or use different subsets of PCA-extracted features
to train classifiers. The classifier diversity is not as good
as in our approach, where we employ multiple independent
random projections, and each classifier is trained with ran-
domly extracted features. Another advantage of random
projection is that the computational complexity is much
lower compared to PCA. Comprehensive comparisons [8]
between PCA and random projection suggest that random
projection outperforms PCA, on both accuracy and compu-
tational efficiency, especially with higher dimensional data.

After the set of multiple random-projection-based ran-
dom forests {T,.},7 = 1,..., R has been trained, the simi-
larity score defined in Equation (3) can be updated as

1 R K
}TKZZt 0(xi, 7)) (4)

r=1k=1

where (x;,x;) is the unclassified data point pair, and ¢}, is
the k'" decision tree of random forest T',..

3.4. Personally Discriminative Forests

Current re-id metric learning algorithms focus on devel-
oping a metric model applied universally to any input fea-
ture vector pair; thus they are inherently unable to adapt to
multi-shot information. Since our approach aggregates the
results of multiple trained random forests, it is possible to
“personalize” these forests based on multiple descriptors.
Let X = {&,...,Zy} where &; € R",i = 1,...,M
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Figure 1. Flowchart of the proposed algorithm

be the set of all available feature vectors for a single per-
son. With multiple image signatures, we can form same-
class pairs (Z;,%;) € S,i # j, and put these constraints
into each trained random forest, expecting high similarity
scores. Similarly, we can pair z; with feature vectors in
the training set to form the different-class set D and expect
low similarity scores. Then the ratio of the two scores can
be used to measure the personal discrimination for a spe-
cific random forest. Only those random forests above the
average score ratio for a specific person are selected as per-
sonally discriminative classifiers. The detailed algorithm is
shown in Algorithm 2.

Algorithm 2: Personally Discriminative Random For-
est Selection

Input: {P;, P», ..., Pr}: random projection matrices

{T1, T2,..., Tgr}: trained random forests

{Z1,%2,...,Zm}, T; € R™: feature vectors extracted from multi-shot
images of a person

{z1,z2,..., N}, z; € R™: feature vectors in the training set

Output: random forest set {T,,} C {T1,T2,...,Tr}
for r = 1 to R do
Compute dimensionally reduced feature vectors

# =PIz, i=1,...,M,andz}, = Pl a;,i=1,...,N;
for each data pair (}, &), > j do
‘ Calculate similarity score ¢;; with (3);
end
Average all 3;; to get positive-pair similarity score YT+;
for each data pair (i;,a:;),z =1,....,.M,5=1,...,Ndo
| Calculate similarity score y;; with (3);
end

Average all y;; to get negative-pair similarity score Y, ;

. Y,
Score ratio o, = —L
Y,

-

end
Find the random projection trees T/, whose score ratio
o, > mean{o.},r=1,...,R;

Return {T,/ } ;

Define the set R = {r'}, where ' collects the indices
of the selected random forests from Algorithm 2. Then,



Equation (4) can be updated as

K
Y= i 2 o (0(w) )

r’€R k=1

where v € X which is used to select the appropriate person-
discriminative random forests {T,}. Figure 1 illustrates
the overall method.

4. Experimental Results

The proposed approach is designed for the multi-shot
human re-identification problem, so we chose the multi-
shot benchmark datasets ETHZ [27], CAVIAR4REID [12],
and 3DPeS [5] to evaluate the performance. All the results
are shown as ranked matching rates in average cumulative
match characteristic (CMC) curves.

In our experiments, we extracted image feature vectors
as described in [16]. The image is evenly divided into 6
horizontal strips, and the features of each image strip are ex-
tracted in the form of 8 color channels and 19 texture chan-
nels, where each channel contains a histogram with 16 bins.
By concatenating all the histograms we get a feature vector
with a dimension of 2592. The experimental settings follow
the multi-shot re-id case in [7]. Specifically, for each test-
ing person, we randomly take .J images to form a gallery set
and J additional random images to form a probe set. When
there are not enough shots available to fill J images in both
sets, we evenly assign the images into two sets. As opposed
to [7], which uses multi-shot images from the same person
to build a single signature, we use multi-shot information
to select random forest models as described in Section 3.4.
To estimate the similarity, for instance, between Person A
in the probe set and person B in the gallery set, we calcu-
late the similarity score of every image pair consisting of
one image from Person A and one image from Person B,
and the averaged score is the final similarity score between
the two people. This score is then used to rank all the can-
didates. All of our results are averaged over 100 repeated
experiments.

