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Abstract

Traffic congestion is a widespread problem. Dynamic
traffic routing systems and congestion pricing are getting
importance in recent research. Lane prediction and vehi-
cle density estimation is an important component of such
systems. We introduce a novel problem of vehicle self-
positioning which involves predicting the number of lanes
on the road and vehicle’s position in those lanes using
videos captured by a dashboard camera. We propose an
integrated closed-loop approach where we use the pres-
ence of vehicles to aid the task of self-positioning and vice-
versa. To incorporate multiple factors and high-level se-
mantic knowledge into the solution, we formulate this prob-
lem as a Bayesian framework. In the framework, the num-
ber of lanes, the vehicle’s position in those lanes and the
presence of other vehicles are considered as parameters.
We also propose a bounding box selection scheme to reduce
the number of false detections and increase the computa-
tional efficiency. We show that the number of box proposals
decreases by a factor of 6 using the selection approach. It
also results in large reduction in the number of false detec-
tions. The entire approach is tested on real-world videos
and is found to give acceptable results.

1. Introduction
The United States has 786 motor vehicles per 1000 peo-

ple, which ranks as third highest in the world 1. It has an es-
timated total of 253.1 million registered vehicles as of 2011
according to Bureau of Transportation Statistics 2. The ve-
hicle ownership in the United States has been on constant
rise with some occasional fluctuations. Traffic congestion
has always been a severe problem. There are various mea-
sures developed to quantify the problem of traffic conges-
tion, e.g. congestion cost and yearly hours of delay per com-

1Statistics taken from http://data.worldbank.org/
2Statistics taken from http://www.rita.dot.gov/bts/

muter, freeway travel time index (FTTI) etc. Large urban
areas with more than 3 million population suffer an aver-
age of 52 hours of delay per year per auto commuter. Each
commuter also has to bear the congestion cost of $1128 per
year. Since freeway travel is a large part of our daily com-
mute, experts have developed measures such as FTTI. The
average value of FTTI in 2011 for the freeways in large ur-
ban cities was 1.31, which implies the freeway travel dura-
tion was increased by factor of 1.31 per auto commuter 3.
The overall congestion cost and delay for 498 metropolitan
areas in the United States was $121 billion and 5.5 billion
hours ??. The problem of traffic congestion is also slowly
spreading to small cities as well as rural areas.

To remedy this situation, Federal Highway Administra-
tion (FHWA) is trying to implement various policies such as
dynamic traffic signal timings and varying tolls and pricing
for roads with different levels of activity 4. To apply these
strategies, it is essential to know the state of the traffic on
the freeway at any given instant of time. Currently, station-
ary loop detectors carry out the task of estimating the traf-
fic flow at certain checkpoints with certain accuracy. How-
ever, they have reliability issues and they cannot estimate
the flow of traffic on a finer resolution level, e.g. lane-level
traffic flow. Deploying loop detectors is expensive too [9].
In recent years, there has been a tendency to rely on smart
ubiquitous devices such as mobile sensors [9] or GPS data.
Though these techniques increase the overall accuracy, they
cannot provide enough resolution of the traffic density.

Intelligent transportation system (ITS) research analy-
ses the traffic flow and provides necessary feedback, mainly
through varying congestion pricing and toll. The envisioned
future for ITS systems is that they should be able to collect
the information on lane-level and price lanes accordingly
for platoons of cars entering and exiting the freeways at a
given time [26]. This requires estimation of the number

3Congestion statistics taken from http://mobility.tamu.
edu/ums/national-congestion-tables/

4Nationwide congestion information taken from http://www.
fhwa.dot.gov/congestion/

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/WACV.2015.60

ar
X

iv
:1

70
4.

01
25

6v
1 

 [
cs

.C
V

] 
 5

 A
pr

 2
01

7

http://data.worldbank.org/
http://www.rita.dot.gov/bts/
http://mobility.tamu.edu/ums/national-congestion-tables/
http://mobility.tamu.edu/ums/national-congestion-tables/
http://www.fhwa.dot.gov/congestion/
http://www.fhwa.dot.gov/congestion/


of lanes on the road and the position of the vehicle within
those lanes. We call the process of determining these two
parameters as vehicle self-positioning. To calculate the (ap-
proximate) density of the vehicles, a detection module also
needs to be in place. Hardware-dependent systems such as
LIDAR and those using GPS are present in literature, but
they are costly and are not usually preferred [13, 11].

