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Abstract

Despite the great advances made in the field of image
super-resolution (ISR) during the last years, the perfor-
mance has merely been evaluated perceptually. Thus, it is
still unclear whether ISR is helpful for other vision tasks.
In this paper, we present the first comprehensive study and
analysis of the usefulness of ISR for other vision applica-
tions. In particular, six ISR methods are evaluated on four
popular vision tasks, namely edge detection, semantic im-
age segmentation, digit recognition, and scene recognition.
We show that applying ISR to input images of other vision
systems does improve their performance when the input im-
ages are of low-resolution. We also study the correlation be-
tween four standard perceptual evaluation criteria (namely
PSNR, SSIM, IFC, and NQM) and the usefulness of ISR to
the vision tasks. Experiments show that they correlate well
with each other in general, but perceptual criteria are still
not accurate enough to be used as full proxies for the use-
fulness. We hope this work will inspire the community to
evaluate ISR methods also in real vision applications, and
to adopt ISR as a pre-processing step of other vision tasks
if the resolution of their input images is low.

1. Introduction

Image super-resolution (ISR) aims to sharpen smooth
rough edges and enrich missing textures in images that have
been enlarged using a general up-scaling process (such as
a bilinear or bicubic process), thereby delivering an image
with high-quality resolution [13, 46, 48, 38, 10, 6]. ISR
systems can be used to adapt images to displaying devices
of different dimensions, to map image textures to 2D/3D
shapes, and to deliver pleasing visualization for data that
are inherently low-resolution such as image or videos from
surveillance cameras. Despite the popularity of ISR in the
past years, their performance has merely been evaluated
perceptually and/or by evaluation criteria reflecting percep-
tual quality such as PSNR and SSIM. Therefore, it is still
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unclear whether ISR is helpful in general to other vision
tasks and whether the perceptual criteria are able to reflect
the usefulness. This paper answers the questions.

We here present reasons why ISR can be helpful for other
vision tasks, in addition to improving perceptual quality.
As we know, most of current vision systems consist in two
phases: training and testing. Although features have been
designed to overcome the influence of scale changes, it is
still a blessing if 1) the training and testing images are of the
same/similar resolution; and/or 2) input images can be con-
verted to the resolution at which the features and the models
were designed. It happens quite common that training and
testing data are of different resolutions, e.g. training images
are from expensive sensors while testing images from cheap
ones. If testing images are of higher resolution, down-
sampling them with linear filters does the job. If the oppo-
site holds, however, sophisticated ISR methods are required
to super-resolve the testing images. Also, vision systems are
often designed and optimized (e.g. the features) for images
of the most ‘popular’ resolution at the time. ISR is use-
ful to super-resolve images which are of lower-resolution
than the images for which the features and models are de-
signed and learned. One example is object recognition with
surveillance cameras: popular features [23, 9, 28] for ob-
ject recognition are designed for normal images which are
of higher-resolution than surveillance scenes in general. For
this case, even the training data and testing data are of the
same resolution, ISR is still helpful by enabling feature ex-
traction at an appropriate resolution.

In order to sufficiently sample the space of ISR meth-
ods and potential vision tasks, six ISR methods are cho-
sen and evaluated on four popular vision applications. The
ISR methods are Zeyde et al. [48], ANR [38], A+ [39], SR-
CNN [10], JOR [6], and SRF [31]. They are chosen be-
cause 1) they are popular and representative; 2) they have
code available; and 3) they are computationally efficient.
The four vision applications include image boundary detec-
tion, semantic image segmentation, digit recognition, and
scene recognition. The tasks are chosen because they are
representatives of current low- and high-level vision tasks.
The data of digits is chosen because low-resolution inputs
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are very likely to occur in this field. For all the tasks, we
apply standard approaches with varying modes of the input
images: from low-resolution images, to super-resolved im-
ages by the six ISR methods, and to the high-resolution im-
ages. The experimental results suggest that ISR is helpful
for these vision tasks if the resolution of the input images
are low, and that the standard evaluation criteria, including
PSNR, SSIM, IFC, and NQM, correlate generally well with
the usefulness of ISR methods, but should not be used as the
full proxies of the usefulness if high precision is required.

The paper is organized as follows. Section 2 reports re-
lated work. Evaluation on the four vision tasks are con-
ducted in Section 3.1 to Section 3.4. Finally, the paper con-
cludes in Section 4.

