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Abstract

While egocentric video is becoming increasingly popu-
lar, browsing it is very difficult. In this paper we present
a compact 3D Convolutional Neural Network (CNN) ar-
chitecture for long-term activity recognition in egocentric
videos. Recognizing long-term activities enables us to
temporally segment (index) long and unstructured egocen-
tric videos. Existing methods for this task are based on
hand tuned features derived from visible objects, location
of hands, as well as optical flow.

Given a sparse optical flow volume as input, our CNN
classifies the camera wearer’s activity. We obtain classi-
fication accuracy of 89%, which outperforms the current
state-of-the-art by 19%. Additional evaluation is performed
on an extended egocentric video dataset, classifying twice
the amount of categories than current state-of-the-art. Fur-
thermore, our CNN is able to recognize whether a video
is egocentric or not with 99.2% accuracy, up by 24% from
current state-of-the-art. To better understand what the net-
work actually learns, we propose a novel visualization of
CNN kernels as flow fields.

1. Introduction
Recent advances in wearable technologies have made the

usage of head mounted camera practical. Such cameras are
usually operated in ‘always on’ mode, providing access to
first person point of view which is typically not available
with traditional point and shoot cameras. We refer to such
videos as egocentric videos. With wearable cameras be-
coming increasingly affordable, egocentric video recording
has become common practice in many areas such as sports,
hiking, and law enforcement. While the possibility of shar-
ing one’s actions with the community is compelling enough,
usage of such cameras for life logging is also on the rise.

Egocentric video gives a novel perspective to capture so-
cial and object interactions, but also poses new challenges
for the computer vision community. The endless motion
from head mounted cameras and the unstructured nature
of videos that are shot in an ’always on’ mode make ego-
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Figure 1. The proposed pipeline for classifying video segments
in egocentric video according to the activity of the camera wearer.
The CNN takes as input sparse optical flow from several frames ar-
ranged in a 3D array. 3D convolutions and 3D pooling are used in
the network to preserve temporal structure and facilitate the learn-
ing of long term features.

centric videos challenging to analyze. Recent papers in the
field explored a variety of topics such as object recognition
[6, 27, 26], activity recognition [3, 5, 28, 31, 22, 32, 21, 20],
summarization [16, 18, 1], gaze detection [17] and social
interactions [4]. Other tasks such as temporal segmentation
[24, 14], frame sampling [35, 25], hyperlapse [15] and cam-
era wearer identification [23, 9, 36] have been explored as
well.

Encouraged by the success of neural networks, we in-
vestigate CNN architecture for determining the activity of
the camera wearer in egocentric videos. Obtaining large
enough datasets to train CNNs is always a challenge. In
the case of egocentric vision, it is even more difficult due
to legal and ethical issues (e.g. privacy). To overcome the
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Figure 2. Network architecture. Our network takes as input sparse optical flow computed on a grid of 32×32, stacked over 60 frames. The
first hidden layer is a rather long 3D convolution followed by 3D pooling. Long 3D convolutions allow the network to learn features for
long term activities, the focus of this paper. Next layers are standard 2D convolutional and pooling layers, followed by 2 fully connected
layers and terminating with a softmax layer. All hidden weight layers use the ReLU activation function.

data scarcity problem, we propose a compact CNN which
is trained on optical flow instead of pixel intensities. Using
motion cues for egocentric vision tasks aligns well with re-
cent works in the field (e.g. [28, 14, 29, 24, 23, 33]). Fig. 1
illustrates the proposed pipeline for classifying egocentric
videos according to the activity of the camera wearer.

To explore the capabilities of the proposed architecture,
we compare it to Poleg et al. [24], who used sparse opti-
cal flow (without appearance based features) for classifying
video into 7 long term activities such as walking, driving,
etc. We obtain 89% accurate classification, 19% higher than
their original method. We also extend their dataset from 7
to 14 activity classes, and achieve an accuracy of 86% on
this new dataset. We also test our network on the task of
determining whether a video is egocentric or not. We report
accuracy of 99%, up by over 27% on the classification ac-
curacy reported by Tan et al. [33]. They suggested to use
approximately 50 handcrafted features for this task, based
on both intensities and optical flow.

