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Abstract

Difficulties can arise from the segmentation of three-
dimensional objects formed by multiple non-rigid parts rep-
resented in two-dimensional images. Problems involving
parts whose spatial arrangement is subject to weak restric-
tions, and whose appearance and form change across im-
ages, can be particularly challenging. Segmentation meth-
ods that take into account spatial context information have
addressed these types of problem, which often involve im-
age data of a multi-modal nature. An attractive feature of
the auto-context (AC) technique is that a prior “atlas”, typ-
ically obtained by averaging multiple label maps created by
experts, can be used as an initial source of contextual data.
However, a prior obtained in this way is likely to hide the
inherent multi-modality of the data. We propose a modifi-
cation of AC in which a probabilistic atlas of part locations
is iteratively improved and made available as an additional
source of information. We illustrate this technique with the
problem of segmenting individual organs in images of pig
offal, reporting statistically significant improvements in re-
lation to both conventional AC and a state-of-the-art tech-
nique based on conditional random fields.

1. Introduction

Challenges can arise from the segmentation of three-
dimensional objects formed by multiple non-rigid parts rep-
resented in two-dimensional images. Biomedical image
analysis problems, in particular, can involve parts whose
spatial arrangement is subject to weak restrictions, and
whose appearance and form change across images (e.g.

Upper
portion

Diaphragm

() (b) (©)

Figure 1. (a) Example image of pig “pluck” and (b) correspond-
ing manual annotation. (c) 91-point context “stencil” overlaid on
example image. (Best viewed in colour.)

depending on the presence of pathologies). Limited con-
trol over camera viewpoints can lead to occlusions between
parts, and parts may sometimes be missing altogether. Seg-
mentation methods that incorporate spatial context informa-
tion have dealt with these difficulties, through the combina-
tion of inference techniques such as belief propagation (BP)
[22] with models like conditional random fields (CRFs)
[11]. Nevertheless, such methods typically involve complex
training procedures and integrate context by means of con-
strained and inflexible spatial neighbourhoods. These lim-
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itations are partially addressed by auto-context (AC) [20],
an iterative technique that combines local appearance with
context data based on broad and flexible spatial neighbour-
hoods. AC has been applied to a wide variety of previous
biomedical imaging problems [20, 14].

A prior “atlas” of constituent parts can be easily obtained
by rigidly registering and averaging label maps created by
domain experts. Such an atlas can be used in the initial itera-
tion of AC. The above-mentioned problems associated with
segmentation of non-rigid objects, however, translate into a
population of images that is multi-modal. This makes it dif-
ficult to obtain a good prior representation of part locations
by simple averaging, as useful mode-specific information
will become lost in the process. There is extensive literature
dealing with the construction of unbiased atlases for multi-
modal data, especially in the area of brain magnetic reso-
nance (MR) image analysis, as in the work of Blezek and
Miller [3] and Zikic et al. [24]. Some related work makes
use of the AC model. Kim et al. [9], for example, employed
an approach similar to that of Zikic et al., training multi-
ple models, each based on an individual annotated image,
so that the probability map of a new image was obtained
by averaging the maps predicted by each individual model.
Zhang et al. [23] proposed a clustering approach to the cre-
ation of a hierarchy of AC models (whose bottom level is
similar to the set of models used by Zikic et al. and Kim
et al.). Given a new image, only the best models in the hier-
archy are selected to contribute to the final probability map.
Model training via these techniques can be computationally
very intensive, particularly when hundreds of annotated im-
ages are available.

In this paper we propose an approach that takes advan-
tage of the iterative nature of AC, so that, at the end of each
iteration, an atlas representation is updated to become closer
to the image being used for training or testing. This im-
proved atlas can then be used at the next iteration as an addi-
tional source of information (together with the label proba-
bility maps output by the classifier). Even when hundreds of
training annotations are used, the computation of weighted
atlases has a small impact on training and test times. To the
best of our knowledge, the extension of AC with adaptive
atlases used as an additional source of information has not
been investigated before.

We applied our extension of the AC technique to the seg-
mentation of multiple pig organs (namely the heart, lungs,
diaphragm and liver) in images of non-digestive tract offal
captured at abattoir. Figures 1(a) and 1(b) show one such
image and its associated ground truth labelling of organs.
Images of pig offal pose challenging problems characteris-
tic of multi-modal data, such as partially or totally missing
organs, occlusions, severe deformation and lack of control
over viewpoint. The technique we propose achieved statis-
tically significant improvements in performance over con-

ventional AC across several iterations and outperformed a
state-of-the-art segmentation technique based on CRFs.