2. Related Work
There is a large body of work addressing image super-

resolution task. We breifly summarize them. The oldest
direction is represented by variants of interpolation, such
as Bilinear and Bicubic [11, 37]. They represent the sim-
plest and the most popular methods. However, they of-
ten produce visual artifacts such as blurring, ringing, and
blocking, which follows the fact that their assumptions of
smoothness and band-limited image data hardly hold in real
cases. Due to these reasons, more realistic priors and reg-
ularization have been developed, such as the sparse deriva-
tive priors in [36], the PDE-based regularization in [41], the
edge smoothness prior in [8], and gradient profile [34]. De-
spite the improvement by these methods, the explicit forms
of prior are still insufficient to express the richness of real-
world image data.

In recent years, example-based image super-resolution
has raised the most attention due to its good performance
and simplicity. In this stream, the task is to learn a mapping
function from a collection of LR images and their corre-
sponding high-resolution (HR) ones. The LR and HR data
can be collected from the test image itself or from an exter-
nal dataset. Methods [12, 14, 43, 17] in the former stream
draw on the ‘self-similarity’ of images across scales, and
have obtained great success. However, they are normally
relatively slow because on-line learning is needed for the
dictionary. Methods in the latter group rely on extra train-
ing data, unleashing the learning capacity of many learning
methods. The KNN method [13] and its variants [1, 45, 6, 4]
have gained great attention. More sophisticated learn-
ing methods such as Sparse Coding [46, 20, 38, 39, 42],
SVM [27], Random Forests [31, 30, 29], and Deep Neu-
ral Network [10, 3, 42] have been applied widely to the
task as well. One exceptional work is [35], using scene
matching with internet images for image super-resolution.
Since example-based methods with extra training data ob-
tain state-of-the-art performance for ISR, our evaluation is
focused mostly on this stream.

There is also a survey paper on ISR [25], providing an
excellent summary of the theory and applications of ISR.
[40] exploits seven ways to improve the performance of
general example-based ISR methods. The work most rel-
evant to ours is [44], where different ISR methods are eval-
uated. While sharing similarities, the two methods still dif-
fer significantly. [44] conducted user studies for perceptual
evaluation, solely with visual comparison and under evalu-
ation criteria such as PSNR and SSIM. Our work, however,
integrates ISR methods into systems of other vision appli-
cations and evaluates the usefulness of ISR to these vision
tasks. There are also works employing ISR to improve the
quality (resolution) of the input images of other vision algo-
rithms, such as [16] for face recognition and [19] for pedes-
trian identification. However, these tasks are specific and
the ISR methods used are highly specialized. Our work,
however, evaluates general ISR methods with a variety of
popular vision tasks.

3. Evaluation
In this section, we briefly describe the six ISR meth-

ods: Zeyde et al. [48], ANR [38], A+ [39], SRCNN [10],
JOR [6], and SRF [31], followed by the evaluation on the
four vision tasks. The six methods, starting out with the
results of Bicubic interpolation, learn from examples to re-
cover the missing high-frequency parts. As to the examples,
the six methods are all trained with the same training dataset
from [46], which consists of 91 images of flowers, faces, et
al. For implementation, we use the codes provided by the
authors. Readers are referred to their papers for details. As
to scaling factors, we evaluate with ×3 and ×4, which are
commonly used in previous papers.

For datasets, we use the standard ones for the four vi-
sion tasks, though not the most challenging ones. To gen-
erate inputs for our evaluation, we downscale the original
images of the datasets by factors ×3 and ×4 to create the
low-resolution (LR) images and then upscale them by each
of the six ISR methods to the resolution of the original im-
ages, which are then used as the inputs for the vision tasks.
The standard approaches to the four tasks are then applied
to all the six super-resolved versions of the images. The
corresponding performances are recorded to evaluate the
usefulness of the ISR methods for the vision tasks, with a
comparison to Bicubic Interpolation, and the original im-
ages. We also evaluate the ISR methods on these datasets
with four standard perceptual criteria [44], namely PSNR,
SSIM, IFC, and NQM, in order to see their correlation to
the usefulness of ISR to these vision tasks.