Video-based lane and vehicle detection is popular and
well-researched [10, 22]. Though even simple solutions
such as Hough transform can extract the lane markers, in-
ferring the road structure from them has proven difficult.
The stand-alone problem of self-positioning was studied in
[2] and initial findings were reported. In this paper, we ex-
tend the problem so as to perform self-positioning and vehi-
cle detection in a closed-loop system such that each process
aids the other one and in-turn increases efficiency of the en-
tire system. The primary purpose of this system is not to
extract lane markers or vehicle detection, though we con-
sider them as sub-problems, but to perform accurate self-
positioning with the aid of vehicles present on the road. We
propose a Bayesian model which takes three parameters:
number of lanes on the road, the lane in which vehicle is
being driven and the presence of a vehicle. To construct
the likelihoods of this model, we use a bottom-up approach
which uses guided-filter, lane-model generation and a ve-
hicle detection module. To allow further exploration of this
problem as well as to improve and verify current techniques,
we have made the database publicly available.

The organization of rest of the paper is as follows. Sec-
tion 2 discusses recent relevant literature on lane and vehicle
detection and self-positioning. Section 3 describes the pro-
posed approach in detail. Section 4 explains the experimen-
tal setup and results. Section 5 gives concluding remarks
and outlines the future scope for the current system.

2. Related Work
Lane and vehicle detection are sub-tasks within our cur-

rent problem formulation. Very few attempts have been
made in the past to perform self-positioning, however there
are many algorithms reported in the literature which handle
the problem of lane and vehicle detection separately. Both
software and hardware-dependent approaches have been de-
veloped for the said tasks. Here we focus only on vision-
based approaches.

Lane detection includes multiple stages, namely, image
pre-processing, feature extraction, model-fitting for further
verification and tracking to maintain spatio-temporal con-
sistency. One of the most popular pre-processing methods
is inverse perspective mapping (IPM) which maps an image
to a bird’s eye-view. This makes the lane markers appear
straight and parallel to each other. Also, other fine details in
the image get suppressed. Next step is usually simple mor-
phological operation followed by parametric line fitting to

extract the lane markers [14, 1, 25]. Kalman filter is also
used for tracking to minimize the effect of false detections
[18]. In another tracking-based method, the lane model
generated from previous frame was enforced onto the new
frame and only newly appearing lanes were considered [16].
Since roads are not straight, some methods have tried to fit
splines or higher-order curves to get an accurate representa-
tion of lane markers [23, 20]. However, fitting higher-order
curves or B-snakes may be computationally inefficient. An-
other interesting method which can be used to detect more
than one lane (host-lane) is the hierarchical bi-partite graph-
based road modeling [19]. This approach outputs multi-
ple lanes and tries to understand the road structure. This
approach also assigns a confidence measure for each lane.
However, this method does not attempt to position the vehi-
cle in the lanes.

A similar problem to self-positioning has been handled
in [15] using spatial RAY features. It tries to predict the po-
sition of the vehicle on the road from an input video stream.
However, they predict at most 3 lanes at a time either on
the left or right hand side, whereas we have upto 6 lanes in
our database with upto 3 lanes being on each side. In ad-
dition, there experiments are spread over only 2 days with
similar road conditions. Our experiments are more rigor-
ous, spreading over 5 days and the data includes 6 different
road conditions. They have low traffic density whereas we
have moderate-to-high traffic density. Thus direct compari-
son between these two approaches may not be possible.

Due to recent progress in computer vision research and
computational abilities, patch-learning based approaches
classify image patches depending on the presence of lane-
markers. Gradients and steerable Gaussian filters act as
good features for such patch-based methods [17]. Attempts
are also made to learn the road structure by collecting
knowledge about the type and structure of lane-markers [4].

Vehicle detection is a subset of a widely-studied prob-
lem of object detection. There are a plethora of ap-
proaches for general object detection, e.g. [6], or ap-
proaches dedicated to vehicle detection which use optical-
flow and hidden-markov-model based classification to in-
terpret motion-based clues [12]. HOG and HAAR features
have also been used with different classifiers and learn-
ing frameworks such as adaboost, SVM and active learning
[21, 24]. Though there are innumerable methods developed
for general object detection and specifically for vehicle de-
tection, listing them all is beyond the scope of this paper.
A good review of vehicle detection methods can be found
in [22]. In spite of continuous efforts, there are no reliable
vision-based solutions to predicting number of lanes and ve-
hicle self-positioning given a front-facing view.