In summary, the main contributions of this paper are: a)
a proposed extension of the AC technique through the use
of iteratively updated atlases, to render AC more suitable
to the segmentation of objects whose two-dimensional rep-
resentations are multi-modal; and b) its application to the
task of segmenting multiple organs in pig offal, towards an
automated solution for carcass inspection. Our extension of
AC is potentially applicable to other problems involving the
segmentation of non-rigid objects in image data of a multi-
modal nature.

2. Auto-context with weighted atlases
2.1. Auto-context

Auto-context (AC) is an iterative pixel classification
technique introduced by Tu and Bai [20]. At each itera-
tion, local appearance features are combined with context
features extracted from the class probability maps output at
the previous iteration. A formal description of AC follows,
using a notation similar to that of Tu and Bai [20].

Let S be a set of m training images X ; paired with their
ground truth label maps Y,

S ={(¥;, X;), j = L..m}. (1)

At each iteration ¢ we want to train a classifier that outputs
the probability distribution p§? over labels y;; € {1..K} for
pixel 7 in image X, given image patch X;(NV;) and label
probability map Pj(tfl) (1),

p;ti) = p(y;il X5 (Ni), Pj(t_l)(i)). 2)

In X;(N;), N; denotes all pixels in the image patch, and
Pj(t_l)(i) is map Pj(t_l) output for image X, at previous
iteration ¢ — 1, but now centred on pixel ¢.

The AC training procedure outputs a sequence of clas-
sifiers, one per iteration, and is formally described in Al-
gorithm 1. Before the first iteration, all probability maps
Pj(o) can be initialised using a prior atlas Q(?), obtained by
averaging the m training label maps Y7,

1
QU==3"Y 3)
J

At each iteration, given pixel ¢ in image X, the actual
feature vector input to the classifier is composed of local
image features extracted from patch X;(N;) concatenated
with context features extracted from re-centered label prob-
ability map Pj(t_l) (7). In step 1 of the algorithm, n denotes
the number of pixels in each image.



Algorithm 1 Training of conventional auto-context (AC)
model.

Given training set S = {(Y}, X;), j = 1..m}, obtain prior
atlas Q(®) from label maps Y; and use it to initialise proba-

bility maps Pj(o). For iteration t = 1..7":

1. Build a training set for the iteration,
SO = {(yji, (X;(No), P7V(0), 5 = Lam, i =
1.n)}

2. Train a classifier on image features extracted from
X (N;) and context features extracted from Pj(t_l) (7).

3. Use the classifier to obtain new probability maps

(t) ¢,
P (7).

Algorithm 2 Training of proposed weighted atlas auto-
context (WAAC) model. The highlighted portions are spe-
cific to WAAQC, i.e. they extend the original AC method by
incorporating weighted atlases.

Given training set S = {(Y}, X;), j = 1..m}, obtain prior
atlas Q) from label maps Y; and use it to initialise proba-
bility maps Pj(o). For iteration t = 1..7":

1. Build a training set for the iteration,

5O = {(ysi OGO, PV (@), @FTV@), 5 =
l.m,i=1.n)}

2. Train a classifier on image features extracted from
X (N;) and context features extracted from Pj(tfl) (7)

and Q;til)(i) .
3. Use the classifier to obtain new probability maps
PO ().

4. Obtain updated atlases Q;t) (i) from new probability

maps Pj(t) (¢) and label maps Y.

Context features are the probabilities extracted from se-
lected locations on map Pj(t_l) (1), including the central lo-
cation that corresponds to current image pixel ¢. Selected
locations are typically defined by a sparse star-shaped “sten-
cil” such as that shown in Figure 1(c). Context data can be
enhanced by including integral features, such as the sum of
the label probabilities in the row to which the current point
belongs, or the label probabilities summed over the whole
image.

2.2. Extension with weighted atlases

At the end of each training iteration ¢, for each image X ;
we can select the training annotations Y, closest to prob-
ability map Pj(t) output by the classifier, assign a weight
to each selected annotation, and combine them to obtain a
weighted atlas Qg-t),

) _ 1 ), ()
Qj = OO skjwijk. @)
D okti Skj Whj kg

In Equation (4), weight w,itj) is a measure of similarity be-

tween label map Y} and probability map Pj(t) (such as an

F-score or a Rand index) and sgfj) is a selection variable de-

fined as:

®)

Sk:j =

o J1 ifke K"
0 otherwise

In Equation (5), K ](-t) denotes the set of indices of the m,,

largest weights in {wl(;) |l = 1..m}. Thus, m,, is a parame-
ter of the proposed approach.