3.1. Boundary Detection

Boundary Detection (BD) is a very popular low-level vi-
sion task and serves as a crucial component for many high-
level vision systems [24, 18]. This section evaluates the



BSDS300 Bicubic Zeyde et al. [48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF[31] Original
×3 PSNR 27.15 27.87 27.88 28.10 28.18 28.17 28.17 —

SSIM 0.736 0.770 0.773 0.777 0.781 0.781 0.780 —
IFC 2.742 3.203 3.248 3.131 3.374 3.360 3.366 —

NQM 27.42 31.80 31.95 31.28 32.35 32.41 32.40 —
AUC 0.647 0.675 0.665 0.668 0.675 0.674 0.674 0.696

×4 PSNR 25.92 26.51 26.51 26.66 26.77 26.74 26.74 —
SSIM 0.667 0.697 0.699 0.702 0.709 0.707 0.707 —
IFC 1.839 2.195 2.231 2.117 2.325 2.316 2.293 —

NQM 21.15 24.30 24.37 24.19 24.98 24.96 24.98 —
AUC 0.595 0.647 0.635 0.650 0.656 0.655 0.652 0.696

Table 1. Average PSNR, SSIM, IFC, NQM values of ISR methods on BSDS300 and average AUC values of boundary detection via
CBD [18] on the super-resolved images by the ISR methods and the original images. The best one is shown in bold and the second best
underlined.
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(a) PR curves with scaling factor x4 (b) PR curves with scaling factor x3 and x4
Figure 1. Average PR curves of boundary detection via CBD [18] on the super-resolved images by some of the five ISR methods and on
the original images of BSDS300. (a) curves for scaling factor x4, where SRCNN and A+ are not shown for visual clarity as they are very
similar to JOR. (b) a comparison of scaling factor x3 and x4, where only Bicubic Interpolation and JOR are shown for visual clarity.

usefulness of ISR methods for BD. We use Crisp Bound-
ary Detection [18] (CBD), which is an unsupervised algo-
rithm, deriving an affinity measure with point-wise mutual
information between pixels and utilizing this affinity with
spectral clustering method to detect boundaries. It produces
pixel-level boundaries and achieves state-of-art results. The
performances are evaluated on the BSDS300 dataset [24].
The whole dataset consists of 300 images (200 for training
and 100 for testing) along with human annotations. The
quality of detected boundaries is evaluated by precision-
recall (PR) curves, following Berkeley Benchmark [24].

Table 1 lists the AUC values of BD on the eight sets of
images, along with the values of PSNR, SSIM, IFC, and
NQM of corresponding ISR methods. Fig. 1 shows the av-
erage PR curves. From the table and the figure, it can be ob-
served that ISR methods do improve, over simple interpola-
tion, the performance of BD when input images are of low-

resolution. For instance, JOR improves the AUC by 0.06
when factor x4 is considered. This is because ISR methods
perform better in increasing the resolution of the LR images
to the resolution for which the BD method (CBD [18] in this
case) was designed. CBD uses highly localized features to
predict pixel-level boundaries, whose accuracy is affected
largely by the recovered details locally. As a result, the six
learning-based ISR methods all perform better than Bicu-
bic Interpolation. This suggests that ISR should be con-
sidered as a pre-processing step for BD if the input images
are of LR. One may argue that adapting or re-training the
BD method may increase its performance for LR images.
It is true, but we have to admit that adapting or re-training
the approach requites expertise of BD and deep understand-
ing of the approach used. Enhancing the resolution of LR
inputs, however, is much more straightforward for general
practitioners, especially given the fact that BD is just one of



Original Bicubic Zeyde [48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF[31]

PSNR 22.06 22.83 22.69 23.13 23.16 23.13 23.13

AUC 0.718 0.779 0.739 0.823 0.807 0.825 0.828

PSNR 26.94 28.29 28.06 29.05 29.17 28.93 29.23

AUC 0.861 0.872 0.870 0.913 0.900 0.885 0.891
Figure 2. Super-resolved examples with their PSNR values and corresponding detected boundary maps by CBD [18] with their AUC values.
Better seen on the screen.

such examples as shown in following sections.
It can also be found that the four standard perceptual cri-

teria correlate quite well with the usefulness of ISR meth-
ods for the task of BD. ISR methods which yield better per-
ceptual quality (based on the four perceptual criteria) often
obtain better boundary detection results. However, percep-
tual criteria should not be considered as full proxies for the
usefulness of ISR methods to BD. For instance, SRCNN
outscores A+ in terms of PSNR while having a lower AUC
value, when factor ×3 is used. This suggests that measuring
the usefulness of ISR methods for BD directly in a real sys-
tem is necessary if a high precision is requited. In general,
SRCNN, A+, JOR and SRF are among the most useful ISR
methods for the task of BD for the dataset and approach
considered. The third finding from the table and figure is
that ISR methods are more useful when the scaling factor is
larger, which means they are more needed when the input
images are of very low-resolution.

