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Abstract

In this work, we propose and address a new computer
vision task, which we call fashion item detection, where the
aim is to detect various fashion items a person in the im-
age is wearing or carrying. The types of fashion items we
consider in this work include hat, glasses, bag, pants, shoes
and so on. The detection of fashion items can be an impor-
tant first step of various e-commerce applications for fash-
ion industry. Our method is based on state-of-the-art ob-
ject detection method pipeline which combines object pro-
posal methods with a Deep Convolutional Neural Network.
Since the locations of fashion items are in strong correlation
with the locations of body joints positions, we incorporate
contextual information from body poses in order to improve
the detection performance. Through the experiments, we
demonstrate the effectiveness of the proposed method.

1. Introduction

In this work, we propose a method to detect fashion ap-
parels a person in an image is wearing or holding. The types
of fashion apparels include hat, bag, skirt, etc. Fashion ap-
parel spotting has gained considerable research traction in
the past couple of years. A major reason is due to a vari-
ety of applications that a reliable fashion item spotter can
enable. For instance, spotted fashion items can be used to
retrieve similar or identical fashion items from an online in-
ventory.

Unlike most prior works on fashion apparel spotting
which address the task as a specialization of the semantic
segmentation to the fashion domain, we address the prob-
lem as an object detection task where the detection results
are given in the form of bounding boxes. Detection-based
spotters are more suitable as (a) bounding boxes suffice to
construct queries for the subsequent visual search, (b) it is
generally faster and have lower memory footprint than se-
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mantic segmentation, (c) large scale pixel-accurate training
data is extremely hard to obtain, while it is much easier
to get training data as bounding boxes, and (d) detection
is done at instance-level while semantic segmentation does
not differentiate multiple instances belonging to the same
class. To the best of our knowledge, our work is the first
detection-based (as opposed to segmentation-based) fash-
ion item spotting method.

Although any existing object detection methods can be
possibly applied, the fashion apparel detection task poses its
own challenges such as (a) deformation of clothing is large,
(b) some fashion items classes are extremely similar to each
other in appearance (e.g., skirt and bottom of short dress),
(c) the definition of fashion item classes can be ambiguous
(e.g., pants and tights), and (d) some fashion items are very
small (e.g., belt, jewelry). In this work, we address some
of these challenges by incorporating state-of-the-art object
detectors with various domain specific priors such as pose,
object shape and size.

The state-of-the-art object detector we employ in this
work is R-CNN [13]], which combines object proposals with
a Convolutional Neural Network [[11, [19]. The R-CNN
starts by generating a set of object proposals in the form of
bounding boxes. Then image patches are extracted from the
generated bounding boxes and resized to a fixed size. The
Convolutional Neural Network pretrained on a large image
database for the image classification task is used to extract
features from each image patch. SVM classifiers are then
applied to each image patch to determine if the patch be-
longs to a particular class. The R-CNN is suitable for our
task as it can detect objects with various aspect ratios and
scales without running a scanning-window search, reducing
the computational complexity as well as false positives.

It is evident that there are rich priors that can be exploited
in the fashion domain. For instance, handbag is more likely
to appear around the wrist or hand of the person holding
them, while shoes typically occur near feet. The size of
items are typically proportional to the size of a person. Belts
are generally elongated. One of our contributions is to inte-
grate these domain-specific priors with the object proposal



Figure 1: Bounding boxes of three different instances of
“skirt” class. The aspect ratios vary significantly even
though they are from the same object class.

based detection method. These priors are learned automati-
cally from the training data.

We evaluate the detection performance of our algorithm
on the previously introduced Fashionista dataset [29] using
a newly created set of bounding box annotations. We con-
vert the segmentation results of state-of-the-art fashion item
spotter into bounding box results and compare with the re-
sults of the proposed method. The experiments demonstrate
that our detection-based approach outperforms the state-
of-the art segmentation-based approaches in mean Average
Precision criteria.