For the similarity measure w](fj) we chose to use the mean
class F-score between label map Y and probability map
Pj(t), given that in our application high precision and high
recall are equally desirable. The F-score for a given class
is defined as the harmonic mean of precision p and recall
r for that class, that is, 2pr/(p + r). For each class, a
high precision means that most of the predicted region is
contained in the true region, whereas a high recall means
that the predicted region contains most of the true region.
Thus, a high F-score will normally correspond to predicted
regions whose boundaries closely match those of the true
regions. This is particularly important when segmenting
multiple adjacent parts belonging to different classes.

At the start of a WAAC training iteration, features are
extracted from the weighted atlas computed at the end of
the previous iteration, in addition to conventional AC fea-
tures. The training procedure for weighted atlas auto-
context (WAAC) is formally described in Algorithm 2,
whose highlighted portions correspond to the differences in
relation to conventional AC. The first iteration can in princi-
ple be run as conventional AC, to avoid providing duplicate
features to the classifier. (Note that, for any given image
X, both Pj(o) and Q;O) would merely be copies of prior
atlas Q(®).)

The diagram in Figure 2 represents the use of a trained
WAAC model on a test image X (where image index j is
omitted for simplicity). Red and green arrows correspond
to the use of a classifier at each iteration to classify a pixel
(represented by the small black square), whereas blue ar-
rows correspond to use of Equation (4) at each iteration to



obtain a weighted atlas. The large red square represents an
image patch centred on the pixel being classified, used for
the extraction of local appearance features.

We emphasise that WAAC uses the same number and
spatial arrangement of context points as AC; in other words,
there is no additional spatial context. At each iteration,
WAAC combines information from two sources that are
very different in nature: the probability maps output by the
classifier (as in AC); and a weighted atlas obtained from
the ground-truth component of training data. The WAAC
training algorithm is not restricted to any particular type of
classifier.

3. Experimental validation
3.1. Application domain

The quality and safety of meat products relies on visual
inspection of carcasses as a means of detecting public health
hazards and sub-clinical diseases. Carcass inspection also
provides helpful information that can be fed back to farm-
ers. However, effective and detailed screening to meet the
requirements of health schemes is limited by the fact that
manual assessment is inherently subjective and puts a strain
on human resources. These limitations, together with new
regulations of the European Food Safety Authority towards
minimising carcass handling at abattoir [7], encourage the
development of automated inspection systems.

Most existing literature on segmentation of multiple or-
gans deals with localisation of human abdominal organs in
computer tomography (CT) images, through varied tech-
niques such as level set optimisation [10] and hierarchical
atlases combined with statistical shape models [17]. Ex-
isting work associated with farming and meat inspection
deals with comparatively simpler problems, typically in-
volving the segmentation of whole groups of organs (with-
out distinguishing them) and the estimation of proportions
of muscle, fat and bone from CT images, both in vivo and
post-mortem [16, 4]. The little available work on segmen-
tation of multiple animal organs from video or photography
usually aims to discern a particular organ of interest from
nearby organs. Tao et al. [19] segmented poultry spleen
from surrounding viscera, as an aid to automated detec-
tion of splenomegaly from ultraviolet and colour images.
More recently, Jgrgensen et al. [8] segmented gallbladders
in chicken livers from images acquired at two visible wave-
lengths. Stommel et al. [18] envisaged a system for robotic
sorting of ovine offal that would involve automatic recogni-
tion of multiple organs.

We have recently applied classic AC to the segmenta-
tion of multiple pig organs in images captured at abattoir, to
assess the impact of complementing conventional context
information with integral context features [1]. In this pa-
per, we compare the proposed WAAC technique with both

classic AC and a state-of-the-art CRF based pixel labelling
technique. A robust organ segmentation method is useful
as an intermediate stage in a wider system aimed at on-
site screening for sub-clinical conditions, given that signs
of such conditions are typically organ-specific. In this con-
text, even modest improvements in organ segmentation per-
formance in relation to available techniques can be of great
importance, as regions assigned to the wrong organ may ul-
timately lead to missed or falsely detected pathologies.