In Fig. 2, we show visual examples, with the super-
resolution results and their corresponding BD results. From
the figure, it is evident that example-based ISR methods im-
prove the quality of BD results with sharper true boundaries
and fewer spurious ones. However, there is still a large room
for improvement as the OB results on the super-resolved im-
ages by the ISR methods are still substantially worse than
the result on the original (‘HR’) image.

3.2. Semantic Image Segmentation

In this section, we consider the task of semantic image
segmentation, which aims to assign a semantic label to each
pixel of the image, such as tree, road, and car. It is a

very popular high-level vision task with a large number of
methods proposed [33, 15, 22]. We follow the footsteps of
most previous works on semantic image segmentation and
choose the standard MSRC-21 [32] dataset for the evalua-
tion. MSRC-21 consists of 591 images of 21 semantic cate-
gories. For the segmentation method, we employ the recent
approach [15] for its simplicity in order to better show the
influence of ISR. [15] presents a fast approximate nearest
neighbor algorithm for image labeling. They build a super-
pixel graph from annotated set of training images. At test
time, they transfer labels from the training images to the
test image via matching super-pixels in the graph. The dis-
tance between super-pixels in the feature space is approxi-
mated by edge distance in the super-pixel graph where the
edge weights are learned from the training set. This method
shows comparable results to the state-of-the-art methods.
For the implementation, we use the authors’ code with the
default settings.

In order to evaluate the ISR methods for semantic image
segmentation, we train the method [15] with the original
training images (e.g. the HR images) and test the trained
model on eight versions of the testing images, created by
down-sampling the original images and then up-solving
them by the ISR methods to the resolution of the original
images. Again, the performance is tested for scaling fac-
tor x3 and x4. Table 2 lists the results of all ISR methods,
where the average precision over pixels (APP) and the av-
erage precision over classes (APC) are reported, along with
the values of the four perceptual criteria. As we can see
from the table, all the six ISR methods yield significantly
better results than Bicubic Interpolation. Putting it into an-



(a) Original (b) Bicubic (c) Zeyde[48] (d) ANR[38] (e) SRCNN[10] (f) A+[39] (g) JOR[6] SRF[31]

— PSNR / 26.23 PSNR / 26.60 PSNR / 26.64 PSNR / 26.65 PSNR / 26.71 PSNR / 26.72 PSNR / 26.73

APP / 0.975 APP / 0.902 APP / 0.945 APP / 0.966 APP / 0.948 APP / 0.954 APP / 0.957 APP / 0.955

— PSNR / 24.03 PSNR / 24.55 PSNR / 24.53 PSNR / 24.83 PSNR / 24.78 PSNR / 24.76 PSNR / 24.78

APP / 0.985 APP / 0.647 APP / 0.947 APP / 0.971 APP / 0.972 APP / 0.968 APP / 0.976 APP / 0.978

— PSNR / 17.49 PSNR / 17.80 PSNR / 17.83 PSNR / 17.88 PSNR / 17.85 PSNR / 17.85 PSNR / 17.85

APP / 0.937 APP / 0.639 APP / 0.891 APP / 0.899 APP / 0.754 APP / 0.888 APP / 0.909 APP / 0.907

Figure 3. Examples for semantic image segmentation: super-resolved images with their PSNR values and the corresponding labeling results
with their average precision over pixels (APP) are shown. Better seen on the screen.

Table 2. Average PSNR, SSIM, IFC, NQM, and labeling accuracy on MSRC-21 dataset, where APP indicates Average Precision over
Pixels, and APC means Average Precision over Classes. The best performance is shown in bold and the second best is underlined.