The rest of the paper is organized as follows. Section 2]
summarizes related work in fashion item localization. Our
proposed method is detailed in Section [3] where we start
with object proposal, followed by classification of these
proposals using a combination of generative and discrim-
inative approaches. Section[d validates our approach on the
popular Fashionista Dataset [[29] by providing both qualita-
tive and quantitative evaluations. Finally, Section[5|contains
closing remarks.

2. Related Work

The first segmentation-based fashion spotting algorithm
for general fashion items was proposed by [29] where they
introduce the Fashionista Dataset and utilize a combination
of local features and pose estimation to perform semantic
segmentation of a fashion image. In [28]], the same authors
followed up this work by augmenting the existing approach
with data driven model learning, where a model for seman-
tic segmentation was learned only from nearest neighbor
images from an external database. Further, this work uti-
lizes textual content along with image information. The
follow up work reported considerably better performance
than the initial work. We report numbers by comparing to
the results accompanying these two papers.

Apart from the above two works, [14] also proposed a
segmentation-based approach aimed at assigning a unique
label from “Shirt”, “Jacket”, “Tie” and “Face and skin”

classes to each pixel in the image. Their method is focused
on people wearing suits.

There exist several clothing segmentation methods [12,
15, 126] whose main goal is to segment out the clothing area
in the image and types of clothing are not dealt with. In [12],
a clothing segmentation method based on graph-cut was
proposed for the purpose of identity recognition. In [15]],
similarly to [12], a graph-cut based method was proposed to
segment out upper body clothing. [26] presented a method
for clothing segmentation of multiple people. They propose
to model and utilize the blocking relationship among peo-
ple.

Several works exist for classifying types of upper body
clothing [2, 23| I5]. In [23]], a structured learning tech-
nique for simultaneous human pose estimation and gar-
ment attribute classification is proposed. The focus of this
work is on detecting attributes associated with the upper
body clothing, such as collar types, color, types of sleeves,
etc. Similarly, an approach for detecting apparel types and
attributes associated with the upper bodies was proposed
in [2,13]]. Since localization of upper body clothing is essen-
tially solved by upper body detectors and detecting upper
body is relatively easy, the focus of the above methods are
mainly on the subsequent classification stage. On the other
hand, we focus on a variety of fashion items with various
size which cannot be easily detected even with the perfect
pose information.

[30]] proposed a real-time clothing recognition method in
surveillance settings. They first obtain foreground segmen-
tation and classify upper bodies and lower bodies separately
into a fashion item class. In [3]], a poselet-based approach
for human attribute classification is proposed. In their work,
a set of poselet detectors are trained and for each poselet de-
tection, attribute classification is done using SVM. The final
results are then obtained by considering the dependencies
between different attributes. In [27]], recognition of social
styles of people in an image is addressed by Convolutional
Neural Network applied to each person in the image as well
as the entire image.

3. Proposed Method

The aim of the proposed method is to detect fashion
items in a given image, worn or carried by a single per-
son. The proposed method can be considered as an ex-
tension of the recently proposed R-CNN framework [13],
where we utilize various priors on location, size and aspect
ratios of fashion apparels, which we refer to as geometric
priors. Specifically for location prior, we exploit strong cor-
relations between pose of the person and location of fashion
items. We refer to this as pose context. We combine these
priors with an appearance-based posterior given by SVM to
obtain the final posterior. Thus, the model we propose is a
hybrid of discriminative and generative models.
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Figure 2: Overview of the proposed algorithm for testing stage. Object proposals are generated and features are extracted
using Deep CNN from each object proposal. An array of 1-vs-rest SVMs are used to generate appearance-based posteriors for
each class. Geometric priors are tailored based on pose estimation and used to modify the class probability. Non-maximum
suppression is used to arbitrate overlapping detections with appreciable class probability.