3. Proposed approach

In this section, we propose an integrated approach to
solve the problem of vehicle self-positioning. Apart from
external factors such as bad weather and conditions of lane
markings, lane-occlusion by passing vehicles is one of the
biggest hurdles to reliable vehicle self-positioning. Our
approach works in a closed loop. We utilize information
from the positions of other vehicles to improve our self-
positioning. The self-positioning information gives us in-
formation about the road structure, which we use to gen-
erate the detection proposals for vehicles. We also employ
temporal smoothing of results across frames to counter the
effect of unexpected events, e.g. a car stopped on the shoul-
der or faint/invisible lane markings.

We incorporate this problem in a Bayesian framework
to add the additional factors such as presence of vehi-
cles, vehicle dynamics, scene semantics etc. Assume we

have labeled data D =


F1 Θ1

F2 Θ2

...
...

Fn Θn

 where Fi is the ith

video clip and Θi is a 2 − D label vector [θ1, θ2] where
θ1 ∈ [1, nlanes] is the number of lanes present in Fi. The
other parameter θ2 ∈ [1, θ1] is the lane in which the car
is currently driving (assuming the leftmost lane is the first
lane). The process of determining the above label vec-
tor for each frame is called self-positioning. Each video
clip Fi contains m frames - [f1

i , f
2
i , . . . , f

m
i ]. We include

the vehicle presence in the Bayesian framework in order
to aid self-positioning as follows. The joint probability
density for any frame f jk such that the video clip Fk be-
longs to the test data is P (f jk ,Θ|D, f

j−1
k , . . . , f j−p

k , Vi)

where [f j−1
k , f j−2

k , . . . , f j−p
k ]] is a set of p frames oc-

curring before f jk and Vi denotes the vehicle presence in
lane i. We need to predict the label vector Θ̂ for current
frame f jk given the set of previous p frames, the training
data D and vehicle presence in a lane i can be written as,
P (Θ|D, f j−1

k , . . . , f j−p
k , Vi). By Bayes’ rule it can be fur-

ther decomposed into,

P (Θ|D, f j−1
k , . . . , f j−p

k , Vi) ∝
P (f j−1

k , . . . , f j−p
k |Θ, D, Vi)P (Vi|Θ, D). (1)

We assume a uniform prior on presence of vehicles.
Also, we introduce a temporal smoothing kernel which con-
siders the results of previous frames. This helps to minimize
the effect of sudden external factors as explained before.
The above maximum-a-posteriori (MAP) problem can be
formulated into a maximum-likelihood estimation (MLE)

problem as,

Θ̂ = argmax
Θ

P (f jk , . . . , f
j−p
k |Θ, D, Vi)

≈ argmax
Θ

ψT [P (f jk |Θ, D, Vi) . . . P (f j−p
k |Θ, D, Vi)]

The temporal smoothing kernel takes the form of a slowly
increasing exponential function as shown in the following
equation.

ψ(i) = initial value× (1 + rate-of-increase)i

∀ i ∈ [1, p+ 1] (2)

where i is the frame index and p is the number of frames
we have buffered. The values are normalized so that the
(p + 1)th frame (which is also the current frame) gets a
unit weight. Now, expanding only the first term from the
previous step (for readability purposes), we get,

Θ̂ = argmax
Θ

ψT P (f jk |Θ, D, Vi) P (Θ|Vi, D)

= argmax
Θ

ψT P (f jk |Θ, D, Vi) P (θ1, θ2|Vi, D)

The determination of our current lane does not depend on
the vehicle presence in a lane since we do not incorporate
view-point information of a detected object. Thus we take
P (θ2|Vi, D) as constant and remove it from the equation.