MSRC-21 Bicubic Zeyde et al. [48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF[31] Original
×3 PSNR 25.29 26.02 26.00 26.21 26.28 26.28 26.35 —

SSIM 0.689 0.726 0.728 0.733 0.737 0.737 0.738 —
IFC 2.677 3.214 3.250 3.131 3.390 3.396 3.640 —

NQM 19.56 22.48 22.47 22.64 23.10 23.16 23.20 —
APP 0.692 0.762 0.770 0.777 0.780 0.783 0.782 0.844
APC 0.592 0.662 0.674 0.681 0.684 0.687 0.685 0.743

×4 PSNR 24.04 24.65 24.63 24.77 24.88 24.86 24.90 —
SSIM 0.608 0.641 0.643 0.646 0.654 0.652 0.660 —
IFC 1.694 2.043 2.066 1.992 2.171 2.151 2.301 —

NQM 14.75 16.56 16.55 16.73 17.10 17.12 16.99 —
APP 0.582 0.665 0.677 0.673 0.682 0.674 0.674 0.844
APC 0.505 0.569 0.584 0.588 0.591 0.586 0.605 0.743

other way, these learning-based super-resolution systems, in
addition to improving visual quality of LR images, do facil-
itate semantic labeling tasks and improve the performance
substantially when the resolution of the testing images are
lower than that of the training images. The results suggest

that it is worth effort to integrate ISR methods into real im-
age labeling systems if the resolutions of training and test-
ing images are distinctive. This is highly probably the case
for real semantic labeling systems where training images on
the server side are from expensive sensors and testing im-



SVHN Bicubic Zeyde et al. [48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF[31] Original
×3 PSNR 33.39 35.40 35.73 35.03 34.85 34.90 34.82 —

SSIM 0.912 0.946 0.949 0.946 0.946 0.948 0.948 —
IFC 2.050 2.331 2.417 2.291 2.389 2.346 2.355 —

NQM 10.23 12.59 12.91 12.16 12.17 12.21 12.19 —
Accuracy 0.766 0.774 0.777 0.779 0.778 0.775 0.778 0.793

×3[R] PNSR 33.39 36.30 36.53 35.99 37.20 37.26 37.12 —
SSIM 0.912 0.951 0.953 0.947 0.963 0.964 0.963 —
IFC 2.050 2.484 2.550 2.427 2.726 2.730 2.701 —

NQM 10.23 13.30 13.53 13.04 14.24 14.25 14.17 —
Accuracy 0.766 0.775 0.774 0.773 0.783 0.786 0.778 0.793

×4 PSNR 29.08 30.63 30.72 30.83 30.45 30.47 30.11 —
SSIM 0.787 0.842 0.847 0.849 0.847 0.850 0.845 —
IFC 1.262 1.352 1.367 1.368 1.365 1.339 1.287 —

NQM 6.211 7.864 7.978 8.021 7.732 7.720 7.453 —
Accuracy 0.712 0.731 0.731 0.730 0.737 0.722 0.729 0.795

×4[R] PNSR 29.08 31.07 31.06 31.00 32.00 31.71 31.77 —
SSIM 0.787 0.858 0.862 0.856 0.887 0.887 0.886 —
IFC 1.262 1.456 1.466 1.427 1.639 1.599 1.589 —

NQM 6.211 8.268 8.286 8.209 9.162 8.872 8.962 —
Accuracy 0.712 0.735 0.730 0.732 0.744 0.744 0.749 0.795

Table 3. Results of digit recognition on the SVHN dataset. The k-NN classifier is trained and applied on HOG features of each pair
of super-resolved training and test sets. Methods marked with [R] are retrained using the unused digits of the SVHN dataset. The best
performance is shown in bold and the second best is underlined.

ages on the user side are from cheap sensors such as cam-
eras of an mobile phone. Another observation from the table
is that the standard perceptual evaluation criteria correlate
quite well with the usefulness of ISR methods for semantic
image segmentation. This implies that good visual quality
also facilitates computer systems for recognition. This can
ascribed to the fact that the semantics are defined by human
and computer are trained to conduct a human vision task
which is of course very relevant to the perceptual quality of
images. Also, ISR methods are more useful when the scal-
ing factor is larger, which means they are more needed when
the input images are of very low-resolution. The observa-
tion is consistent with the one we had for BD in Sec. 3.1.