The recognition pipeline of the proposed algorithm for
the testing stage is shown in Figure 2] Firstly, the pose of
the person is estimated by an off-the-shelf pose estimator.
Then, a set of candidate bounding boxes are generated by
an object proposal algorithm. Image features are extracted
from the contents of each bounding box. These image fea-
tures are then fed into a set of SVMs with a sigmoid func-
tion to obtain an appearance-based posterior for each class.
By utilizing the geometric priors, a final posterior probabil-
ity for each class is computed for each bounding box. The
results are then filtered by a standard non-maximum sup-
pression method [10]. We explain the details of each com-
ponent below.

3.1. Object Proposal

Object detection based on a sliding window strategy has
been a standard approach [10, 6} 25 4] where object detec-
tors are exhaustively run on all possible locations and scales
of the image. To accommodate the deformation of the ob-
jects, most recent works detect a single object by a set of
part-specific detectors and allow the configurations of the
parts to vary. Although a certain amount of deformation
is accommodated, possible aspect ratios considered are still
limited and the computation time increases linearly as the
number of part detectors increases.

In our task, the intra-class shape variation is large. For
instance, as shown in Figure [I] bounding boxes of three
instances from the same “skirt” class have very different
aspect ratios. Thus, for practical use, detection methods
which can accommodate various deformations without sig-
nificant increase in computation time are required.

In order to address these issues, we use object proposal
algorithms [24) [1] employed by state-of-the-art object de-
tectors (i.e., R-CNNJ[13]). The object proposal algorithm
generates a set of candidate bounding boxes with various
aspect ratios and scales. Each bounding box is expected
to contain a single object and the classifier is applied only

at those candidate bounding boxes, reducing the number of
false positives. For the classification step, an image patch
within a bounding box is resized to a predefined size and
image features are extracted. Since feature computation is
done only at the generated bounding boxes, the computation
time is significantly reduced while allowing various aspect
ratios and scales. In this work, we employ Selective Search
(SS) [24] as the object proposal method.

3.2. Image Features by CNN

Our framework is general in terms of the choice of image
features. However, recent results in the community indicate
that features extracted by Convolutional Neural Network
(CNN) [L1 [19] with many layers perform significantly bet-
ter than the traditional hand-crafted features such as HOG
and LBP on various computer vision tasks [9} [18} 22} [32].
However, in general, to train a good CNN, a large amount
of training data is required.

Several papers have shown that features extracted by
CNN pre-trained on a large image dataset are also effective
on other vision tasks. Specifically, a CNN trained on Ima-
geNet database [[7] is used for various related tasks as a fea-
ture extractor and achieve impressive performance [} 20].
In this work, we use CaffeNet [16] trained on ImageNet
dataset as a feature extractor. We use a 4096 dimensional
output vector from the second last layer (fc7) of CaffeNet
as a feature vector.

3.3. SVM training

For each object class, we train a linear SVM to clas-
sify an image patch as positive or negative. The training
patches are extracted from the training data with ground-
truth bounding boxes. The detail of the procedure is de-
scribed in Section .21



3.4. Probabilistic formulation

We formulate a probabilistic model to combine outputs
from the SVM and the priors on the object location, size
and aspect ratio (geometric priors) into the final posterior
for each object proposal. The computed posterior is used as
a score for each detection.

Let B = (x1,y1,%2,y2) denote bounding box coordi-
nates of an object proposal. Let f denote image features
extracted from B. We denote by ¢ = (I,,l,) the loca-
tion of the bounding box center, where [, = (1 + x2)/2
and I, = (y1 + y2)/2. We denote by a = log((y2 —
y1)/(x2 — x1)), the log aspect ratio of the bounding box
and by r = log((y2 — y1) + (z2 — 1)) the log of half the
length of the perimeter of the bounding box. We refer to c,
a and r as geometric features.

Let Y denote a set of fashion item classes and y, €
{+1, -1} where z € Y, denote a binary variable indicat-
ing whether or not B contains an object belonging to z. Let
t = (t1,...,tx) € R?*K denote pose information, which
is a set of K 2D joint locations on the image. The pose
information serves as additional contextual information for
the detection.