Θ̂ = argmax
Θ

ψT P (f jk |Θ, D, Vi) P (θ1|Vi, θ2, D)

The term P (f jk |Θ, D, Vi) involves calculating features of
the current frame given the label vector and the vehicle de-
tection result. However, the detection result only affects
the label vector, and in particular θ1. The feature extrac-
tion process and the vehicle detection process run parallely
and so they are independent of each other. By definition of
θ1 and θ2, we see that though θ2 is weakly conditioned on
θ1 as θ2 ∈ [1, θ1], vice versa does not hold (i.e. the current
lane in which we are driving does not determine the number
of lanes on the road). Therefore we remove the condition
of θ2 from the last term. We also re-introduce the previ-
ously skipped terms containing frames [f j−1

k , . . . , f j−p
k ] in

the following equation.

Θ̂ = argmax
Θ

ψT [P (f jk |Θ, D) P (θ1|Vi, D) · . . . ·

P (f j−p
k |Θ, D) P (θ1|Vi, D)]. (3)

Equation ?? shows a general formulation to obtain the
correct value of the label vector given a set of buffered
frames and the vehicle detection results. The structured
Bayesian formulation allows easy modification of the for-
mulation if we were to add more information to the model
in the future. In the next paragraphs, we show how to cal-
culate the two quantities - P (f jk |Θ, D) and P (θ1|Vi, D).



3.1. Frame likelihood computation

The frame likelihood computation involves extracting
features from the current frame and then calculating an ini-
tial estimate of the label vector, which is refined later by
using vehicle detection results. It includes the following
stages:

1. Image pre-processing.

2. Lane model generation.

3. Feature extraction.

4. Initial estimation of frame likelihood.

Image pre-processing: Our aim is to detect all the lanes
present in the frame in order to compute the label vector Θ.
Pre-processing an image removes the unnecessary details in
it and keeps all the lanes. We choose Guided filter for this
task. It is a edge-preserving smoothing filter which works
in linear time [8]. It takes a pair of images as input. One
of them acts as a reference image and “guides” the filtering
process of the other image. When both images are same,
the filter performs edge-preserving smoothing. The filtering
operation is defined as:

GF (I) = ᾱI + β̄, (4)

where I is a gray-scale video frame.
ᾱ and β̄ are obtained through block-wise averaging using

α =
σ2

σ2 + ε
and β = (1 − α)µ, where µ is the mean, σ is

the standard deviation of a block in the image and ε is a
small constant. For a flat patch in an image, σ = 0 =⇒
α = 0 and β = µ. Thus each pixel in that flat region is
averaged with its neighbors. Similarly it can be proved that
if σ � ε, sharp edges are preserved. However, by choosing
ε appropriately, we can force the guided filter to consider
almost all the pixels in an image belonging to a flat patch.
We choose ε high enough such that lanes are considered
belonging to a flat patch. The lane markings are always
surrounded by the road pixels which have much lower value
and therefore, the value of lane pixels decreases by a large
amount as compared to anywhere else in the image. Now a
post-processing operation such as over-subtracting followed
by saturation returns an image similar to the one shown in
Fig. 1. The post-processing operation we use is as follows:

BW (I) = [(I − δ ·GF (I)) ∗ 255] ≥ 0, (5)

where δ is a constant just greater than 1 (here, δ =
1.06). Since value of lane marking pixels has reduced by
a large extent, they get preserved in the post-processed im-
age whereas many other regions disappear. Advantage of
guided filter is that it can also work in bad weather condi-
tions such as rain, low-sunlight or in the night. It can also
detect extreme lanes which are very thin as shown in Fig. 1.

Lane model generation: The pre-processed image pre-
serves all the lanes and rejects a lot of unwanted regions.
Yet, there are many spurious objects which may prevent us
from performing reliable detection of all the lanes on the
road. Additionally, as mentioned before, our aim is to per-
form self-positioning only on the freeways which have a
defined road structure such as constant-width lanes. Tak-
ing advantage of these constraints, we define a lane model
in which there are a maximum of seven lanes, three being
on each side of the center lane. Due to fixed-width of the
lanes, they can be represented as a function of y-coordinate
of the center lane markers and the camera parameters. We
first detect the center lane markers in an image using simple
thresholding techniques and other heuristics depending on
their possible position, shape and color. We then perform
a linear fit for the left and right center lane marker denoted
respectively by cl and cr. Then the remaining three lane
markers on each side can be obtained as:

li = dli(cl) = ml
i ycl + kli, ∀i ∈ [1, 2, 3] (6)

and,

ri = dri(cr) = mr
i ycr + kri , ∀i ∈ [1, 2, 3] (7)