In Fig. 3, we show three image examples, with the super-
resolution results and their corresponding labeling results.
From the figure, it is evident that ISR methods improve the
quality of the labeling results. For instance, in the third ex-
ample, results of Bicubic Interpolation labeled a large area
of the building to sky, which is probably due to the detailed
textures on the building are missing in the interpolated im-
age. The missing texture are recovered (to some extend) by
the example-based ISR methods, leading to better labeling
results. Also, it can be found that RGB images that have
small difference in perception may lead to totally different
labeling results, e.g. the tree in the second example. This
implies that there is still room for computer recognition sys-
tems to improve in order to be as robust as human vision.

3.3. Digit Recognition

In this section, we test the usefulness of ISR methods for
the task of digit recognition where the training images and
the test image are both of low-resolution. We use the Street
View House Numbers (SVHN) [26] dataset which contains
more than 100,000 images of house numbers obtained from
Google Street View. Each image presents a single digit at
its center and has the same size of 32×32 pixels. We se-
lect 26,032 and 10,000 images from the dataset as our train-
ing and test set. In order to evaluate the usefulness of ISR
methods for digit recognition, we here down-sample all the
images by factor x3 and factor x4, and up-sample the down-
sampled images to the resolution of the original images by
the ISR methods. As the SVHN dataset merely presents
numbers from 0 to 9, it is highly specific and quite dif-
ferent from the training dataset from [46] that is used to
train the ISR methods. Therefore, we re-trained all ISR
methods with the unused images from the SVHN dataset,
to study the generality of ISR methods. After adding the
re-trained methods, we now have twelve datasets of super-
resolved results, one dataset from Bicubic Interpolation and
one dataset of the original images. As to the classifier, we
use the k-NN with k = 5 for each of the eight image sets
with HOG feature [9] as input. Other values of k yield a
similar trend.

The classification performance is listed in Table 3. The
table demonstrates that ISR methods do improve the perfor-



Original Bicubic Zeyde[48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF[31]

27.83 29.02 29.59 29.37 31.37 31.51 29.93

re-trained
27.83 31.46[R] 30.50[R] 30.46[R] 32.81[R] 32.84[R] 33.75[R]

25.44 26.59 26.27 26.86 26.77 27.19 26.63

re-trained
25.44 29.24[R] 27.87[R] 27.71[R] 33.00[R] 32.82[R] 35.58[R]

Figure 4. Super-resolved results and corresponding PSNR values of two digits. Methods marked with [R] are retrained using the unused
digits of the SVHN dataset. Better seen on the screen.

mance of digit recognition over simple interpolation, and
that the four perceptual criteria correlate quite well with the
usefulness of ISR methods for digit recognition. The reason
of the improvement is that HOG feature was designed for
images of normal resolution, so by applying ISR methods
to the LR input images, HOG can be extracted from images
of suitable resolution. However, we find that with the stan-
dard, general training dataset [46], Zeyde et al. and ANR
perform better than SRCNN, A+ , JOR and SRF, which is
different from the results of the previous two tasks with gen-
eral images. This observation suggests that Zeyde et al. and
ANR are more generally applied than the other four state-
of-the-art ISR methods. One possible reason is that mod-
els of higher complexity are more likely to overfit to the
training data. The problem can be solved by re-training the
model with data of similar distribution as the test data. We
re-trained all the six method with unlabeled digits in SVHN,
and as expected the performance is improved significantly,
according to the four perceptual criteria or recognition ac-
curacy. See Table 3 for the improvement. After re-training,
the four methods SRCNN, A+, JOR, and SRF yield the best
results. In Fig. 4, we show two digits, along with their
super-resolved results by factor x3 and the PSNR values.
From the figure, it is clear to see the artifacts generated by
the ISR methods trained with general training data. The in-
troduced artifacts lead to noisy HOG features, which in turn
confuse the classifier. All the evidence leads to conclusions

similar to that drawn for boundary detection and semantic
image segmentation: (1) ISR methods are generally help-
ful for recognizing digits of low-resolution; and (2) percep-
tual evaluation criteria reflect the usefulness of ISR to digit
recognition quite well. In addition, we find that the perfor-
mance of ISR methods will improve significantly if they are
re-trained with domain specific data.