We introduce a graphical model describing the relation-
ship between the above variables and define a posterior of
Y, given f, t, ¢, a and r as follows:

p(y:|f, e, a,1,t) o p(y.|f)p(cly:, t)p(aly.)p(rly., t)
(D

Here we assume that p(t) and p(f) are constant. The first
term on the RHS defines the appearance-based posterior and
the following terms are the priors on the geometric features.
For each object proposal, we compute p(y, = 1|f,¢,a,r,t)
and use it as a detection score. The introduced model can
be seen as a hybrid of discriminative and generative mod-
els. In the following sections, we give the details of each
component.

3.5. Appearance-based Posterior
We define an appearance based posterior p(y, = 1|f) as
ply= = 11f) = Sig(wI fi A2) 2)

where w is an SVM weight vector for the class z and A,
is a parameter of the sigmoid function Sig(x; \,) =1/(1+
exp(—A.x)). The parameter A, controls the shape of the
sigmoid function. We empirically find that the value of A,
largely affects the performance. We optimize A, based on
the final detection performance on the validation set.

3.6. Geometric Priors
Priors on Aspect Ratio and Perimeter

The term p(rly, = 1,t) is the prior on perimeter condi-
tioned on the existence of an object from class z and pose

-150

20|

-300

-350|

200 300 300 200

(a) Bag - Neck (b) Left Shoe - Left Ankle

Figure 3: Distributions of relative location of item with re-
spect to location of key joint. Key joint location is depicted
as a red cross. (a) distribution of relative location of bag
with respect to neck is multi-modal. (b) locations of left
shoe and left ankle are strongly correlated and the distribu-
tion of their relative location has a single mode. See Sec-

tion[3.6] for details.

t. Intuitively, the length of perimeter r, which captures the
object size, is useful for most of the items as there is a typ-
ical size for each item. Also, r is generally proportional to
the size of a person. The size of the person can be defined
using t in various ways. However, in this work, since the
images in the dataset we use for experiments are already
normalized such that the size of the person is roughly same,
we assume p(r|y, = 1,t) = p(r|ly. = 1).

The term p(aly, = 1) is the prior on the aspect ratio
of object bounding box conditioned on the existence of an
object from class z. Intuitively, the aspect ratio a is use-
ful for detecting items which have a distinct aspect ratio.
For instance, the width of waist belt and glasses are most
likely larger than their height. To model both p(aly, = 1)
and p(r]y, = 1), we use a 1-D Gaussian fitted by standard
maximum likelihood estimation.

Pose dependent prior on the bounding box center

We define a pose dependent prior on the bounding box cen-
ter as

plcly. = 1,t) = Hper. p(la, ly|y. = 1, k) 3)
= ersz((lwv ly) - tk|yz = 1) 4

where T, is a set of joints that are informative about the
bounding box center location of the object belonging to the
class z. The algorithm to determine 7', for each fashion item
class z will be described shortly. Each p((I,,1,) — tk|y, =
1) models the relative location of the bounding box center
with respect to the k-th joint location.

Intuitively, the locations of fashion items and those of
body joints have strong correlations. For instance, the lo-
cation of hat should be close to the location of head and
thus, the distribution of their offset vector, p((lz,l,) —
tHead |Ytat = 1) should have a strong peak around tyead



New Class Original Classes Si?evie:;’giiel Avera;)g; (I)nc]cal;:ence First and Second Key Joints
Bag Bag, Purse, Wallet 5,644 0.45 Left hip, Right hip

Belt Belt 1,068 0.23 Right hip, Left hip
Glasses Glasses, Sunglasses 541 0.16 Head, Neck

Hat Hat 2,630 0.14 Neck, Right shoulder
Pants Pants, Jeans 16,201 0.24 Right hip, Left hip