Above two equations represent the other lanes in the
form of offsets from the center lane - dli(cl) and dri(cr).
These offsets are in turn represented as a linear function
of the y-coordinate the center lane markers - ycl and ycr .
{ml

i,m
r
i , k

l
i, k

r
i } are the slope and intercept parameters of

cl and cr respectively. Once these offsets have been calcu-
lated, then obtaining (x, y) coordinates of lane-markers is
a straight-forward task. We assume camera parameters are
fixed, but they can also be included in equation ?? and ??.
The generated lane model is shown in Fig. 2.

Feature extraction: Once we have found the probable lane
regions as shown in Fig. 2, we find lane pixels by simple
thresholding. By following the gradient directions at those
lane pixels, we can get the road pixels as shown in Fig. 3.
We form a 40-dimensional feature vector consisting of:

1. Mean and variance of lane and road pixels (4-D).

2. 36-bin histogram of gradients at lane pixels as shown.

The lane markers will have low mean and variance for
road pixels and the majority of the gradients at lane pix-
els lie in a specific range of angles (shown in Fig. 3). We
consider at most 7 lanes (or 8 lane markers) at a time, upto
3 lanes being on either side. Presence of middle lane is as-
sumed. Thus our feature vector is 40∗6 = 240 dimensional.

Estimation of P (f |Θ,D): Though there are many meth-
ods to implement the general formulation presented in equa-
tion ??, we choose to implement it using a linear SVM. It
is trained using the features extracted from D. For a video



Figure 1: Captured frame and pre-processing using guided filter.

frame in the test data, we extract its features and then ap-
ply the linear SVM. The likelihood estimate L(Θ|f,D) is
the probability estimate of the linear SVM for each Θ. We
repeat the same procedure with random forest too.

3.2. Refinement of frame likelihood

We use the presence of vehicles in the adjacent lanes to
our advantage. The term P (θ1|Vi, D) shows that the vehicle
presence in lane i affects the probability of the number of
total lanes on the road. Assume an initial estimate of the
label vector Θ̂init = [θ̂1init, θ̂2init]. Here, θ̂1init and θ̂2init

are the initial estimates for the number of lanes and the host
lane respectively. From Θ̂init we can obtain indices of lanes
which are present, e.g. if Θ̂init = [5, 2] then the lane indices
are Lind = {l3, cl, cr, r3, r2, r1} or {3, 4, 5, 6, 7, 8} (refer
Fig. 2). Depending on the vehicle presence in lane i, we

Figure 2: Lane width modeling

Figure 3: Obtaining road pixels from lane pixels

refine Θ̂init in the following manner:

θ̂1new =


θ̂1init if min(Lind) ≤ θ̂1 ≤ max(Lind)

θ̂1init + (min(Lind)− i) if 1 ≤ i < 4

θ̂1init + (i−max(Lind)) if 5 < i ≤ 8
(8)

This requires a reliable vehicle detector with high quality
object proposals to start with. In the next section we outline
a method to generate high-quality object proposals by using
the lane structure shown in Fig. 2.

3.3. Efficient vehicle detection

Our proposed approach works in a closed loop such that
it first detects the vehicles present in the frame which helps
us to perform self-positioning task. Then the feedback from
the inferred lane structure is used to generate high-quality
object proposals. The obtained detections from these pro-
posals then traverse to the beginning of the loop.

We make a key observation from Fig. 2 that the span
of lower edge of a bounding box enclosing a vehicle is al-
ways contained with the two corresponding lane markers.
As shown in Fig. 2, bounding boxes having a span too small
(Box-1) or too large (Box-4) than their corresponding lane
markers are invalid and are rejected in our proposal genera-
tion process. We now show a sample process of calculating
the span between the lane markers and also focus on bound-
ing box selection process.