3.4. Scene Recognition

In this section, we evaluated six ISR methods on the task
of scene recognition. We tested the methods on the Scene-
15 dataset [21], which has been widely used for image clas-
sification and clustering [21, 5, 7]. Scene-15 contains 15
scene categories in both indoor and outdoor environments.
Each category has 200 to 400 images, and they are of size
300 × 250 pixels on average. We use the same experi-
mental designs as for the previous tasks: down-sampling
all the images by factor x3 and factor x4, and up-sampling
the down-sampled images to the resolution of the original
images by the six ISR methods, thus resulting in six super-
resolved datasets for each scaling factor, one for bicubic in-
terpolation, and one for the original (HR) images. As to the
features, we use the Convolutional Neural Network (CNN)
features [2], obtained from an off-the-shelf CNN model pre-
trained on the ImageNet. The feature is chosen as CNN
feature has achieved state-of-the-art performance for image
classification [2]. It is worth noticing that the training and



Scene-15 Bicubic Zeyde [48] ANR[38] SRCNN[10] A+[39] JOR[6] SRF [31] Original
×3 PSNR 25.12 25.85 25.87 26.10 26.19 26.18 26.13 —

SSIM 0.73 0.78 0.77 0.78 0.79 0.79 0.80 —
IFC 2.82 3.34 3.43 3.20 3.58 3.60 3.58 —

NQM 19.75 22.69 22.73 22.81 23.39 23.43 23.30 —
Accuracy 0.770 0.777 0.777 0.780 0.782 0.782 0.778 0.809

×4 PSNR 24.32 24.99 24.95 25.06 25.24 25.22 25.19 —
SSIM 0.674 0.701 0.702 0.704 0.720 0.719 0.722 —
IFC 1.597 1.923 1.911 1.806 2.021 2.010 2.014 —

NQM 14.43 16.12 16.05 16.07 16.62 16.61 16.57 —
Accuracy 0.735 0.752 0.753 0.748 0.754 0.753 0.753 0.809

Table 4. Average PSNR, SSIM, IFC, NQM values and the accuracy of scene recognition on Scene-15 dataset.

testing data are processed the same way, i.e. down-sampled
by bicubic interpolation and up-sampled by the same ISR
method (one of the six). The convolutional results at layer
16 were stacked as the CNN feature vector, with dimension-
ality of 4096. As to the classification, we use 15 images per
class as the training samples, and the rest left for testing.

The classification accuracies over 10 random training-
testing splits are averaged and reported in Table 4, along
with the results according to the four perceptual criteria.
The table shows that learning-based ISR methods are help-
ful for scene recognition with the deep neural network when
the input images are of low-resolution. The four percep-
tual criteria also correlate generally well with usefulness of
ISR methods for this task, which is in line with the conclu-
sions drawn for previous vision tasks. Images at multiple
scales have recently been employed for training deep neural
networks [47, 22], and they show improvement over a sin-
gle scale. It is interesting to see how ISR methods help to
generate multiple scales of the input images to train better
neural networks. We leave this as our future work.

4. Discussion and Conclusion
We have evaluated the usefulness of image super-

resolution (ISR) for a variety of different vision tasks. Six
ISR methods have been employed and evaluated on four
popular vision tasks. Three general conclusions can be
drawn from experiments on the four tasks: 1) ISR methods
are helpful in general for other vision tasks when the reso-
lution of input images are low; 2) standard perceptual crite-
ria, namely PSNR, SSIM, IFC, NQM, correlate quite well
with the usefulness of ISR methods for the vision tasks, but
they are not accurate enough to be used as full proxies; and
3) even with the state-of-the-art ISR methods, the perfor-
mance with the super-resolved images are still significantly
inferior to that with the original, high-resolution images.

Although it is generally believed that ISR methods is
helpful for other vision tasks, this work has formalized
the common conception and conducted quantitative eval-
uation. We hope this work will be an inspiration for the
community to integrate ISR methods into other vision sys-

tems when the input images are of low-resolution or when
multiple resolutions are needed, and to evaluate ISR meth-
ods in real vision tasks, in addition to merely inspecting
the visual quality. The work may inspire the community
to design super-resolution algorithm for specific vision task
rather than merely levering the perceptual criteria.

We acknowledge that for some tasks, the approaches and
the datasets do not represent the state of the arts. However,
they are standard ones and we believe they are sufficient to
support the conclusions. Method evaluation on more vision
tasks with more challenging datasets, testing multiple ap-
proaches for the same task, and testing different parameter
settings for the same approach constitute our future work.
The code and data of this work are available at the project
page.
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