Left Shoe Shoes, Boots, Heels, Wedges, Flats, 3,261 0.95 Left ankle, Left knee
Right Shoe | Loafers, Clogs, Sneakers, Sandals, Pumps 2,827 0.93 Right ankle, Right knee
Shorts Shorts 6,138 0.16 Right hip, Left hip
Skirt Skirt 14,232 0.18 Left hip, Right hip
Tights Tights, Leggings, Stocking 10,226 0.32 Right knee, Left knee

Table 1: The definition of new classes, their average size and the average number of occurrence per image are shown. The

top 2 key body joints for each item as selected by the proposed algorithm are also shown. See Section@ for details.

and relatively easy to model. On the other hand, the loca-
tion of left hand is less informative about the location of
the hat and thus, p((lz,ly) — tLefthand|YHat = 1) typically
have scattered and complex distribution which is difficult to
model appropriately. Thus, it is beneficial to use for each
fashion item only a subset of body joints that have strong
correlations with the location of that item.

The relative location of the objects with respect to the
joints can be most faithfully modeled as a multimodal distri-
bution. For instance, bags, purses and wallets are typically
carried on either left or right hand side of the body, thus
generating multimodal distributions. To confirm this claim,
In Figure [3] we show a plot of (I;,l,) — tNeck Oof “Bag”
and a plot of (I,ly) — trefcankie Of “Left Shoe” obtained
from the dataset used in our experiments. As can be seen,
P((lz,1y) — tNeck|yBag = 1) clearly follows a multimodal
distribution while p((I., ly) — tLeft Ankle|YLeftShoe = 1) has
a unimodal distribution. Depending on the joint-item pair, it
is necessary to automatically choose the number of modes.

To address the challenges raised above, we propose an
algorithm to automatically identify the subset of body joints
T, and learn a model. For each pair of a fashion item z
and a body joint k, we model p((I,,,) — tx|ly. = 1) by
a Gaussian mixture model (GMM) and estimate the param-
eters by the EM-algorithm. We determine the number of
GMM components based on the Bayesian Information Cri-
teria [[17, 21]] to balance the complexity of the model and fit
to the data. To obtain 77, for item z, we pick the top 2 joints
whose associated GMM has larger likelihood. This way, for
each item, body joints which have less scattered offsets are
automatically chosen. The selected joints for each item will
be shown in the next section.

4. Experiments
4.1. Dataset

To evaluate the proposed algorithm, we use the Fashion-
ista Dataset which was introduced by [29] for pixel-level
clothing segmentation. Each image in this dataset is fully
annotated at pixel level, i.e. a class label is assigned to each
pixel. In addition to pixel-level annotations, each image is
tagged with fashion items presented in the images. In [28],
another dataset called Paper Doll Dataset including 339,797
tagged images is introduced and utilized to boost perfor-
mance on the Fashionista Dataset. Our method does not use
either associated tags or the Paper Doll Dataset. We use the
predefined training and testing split for the evaluation (456
images for training and 229 images for testing) and take out
20% of the training set as the validation set for the parame-
ter tuning.

In the Fashionista Dataset, there are 56 classes includ-
ing 53 fashion item classes and three additional non-fashion
item classes (hair, skin and background.) We first remove
some classes that do not appear often in the images and
those whose average pixel size is too small to detect. We
then merge some classes which look very similar. For in-
stance, there are “bag”, “Purse” and “Wallet” classes but
the distinction between those classes are visually vague,
thus we merge those three classes into a single "Bag” class.
We also discard all the classes related to footwear such as
“sandal” and “heel’” and instead add “left shoe” and “right
shoe” classes which include all types of footwear. It is in-
tended that, if needed by a specific application, a sophisti-
cated fine-grained classification method can be applied as a
post-processing step once we detect the items. Eventually,
we obtain 10 new classes where the occurrence of each class
is large enough to train the detector and the appearance of
items in the same class is similar. The complete definition



Methods mAP | Bag | Belt | Glasses | Hat | Pants | Left Shoe | Right Shoe | Shorts | Skirt | Tights
Full 31.1 | 225 | 14.2 22.2 36.1 | 57.0 28.5 32.5 374 20.3 40.6
w/o geometric priors | 229 | 194 | 6.0 13.0 289 | 372 20.2 23.1 34.7 15.2 31.7
w/o appearance 17.8 4.3 7.1 7.5 8.9 50.7 20.5 23.4 15.6 18.0 22.3

Table 2: Average Precision of each method. “Full” achieves better mAP and APs for all the items than “w/o geometric priors”

and “w/o appearance”.