Consider a bounding box represented by
[xmin, ymin, xmax, ymax]. To find the span between
its corresponding lane markers, we first need to find
their (x, y) coordinates. Since any lane marker can be
represented in as a function of the center lane markers, their
coordinates (xc, yc) can be found by setting yc = ymax and
xc can be found using the linear fit. The nearest lane marker
to (xmin, ymax) is then found. The coordinates of that lane
marker (xnear, ynear) are found by setting ynear = ymax

and xnear = xcr + rj . If the nearest lane marker is to the
left then it is similarly obtained as, xnear = xcl − lj (please
refer to equation ?? and ??). Once the coordinates for the



Figure 4: From left to right, row 1: Correct predictions for categories [5, 3], [5, 4] and [6, 4]. Category of the middle image is
predicted correctly in spite of a vehicle occluding the view of first lane. Row 2: Wrong predictions for categories [4, 1], [5, 2]
and [5, 4]. Occlusion, bad road conditions and bad lighting conditions are the plausible causes for wrong detections.

nearest lane marker are found, then the span between that
and the next marker can be easily calculated.

The advantage of the above bounding box selection tech-
nique is that it involves only simple computations and it can
be applied to exhaustively generated bounding boxes or to
the proposals generated through techniques such as BING
[3]. However, we observe that in our data-set, the video
frames are not of high-quality and many vehicles are small.
BING does not capture all the cars and thus we have used
exhaustively generated bounding box along with the selec-
tion technique. The exhaustive boxes are generated by ap-
plying three naive constraints:

1. Aspect ratio of any box cannot be more than three and
smaller than one-third.

2. The boxes lie only in the lower 2
3

rd part of an image.

3. Maximum size of boxes is pre-determined.

Even after applying these constraints, the selection tech-
nique reduces the no. of boxes by a factor of 6 on an average
and eliminates many false detections. We use a cascaded
deformable parts model [7, 6] trained on our data which
consists of 833 vehicles and on “car” subset of Pascal VOC
2010 data [5]. The negative data is randomly chosen. These
detections can again be used to refine the frame likelihood.

4. Experimental Setup and Results
We have formed the data-set using the videos captured

from a typical camera mounted inside the wind-shield. Our
data-set has 53 videos with a frame rate of 30 fps 5. The

5The data-set is available at http://www.public.asu.edu/
˜bli24/CodeSoftwareDatasets.html

average length of each video clip is 11.8 seconds. Though
L = 7 yields 28 categories, we consider a subset of those
categories which occur frequently in real-life. The list of
label configurations in our database is as follows: Θ =
{[4, 1], [4, 2], [4, 3], [4, 4], [5, 2], [5, 3], [5, 4], [6, 4]}. We as-
sume a uniform prior for all these categories and zero prior
for the rest. Our training data-set contains 27 videos while
the rest 26 are used for testing. The number of frames used
in training and testing are 9018 and 9036 respectively. The
distribution of training and test data over various categories
is shown in Fig. 5. As mentioned before, each category has
videos of varying road, traffic and weather conditions.

We show the accuracy of self-positioning before and af-
ter temporal smoothing in Table 1. Table 2 shows the con-
fusion matrix for the initial estimation of self-positioning
and the final estimate after temporal smoothing. We can see
that there is an improvement of 5.04% over all 8 categories,

Figure 5: Distribution of Video Frames in Train and Test
Set

http://www.public.asu.edu/~bli24/CodeSoftwareDatasets.html
http://www.public.asu.edu/~bli24/CodeSoftwareDatasets.html


Table 1: Self-positioning accuracy.

Without temporal smoothing With temporal smoothing
Class = [θ1, θ2] Linear SVM Random forest Linear SVM Random forest

[4, 1] 33.55% 34.94% 32.90% 32.81%
[4, 2] 58.84% 80.28% 62.67% 89.32%
[4, 3] 69.74% 73.50% 73.33% 74.88%
[4, 4] 72.45% 90.48% 73.47% 96.94%
[5, 2] 54.93% 47.00% 63.44% 63.06%
[5, 3] 48.18% 47.94% 49.91% 53.78%
[5, 4] 44.06% 56.82% 46.27% 64.27%
[6, 4] 95.45% 94.55% 100% 96.36%

Overall Accuracy 54.77% 61.41% 57.49% 66.45%

Table 2: Confusion matrix for self-positioning without temporal smoothing (using Random forest). Results of self-positioning
after temporal smoothing are shown in brackets.