Since most multi-shot re-id results are reported in the
context of feature (or descriptor) learning algorithms, they
usually do not require an extra training set. To make a
fair comparison, we formed the training set using as few
people as possible: 14 for each ETHZ sequence and 16
for CAVIAR4REID. 3DPeS has only been reported in [23],
where the training size is 95.

A remaining question is how many decision trees should
be learned for a random forest. Increasing forest size will
increase the computational and storage cost, and there will
be little or no gain after passing a certain point. While a
detailed answer to this question is beyond the scope of this
paper, we observed that the number of trees should scale
with the input vector dimension.

4.1. Experimental Datasets

ETHZ [27] This dataset consists of three video se-
quences captured by moving cameras in a street scene.
Schwartz et al. [27] extracted an image set of pedestri-
ans to perform appearance-based model learning, which es-
sentially converts it into a re-identification dataset. In the
dataset, sequence 1 contains 4857 images from 83 pedestri-
ans, sequence 2 contains 1936 images from 35 pedestrians,
and sequence 3 contains 1762 images from 28 pedestrians.
The images have a range of appearance variation resulting
from the moving cameras. The dataset also suffers from
illumination changes and occlusion. All the images are nor-
malized to 64 x 128 pixels.

CAVIAR4REID [12] This dataset is extracted from
videos captured in a shopping center. It is suitable for the re-
id problem since the videos come from two camera views.
It contains large variance in image resolution, large illumi-
nation variation within and between cameras, and severe oc-
clusion and pose changes. The dataset contains 72 pedestri-
ans with 1220 images in total. All the images are normal-
ized to 64 x 128 pixels.

3DPeS [5] This dataset is specifically designed for the
human re-id problem. The images are captured from 8 dif-
ferent surveillance cameras with non-overlapping fields of
view in a university campus. The main challenge in this
dataset is the severe lighting condition and viewpoint vari-
ation. The dataset includes 193 individuals with a total of
1012 images. All the images are normalized to 64 x 128
pixels.

4.2. Trade-off Between Projected Subspace Dimen-
sion and Number of Random Projections

In Section 3.3, we argued that, because of the voting na-
ture of random forests, the aggregate results from multiple
random projections should converge independent of the pro-
jected subspace dimension. We demonstrate this idea with
following experiment.

In ETHZ sequence 1, we randomly chose 14 people
to form the training set, and put the others in the test-
ing set. For each person in the testing set, 2 images
were randomly selected to form the gallery set, and an-
other 2 images selected to form the probe set (J =
2). We varied the projected dimension number m in
{10, 20, 50, 100,200} and the number of random projec-
tions R in {1, 5,10, 20,50,100}. The purpose is to exam-
ine, for each projected subspace dimension, how many ran-
dom projections are required for convergence. To isolate
the convergence process, in this experiment we didn’t apply
the random forest selection discussed in Section 3.4. The
results are shown in Figure 2.

We can see that all the reduced-dimension cases con-
verged after 100 random projections, and that the higher
the projected dimension is, the faster the convergence. For
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Figure 2. Ranking performance on ETHZ sequence 1 using different projected dimension numbers m and numbers of random projections

R.

example, the results for m = 100 change little after 5 ran-
dom projections. It is interesting to note the similarity of the
m = 20 curve in Figure 2b with the m = 10 curve in Figure
2c, which suggests that the random forests are statistically
aggregating. This supports our intuition.

| Projection Dimension | Running Time (seconds) |

10 0.11
20 0.25
50 1.32
100 4.99
200 19.59

Table 1. Training time for a single projection with different pro-
jected subspace dimensions. The MATLAB program was run on a
4-core 3.6GHz PC.

The running time for a single projection under each pro-
jected subspace dimension is reported in Table 1. When
the projected subspace dimension decreases, the training
time drops tremendously. With a smaller subspace dimen-
sion, the storage and computational requirements are much
lower. Also, more projection iterations provide a wider
range of feature subspaces and constraint sets, which can
contribute to more reliable results. We note that, without
random projection, the running time for a single training in-
stances is 500-600 seconds. In the remaining experiments,
we chose m = 20, R = 50.