Bag | Belt | Glasses | Hat | Pants | Left shoe

Right shoe

Shorts | Skirt | Tights | Background

1,254 | 318 177 306 | 853 1,799

1,598 473 683 986 225,508

Table 3: The number of training patches generated for each class with Selective Search [24].

of the new 10 classes and some statistics are shown in Ta-
ble [Tl

We create ground-truth bounding boxes based on pixel-
level annotations under the new definition of classes. For
classes other than “Left shoe” and “Right shoe”, we define a
ground-truth bounding box as the one that tightly surrounds
the region having the corresponding class label. For “Left
shoe” and “Right shoe” classes, since there is no distinction
between right and left shoes in the original pixel-level anno-
tations, this automatic procedure cannot be applied. Thus,
we manually annotate bounding boxes for “Right shoe” and
“Left shoe” classes. These bounding box annotations will
be made available to facilitate further research on fashion
apparel detection.

Our framework is general in the choice of pose estima-
tors. In this work, we use pose estimation results provided
in the Fashionista Dataset, which is based on [31]]. There
are 14 key joints namely head, neck, left/right shoulder,
left/right elbow, left/right wrist, left/right hip, left/right knee
and left/right foot.

In Table[I] we show the first and second key body joints
that are selected by the proposed algorithm. Interestingly,
for “Pants”, “Shorts” and “Skirt”, left hip and right hip are
selected but for “Tights”, left knee and right knee are se-
lected instead.

4.2. Detector Training

We create image patches for detector training by crop-
ping the training images based on the corresponding
ground-truth bounding box. Before cropping, we enlarge
the bounding boxes by a scale factor of 1.8 to include
the surrounding regions, thus providing contextual informa-
tion. Note that we intentionally make the contextual regions
larger than [[13] as contextual information would be more
important when detecting small objects like fashion items
we consider in this work. The cropped image patches are
then resized to the size of the first layer of CaffeNet (227
by 227 pixels). To increase the number of training patches,
we run the object proposal algorithm on the training images

and for each generated bounding box, we compute the in-
tersection over union (IoU) with the ground-truth bounding
boxes. If the IoU is larger than 0.5 for a particular class,
we use the patch as an additional training instance for that
class. If IoU is smaller than 0.1 with ground-truth bounding
boxes of all the classes, we use it as a training instance for
a background class. We also obtain training patches for the
background class by including image patches from ground-
truth bounding boxes of the classes which we do not include
in our new 10 classes.

The number of training patches for each class obtained
are shown in Table 3] From the obtained training patches,
we train a set of linear SVMs, each of which is trained by
using instances in a particular class as positive samples and
all instances in the remaining classes as negative samples.
The parameters of SVMs are determined from the validation
set.

4.3. Baseline Methods

Since fashion apparel detection has not been previously
addressed, there is no existing work proposed specifically
for this task. Thus, we convert the pixel-level segmenta-
tion results of [29] and [28] to bounding boxes and use their
performance as baselines. To obtain bounding boxes from
segmentation results, we use the same procedure we use
to generate ground-truth bounding boxes from the ground-
truth pixel-level annotations. Note that we exclude “Left
shoe” and “Right shoe” from the comparison since in their
results, there is no distinction between left and right shoes.