3.2. Data

Our experiments were based on 350 images acquired at
an abattoir for pigs, each showing a portion of pig offal
known as the “pluck”. The pluck hangs from a hook and is
composed of inter-connected organs that belong to the pig’s
non-digestive tract, primarily the heart, lungs, diaphragm
and liver. All images had 3646x 1256 colour pixels and
were obtained using a single lens reflex camera and LED
lighting, both mounted on tripods. For each image, we had
a ground truth label map identifying the regions covered by
each of the four organs of interest, with a fifth class label
being used to mark the upper region of the pluck, which
usually contains the trachea and tongue and is of no inter-
est for our application. An example of pluck and its ground
truth labels are shown in Figures 1(a) and 1(b). The label
map of the pluck depicts the upper portion, heart, lungs,
diaphragm and liver in yellow, blue, green, cyan and red,
respectively. Additional examples can be found in Figure 5.

On each image, the pluck had already been segmented
from the background, through a relatively trivial segmenta-
tion step based on focus and hue information. Therefore,
our task consisted in segmenting foreground pixels into the
five classes defined above.

3.3. Local appearance features

We used local appearance features based on a multi-level
Haar wavelet decomposition [13]. Each image was con-
verted to the CIELUV colour space [12] and, for each com-
ponent (L, u and v), the approximation wavelet coefficients
as well as the horizontal, vertical and diagonal squared de-
tail coefficients were obtained at three levels of decompo-
sition. This resulted in 36 feature maps (3 colour compo-
nents x 4 wavelet coefficients x 3 levels of decomposition),
which were rescaled to match the original dimensions of the
image.

We then sub-sampled each feature map and each label
map by a factor of 20 along both dimensions. This resulted
in 180x 60 points per map, which was found to provide suf-
ficient detail for our purposes.

For each point, we thus had a vector of 36 feature values
together with a class label. As explained in Section 3.2, we
were only concerned with points that fell within the fore-
ground region of each image (that is, within the pluck). On
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Figure 2. Diagram representing the use of a trained WAAC model. (Best viewed in colour.)

average, approximately 5,700 points per image belonged to
the foreground.

3.4. Context and weighted atlas features

For each point, context features were extracted at 90 sur-
rounding points and at the point itself. Figure 1(c) illus-
trates the 91 context points associated with the central point
of an example image, by means of yellow markers. At the
first iteration, the features extracted for each point consisted
of the 5 label probabilities provided by the prior atlas at
each of the 91 associated context points; at the second and
subsequent iterations, they consisted of the label probabili-
ties output by the classifier at the previous iteration, at the
same context points. In addition, we complemented these
features with two integral features, namely: the sum of the
label probabilities in the row to which the point belonged;
and the label probabilities summed over the whole image to
which the point belonged. Thus, in total, for each point we
extracted (91+2)x 5=465 context features.

In the case of WAAC, at the second and subsequent iter-
ations, features were extracted from the adaptive weighted
atlas obtained at the end of the previous iteration, in addi-
tion to the AC context features, as explained in Section 2.2.
This resulted in a total of 465 x2=930 context features.

3.5. Cross-validation

We divided the 350 available images into 10 ran-
domly picked subsets of 35 images and performed 10-fold
cross-validation experiments on those subsets, to compare
the performances of conventional AC and the proposed
WAAC method. Thus, each cross-validation fold involved
315 training images and 35 test images.

On each cross-validation fold, the available training sam-
ples consisted of the feature vectors and class labels associ-
ated with all foreground points in the 315 training images.
As each image had on average 5,700 foreground points, ap-

proximately 315x5,700=1,800,000 training samples were
available per fold. From these, we obtained a balanced set
of 8000 training samples, by randomly picking 1,600 sam-
ples from each of the five classes.

The training samples collected on each fold were used
to train AC and WAAC classification models using Algo-
rithms 1 and 2. Each trained model was formed by a se-
ries of multi-layer perceptrons (MLPs), one per iteration.
Our MLPs had a softmax output layer and a single layer
of hidden units with logistic activation. MLPs were trained
to minimise regularised error e, = e + A > w?, where e
represents the cross-entropy training error and A" w? is
a regularisation term to prevent network weights w from
becoming too large [2]. Scaled conjugate gradients opti-
misation was used. After experimenting with 3-fold cross-
validation on a subset of training data, we opted to use 20
hidden units and a value of 0.1 for A. The implementation
of MLPs provided by the NETLAB library for Matlab [15]
was used.