Class =
[θ1, θ2]

[4, 1] [4, 2] [4, 3] [4, 4] [5, 2] [5, 3] [5, 4] [6, 4]

[4, 1] 378 (355) 300 (302) 47 (10) 5 (0) 348 (415) 2 (0) 2 (0) 0 (0)
[4, 2] 24 (3) 985 (1096) 72 (32) 6 (10) 89 (86) 49 (0) 0 (0) 2 (0)
[4, 3] 10 (0) 12 (5) 1659 (1690) 37 (35) 2 (0) 295 (328) 239 (199) 3 (0)
[4, 4] 0 (0) 9 (0) 0 (9) 266 (285) 0 (0) 0 (0) 17 (0) 2 (0)
[5, 2] 19 (5) 218 (184) 23 (0) 2 (2) 243 (326) 11 (0) 1 (0) 0 (0)
[5, 3] 10 (0) 515 (627) 235 (98) 3 (0) 1 (3) 779 (874) 46 (0) 36 (23)
[5, 4] 21 (0) 481 (506) 213 (141) 6 (0) 31 (0) 7 (0) 1029 (1164) 23 (0)
[6, 4] 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 11 (8) 208 (212)

which indicates that temporal smoothing is able to remove
noisy results persisting only for a few frames. As we in-
crease the value of p in equation ??, the algorithm averages
over larger set of frames but it increases the memory and
makes the algorithm computationally inefficient. Thus we
have set the value of p to 15 while using temporal smooth-
ing, otherwise we make it 0. Temporal smoothing improves
the initial estimation in all but one category -[4, 1]. The de-
crease may occur when the algorithm wrongly predicts for
more than p/2 frames often. Also, due to slowly increas-
ing exponential kernel, first p/2 frames may be wrongly
predicted when the category changes. Low prediction ac-
curacy is observed in the category -[4, 1]. It should be ac-
counted that there are 3 lanes on one of the sides of the
host-lane. Since its extremely thin (about 4 pixels), its reli-
able detection becomes difficult. In addition to this, the road
conditions in that category are relatively worse and there is
moderate traffic. Interestingly, the category [6, 4] achieves
96.36% accuracy in spite of having most number of lanes.
We would like to point out the fact that this category has the
best weather and road conditions. Thus our approach can
achieve high accuracy even in the presence of more number
of lanes provided the weather, road and traffic conditions
permit. This is an eight-class classification problem an it

has variable weather and road conditions. Another impor-
tant fact is that the training data itself may be noisy. We
have divided the video clips such that each clip has a single
label. Therefore, one of the training video clips in category
- [5, 3] (say) may have a faint/invisible second lane for a
few frames. Results using our approach are shown in Fig.
4. The proposed approach is able to handle partial vehicle
occlusions, varying road and weather conditions. However,
it may fail when there are multiple vehicles totally blocking
the view or if other conditions are worse.

Bounding box selection technique reduces the generated
proposals for vehicles by a factor of 6 and in turn this re-
duces number of false detections. This technique also al-
lows use of other faster but less accurate methods. We
would like to point out that though vehicle detection is an
important component in our system, our final goal remains
to achieve accurate self-positioning in all possible condi-
tions. We do not yet have annotated database of vehicles
for such a scenario and thus we do not list comprehensive
results for vehicle detection.



5. Conclusion and Future Scope

A novel problem of self-positioning is introduced and
an integrated approach is proposed which performs self-
positioning with the aid of vehicle detection in a closed-loop
system. A high-level Bayesian formulation is developed to
allow easy modifications in the future should anyone try to
introduce additional factors such as scene or viewpoint in-
formation. Our approach enables a system to perform dy-
namic traffic routing on lane-level due to its knowledge of
vehicle positions and lane-structure. This promises larger
reduction in congestion cost and travel delays. We also de-
velop a bounding box selection criteria which can be ap-
plied to exhaustive set of boxes or to the boxes obtained
from other box-proposal methods. Testing this framework
on real-world videos yielded acceptable results.

The system presently uses just video data to make pre-
dictions. In future, we can use GPS, accelerometer data and
other information obtained from vehicle dynamics. It is also
possible to employ this system on cloud and integrate the
results from all the vehicles to understand the underlying
true structure of the road. Additional information such as
position of lanes traveling in opposite direction may be in-
cluded so that detection of those vehicles could be avoided.
We also aim to generate an annotated database of vehicles
in order to perform vehicle density estimation along with
self-positioning and evaluate the same.
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