4.4. Results

We first evaluate the performance of the object proposal
methods in terms of precision and recall. Here, precision is
defined as the number of object proposals which match the
ground-truth bounding boxes regardless of class, divided by
the total number of object proposals. Specifically, we con-
sider each object proposal as correct if IoU > 0.5 for at
least one ground-truth bounding box. We compute recall for
each class by the number of ground-truth bounding boxes



Precision Recall (%) Avg. #
(%) Avg. | Bag | Belt | Glasses | Hat | Pants | L.Shoe | R. Shoe | Shorts | Skirt | Tights | of BBox
1.36 86.7 | 93.6 | 69.2 62.5 953 | 93.6 86.6 82.4 93.2 98.8 91.2 10734

Table 4: Precision, recall and the average number of generated bounding boxes per image. Note that it is important to have
high recall and not necessarily precision so that we will not miss too many true objects. Precision is controlled later by the

classification stage.

which have at least one corresponding object proposal, di-
vided by the total number of ground-truth bounding boxes.

In Table ] we show the precision, recall and the average
number of object proposals per image. We tune the param-
eters of both object proposal algorithms to retain high recall
so that it will not miss too many true objects. Although it
results in the low precision, false positives are reduced in
the subsequent classification stage.

We evaluate the performance of the detection meth-
ods using the average precision (AP) computed from the
Precision-Recall curves. In Table [2] we report the perfor-
mance of the proposed framework with three different set-
tings, “Full” represents our complete method using both ge-
ometric priors and appearance-based posterior, “w/o geo-
metric prior” represents a method which excludes the geo-
metric priors from “Full” and “w/o appearance” is a method
which excludes appearance-based posterior from “Full”.

From the comparison between “Full” and “w/o geomet-
ric prior”, it is clear that incorporating geometric priors sig-
nificantly improves the performance (35.8% improvement
for mAP). This result indicates the effectiveness of the geo-
metric priors in the fashion item detection task.

In Figure ff] we show precision-recall curves of the pro-
posed methods with various settings as well as precision-
recall points of the baseline methods. In the figures, “paper-
doll” refers to the results of [28]] and “fashionista” refers to
[29]. Except for “Pants”, our complete method outperforms
the baselines with a large margin. Note that “paperdoll”
[28] uses the large database of tagged fashion images as ad-
ditional training data.

In Figure [5] we show some qualitative results. Figure [§]
shows sample images where our approach makes mistakes.
We argue that fashion apparel detection has its own unique
challenges. First of all, even with our new fashion item
classes, some fashion items are visually very similar to each
other. For example, “Tights” and “Pants” can look very sim-
ilar since both items can have a variety of colors. The only
distinguishable cue might be how tight it is, which is quite
challenging to capture. Another example is “Skirt” and bot-
tom half of a dress. Both items have extremely similar ap-
pearance. The only difference is that a dress is a piece of
cloth which covers both upper body and lower body and
this difference is difficult to detect. Furthermore, “Belt”
and “Glasses” are difficult to detect as they are usually very

Figure 5: Example detection results obtained by the pro-
posed method. Note that we overlaid text labels manually
to improve legibility.

small.

5. Conclusion

In this work, we reformulate fashion apparel parsing, tra-
ditionally treated as a semantic segmentation task, as an ob-
ject detection task and propose a probabilistic model which
incorporates state-of-the-art object detectors with various
geometric priors of the object classes. Since the locations
of fashion items are strongly correlated with the pose of a
person, we propose a pose-dependent prior model which
can automatically select the most informative joints for
each fashion item and learn the distributions from the data.
Through experimental evaluations, we observe the effec-
tiveness of the proposed priors for fashion apparel detec-
tion.
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Figure 4: Precision-Recall curves for each fashion category. Our full method outperforms the baseline method (shown by
cross) with a large margin (sometimes up to 10 times in precision for the same recall), except for “Pants”. Note that we do
not have results from the baseline methods for “Left shoe” and “Right shoe” as they are newly defined in this work.

Figure 6: Examples of failed detection results obtained by the proposed method. Note that we overlaid text labels manually

to improve legibility. Incorrect labels are shown in red.
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