We performed an additional 10-fold experiment to en-
able comparison of AC and WAAC with the state-of-the-art
CRF based technique proposed by Domke [6]. For this, a
18060 pairwise 4-connected grid was created to match the
dimensions of our feature and label maps. Each model was
then trained with five iterations of tree-reweighted belief
propagation to fit the clique logistic loss, using a truncated
fitting strategy. We used the CRF toolbox for Matlab / C++
made available by Domke [5].

On each cross-validation fold, test samples consisted
of the feature vectors extracted from all foreground points
in the 35 test images. Thus, approximately 35x5,700=
200,000 test samples were available per fold, all of which
were used to test the trained classification models.

We studied how the overall segmentation performance
(as measured by the adjusted Rand Index) varied with the
number of image annotations selected for the computation
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Figure 3. Variation of segmentation performance with the number
of image annotations used to compute each weighted atlas (m.).

of each weighted atlas, represented by the m,,, variable im-
plicit in Equation (4). The obtained results, shown in Fig-
ure 3, suggest that performance varied little with changes
in m,,, especially taking into account that the plotted val-
ues are averages over ten folds, associated with relatively
large standard deviations (>0.027). Nevertheless, there was
a tendency for better performance with low values of m,,
and we set its value at 32, equivalent to 10% of the images
available for training at each fold.

The adjusted Rand index is a measure of similarity be-
tween data clusterings, corrected for chance. It can be used
to assess the quality of segmentation results by regarding
true pixel labels and predicted pixel labels as different clus-
terings [21]. Defining n;; as the number of pixels of class ¢
predicted as class j, a; as the total number of pixels of class
i, and b; as the total number of pixels predicted as class 7,
the adjusted Rand index can be computed using Equation
(6).

ARI =

i (%) = 12 (5) 2 (DG
I )+, -1 (), ()1 ()

3.6. Results and discussion

(6)

Table 1 shows the average values computed over all im-
ages for two performance metrics, namely the mean class
F-score and the adjusted Rand index. Results are shown for
5 iterations of AC and WAAC. Paired two-tailed Student’s
t-tests between AC and WAAC results yielded p-values
<0.030 and <0.012 for mean class F-score and adjusted
Rand index, respectively, at iterations 2 to 5.

At iteration 1, WAAC does not perform any better than
AC because only the prior (non-adapted) atlas is available
at that point. The evolution of each method’s performance
then followed the typical pattern reported by Tu and Bai
[20], in that the largest improvement occurred at the 2nd
iteration and performance practically levelled off by the 5th
iteration. Figure 4 plots the evolution of the adjusted Rand
index averaged over images, from iterations 2 to 5, with AC
and WAAC.

Method Iteration

1 \ 2 \ 3 \ 4 \ 5
AC 0.761 | 0.838 | 0.856 | 0.864 | 0.867
WAAC | 0.756 | 0.847 | 0.862 | 0.868 | 0.871

(a) Mean class F-score

Method Iteration

1 \ 2 \ 3 \ 4 \ 5
AC 0.629 | 0.753 | 0.781 | 0.795 | 0.801
WAAC | 0.620 | 0.764 | 0.789 | 0.800 | 0.805

(b) Adjusted Rand index

Table 1. Average values, computed over images, of (a) mean class
F-score and (b) adjusted Rand index.
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Figure 4. Evolution of adjusted Rand index (averaged over images)
from 2nd to 5th iteration.

Table 2 shows the class-specific F-scores and the mean
class F-score obtained with AC and WAAC, averaged over
images after the Sth iteration. The largest improvement
in F-score (0.012 on average) was observed for the heart.
Being relatively small, the heart is the organ whose two-
dimensional projection on each image is most affected by
the orientation of the pluck around its vertical axis: it can
be fully visible near the centre, partially or fully visible on
either side of the pluck, or completely hidden. Thus, it is
not surprising that the ability of WAAC to deal with multi-
modality had a larger impact on the segmentation perfor-
mance associated with this organ.

For three test images, Figure 5 shows the ground truth
label map and the segmentation results obtained with AC
and WAAC after the 5th iteration, along with the weighted
atlas used by WAAC at that iteration. The general effect
of WAAC is to improve spatial coherence, yielding better
defined boundaries between organs, as exemplified in Fig-
ure 5(a). The weighted atlas can change dramatically de-
pending on the image being tested, as illustrated by com-



Method Class-specific F-score Mean class
Upper | Heart | Lungs | Diaph. | Liver F-score
CRF 0.808 | 0.503 | 0.706 | 0.717 | 0.962 0.763
AC 0.928 | 0.744 | 0.855 | 0.821 | 0.955 0.867
WAAC | 0925 | 0.756 | 0.863 | 0.830 | 0.957 0.871

Table 2. Final average values, computed over images, of class-wise F-scores and mean class F-score. All improvements registered by

WAAC in relation to AC are statistically significant.