4.3. Performance Evaluation

We compared our results for the ETHZ dataset against
the competing algorithms SDALF [7], eBiCov [21], and
eSDC [33]. The results are shown in Figure 3. We abbrevi-
ate the proposed method as RPRF. The experiments were
separately conducted using 2 and 5 shots. The proposed
method outperforms current state-of-the-art algorithms on
all sequences when the shot number is increased to 5, sup-
porting the intrinsic design of our method for multi-shot
cases. When J = 2, only one pair of similar samples can be
formed to select preferred random forests, so it might be bi-
ased. In sequence 2, when J = 2 the ranking performance
is even slightly worse than other approaches. Because the
people in sequence 2 have fewer images on average, there
are fewer training constraint samples, which may compro-
mise random forest training.

The results for the CAVIAR4REID dataset are compared
against the competing algorithms PRDC [34], PCCA [22],
CPS [12], SDALF [7], and LF [23], shown in Figure 4(a).
Our method demonstrates a compelling advantage. We note
that [23] used 36 people to train, while in our experiments
we only use 16 people in the training set.

In Figure 4(b), we present the performance comparison
with PRDC [34], PCCA [22], LF [23] and LMNN-R [14] on
the 3DPeS dataset. We note that around 75% of the people
in this dataset have fewer than 5 images. With inadequate
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Figure 3. Ranking performance on the ETHZ dataset compared with state-of-the-art algorithms.

multi-shot information, the advantage of our method is not
as significant as the previous two datasets.

Note that some of the above comparison ranking
data is not directly available for the experiments on the
CAVIARA4REID and 3DPeS datasets; we roughly extracted
these from the plots in the original papers. For PRDC [34]
and PCCA [22] we implemented the algorithms and ran the
same experiments to generate the results. We adapted the
same strategy described in Section 4 for these algorithms
to obtain a single similarity score between any two people
when multiple images are available.
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All of the above experiments demonstrate significant im-
provement when more images are available for the same
person. The voting scheme allows results to be directly
summed across multiple random forests, as well as across
different vector pairs. On the other hand, the running time
of the proposed algorithm is not affected by the sample size
while other approaches suffer higher computational cost in
either training or testing processes.

4.4. Personalized Random Forests

The final question is how the “personalized” random
forests introduced in Section 3.4 improve the overall re-
sults. In this experiment, we randomly chose 5 images
per person to form the probe set and another single image
to form the gallery set. The multi-shot information in the
probe set is used to select personalized random forests fol-

lowing Algorithm 2. When estimating the overall similar-
ity between two people, we randomly chose 1 shot from
each person in the probe set to match with the ones in the
gallery set. In this way, we eliminate other factors that pos-
sibly contribute to the ranking performance. For each pair
we computed the similarity score using both the personal-
ized random forests and the same number of randomly se-
lected random forests. The experiment was conducted on
the CAVIAR4REID dataset, and the results are reported in
Figure 5.

The results show that the ranking performance with per-
sonalized random forests is steadily better than that of us-
ing randomly selected random forests. Another advantage
we noticed during the experiment is that the performance
has smaller variance with this technique, since it filters out
“less suitable” random forests.

CAVIAR4REID

Matching Rate (%)

551 B

50 /Q/ 4

wt / —e—Normal RFs
/ —+— Personalized RFs

10 12 14
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Figure 5. Improvement evaluation using personally discriminative
random forests on CAVIAR4REID. 5% improvement can been
seen at rank 1.

5. Conclusions

We proposed a novel approach to address the multi-shot
human re-identification problem. An ensemble of random
forests is built based on multiple random projections. The
method substantially reduces the dimension of the data, is



time- and space-efficient, performs stably and robustly, and
is simple to implement and tune. The proposed method
demonstrates superior ability in the realistic multi-shot case,
since the trained model can be further customized by multi-
ple views of the target and the voting-based measurement

is easy to aggregate.

Experiments conducted on bench-

marking datasets show that the proposed method outper-
forms current state-of-the-art multi-shot solutions for the
re-id problem. In future work, we hope to gain a deeper
understanding of the convergence behavior of aggregating
multiple trained random forests. Also, we plan to further
investigate the personally discriminative random forests.
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