Step | AC | WAAC]
Once Obtain local features 7.206 | 7.206
Every Obtain weighted atlas 0.000 | 0.516
iteration | Obtain context features 0.114 0.153
Normalise data 0.020 | 0.042
Forward propagate MLP | 0.008 | 0.019
Total per iteration 0.141 | 0.730

Table 3. Comparison of average times needed to process a new
image using trained AC and WAAC models (in seconds).

paring Figures 5(a) and 5(b). The atlas in 5(b), in particular,
adapted itself to exclude the heart, allowing a much better
final result than with conventional AC. Nevertheless, situa-
tions such as that shown in Figure 5(c) can occur: when a
class that is normally present happens to be missing (in this
case, the liver), the training annotations selected to form
the weighted atlas may turn out to be substantially different
from the image being tested. In the example shown, this led
to the heart being almost excluded from the final result.

Table 2 also shows results obtained using Domke’s CRF
based segmentation method, after five iterations of tree-
reweighted belief propagation. It can be seen that, after its
5th iteration, the CRF method yielded a mean class F-score
merely at the level of the first iteration of AC or WAAC. The
shortcomings of the CRF method when applied to our task
are also clearly visible in the segmentation maps shown in
Figure 5. The most obvious problem with CRF based re-
sults is that portions of organs are detected in regions where
they make no sense, as happens for example with small re-
gions of upper offal and liver segmented near the top of the
diaphragm in Figure 5(a), or a small region of heart wrongly
segmented within the diaphragm in Figure 5(b).

These results show that this CRF-based method is inap-
propriate for segmentation tasks like the one we addressed
in this work, involving parts whose spatial arrangement, ap-
pearance and form vary widely across images. In contrast,
taking advantage of the iterative nature of AC, the WAAC
technique we propose is able to identify the training label
maps that are most relevant for a given test image and use
that knowledge to steer the segmentation process, thus help-
ing to avoid the erroneous localisation of parts within con-
flicting contexts.

Table 3 shows the average times taken to process a new

image using AC and WAAC. These times are dominated by
the extraction of local appearance features, which need to
be computed once for any new image, taking about 7 sec-
onds. Then, each iteration of WAAC takes about 0.6 sec-
onds longer than AC to process an image, mainly due to the
computation of the weighted atlas. For example, classic AC
took on average 7.21+0.14x5=7.91 seconds to complete 5
iterations, whereas WAAC took 7.21+0.73x5 = 10.86 sec-
onds (that is, about 1.37 times longer than AC). Times were
measured on a regular desktop machine, using only the CPU
(an Intel Core 17-870). Our feature extraction and atlas com-
putation routines were implemented in Matlab. The compu-
tation of weighted atlases, in particular, was optimised via
the use of vectorised operations, making it easily adaptable
for faster execution on GPU.

4. Conclusion

We proposed a modification of the auto-context tech-
nique in which a probabilistic atlas of part locations is it-
eratively improved and made available for the extraction of
features, to complement those used in the conventional ap-
proach. We tested our technique on the problem of segment-
ing multiple organs in images of pig offal acquired in an in-
dustrial setting. Results on a large data set of images were
reported, showing statistically significant improvements in
segmentation performance over the traditional auto-context
approach. We also demonstrated the superiority of auto-
context and our proposed method over a state-of-the-art
technique based on conditional random fields, applied to
our problem.

Future directions of work could include the computation
of weighted atlases in a class-wise fashion, the use of alter-
native similarity measures in the computation of the atlases,
as well as the evaluation of our technique on other segmen-
tation problems involving data of a multi-modal nature. The
proposed method could be applicable to other problems in-
volving the segmentation of non-rigid objects into their con-
stituent parts, such as anatomical structures in medical im-
ages of various modalities, or sub-cellular compartments in
microscopy images.



Original Truth CRF AC WAAC Upper Heart Lungs Diaph. Liver

Upper Heart Lungs Diaph. Liver

Upper Heart Lungs Diaph. Liver

(c)

Figure 5. For each of three images: original image, ground truth labels, and segmentation maps obtained with CRFs, AC, and WAAC. Also
shown for each image are the five components of the weighted atlas used at the 5th WAAC iteration. (Best viewed in colour.)
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