In an attempt to understand what the network actually
learns, we analyze the kernels learned by our network for
the task of long-term activity recognition. Previous works
[30, 11, 7, 2, 10, 37] visualize learned kernels by mapping
kernel weights to image intensities. We find this style of
visualization difficult for analyzing optical flow based ker-
nels. Instead, we suggest visualizing the learned kernels as
optical flow fields. Using this visualization, we show that
the proposed CNN learns intuitive and meaningful kernels.

The rest of this paper is organized as follows. We sur-
vey related works in Section 2. We present the proposed
CNN architecture in Section 3. In Section 4 we evaluate
the power of our network on several egocentric tasks and
provide insights by analyzing the learned convolutional ker-
nels. We conclude in Section 5.

2. Related Work
Activity Recognition in Egocentric Video There are two
main approaches to activity recognition in egocentric video.
The first approach is based mainly on appearance, in which
object detection, hand recognition and other visual cues are
used in order to infer the activity performed by the camera
wearer [3, 5, 22, 20, 32]. These methods perform best for
short-term tasks in a controlled environment. In this work
we focus on long-term activity performed by the camera
wearer in the wild.

The second line of works for activity recognition is based
on motion analysis. Ogaki et al. [21] used motion cues from
both an eye-tracking camera and a head-mounted camera to
infer egocentric activities. Spriggs et al. [31] used inertial
motion sensors coupled with a head mounted camera. Our
work is based only on a standard head mounted camera. Ki-
tani et al. [14] used frequency and motion based features to
learn short-term actions in an unsupervised setting. Ryoo
and Matthies [28] used global and local motion features to
recognize interaction-level activities. The goal of our work
is to recognize a set of pre-defined, semantically meaning-
ful, long-term activities.

Recently, Ryoo et al. [29] proposed a new feature repre-
sentation framework based on time series pooling, which
is able to abstract detailed short-term/long-term changes
in motion/appearance descriptor values over time. In [24]
temporal filtering is applied to sparse optical flow in order
to recognize long-term activities. Our work is inspired by
these works. We generalize the concept of temporal filtering
by learning a set of long-term 3D convolution kernels. We
apply 3D pooling operators to add robustness against tem-
poral shifts and speed variations in the activities. We report
an improvement of 19% on the long term activity recogni-
tion task of [24] using our compact CNN architecture.
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CNNs for Video using Intensities In recent years several
papers have used CNN for video analysis problems. Karpa-
thy et al. suggest CNNs for large scale (non egocentric)
video classification using a dataset of 1 million YouTube
videos, spanning 487 classes [13]. We note the authors’
remark that in their architecture there is only a minor differ-
ence in the results when operating on single video frame or
on a stack of frames. This might indicate that their learned
spatio-temporal features do not capture motion well. The
fact that motion plays a major role in egocentric vision and
the sheer amount of data required to train their network
makes their approach less practical for our goals.

Tran et al. propose to learn generic features for video
analysis by training a deep 3D convolutional neural network
[34]. They show that by using 3D (spatio-temporal) con-
volutions, the learned features encapsulate appearance and
motion cues. The power of their features is demonstrated on
several tasks, including an object recognition task from ego-
centric videos. In this work we focus on long-term activity
recognition from egocentric videos.

CNNs for Video using Optical Flow A compact CNN
using sparse optical flow to identify the camera wearer from
egocentric video was reported in [9]. Jain et al. [10] use
a combination of image intensities and instantaneous op-
tical flow from a pair of frames for human pose estima-
tion. Gkioxari and Malik [7] also use instantaneous opti-
cal flow and image intensities to perform action recogni-
tion and localization. Ji et al. [11] use image intensities
and optical flow of 5 consecutive frames for human action
recognition. To capture the motion component effectively,
Simonyan and Zisserman [30] propose a two stream model
where one stream handles a stack of image intensities and
the other handles a stack of frame-to-frame dense optical
flow fields.

Our work differs from all the aforementioned works in
several ways: (i) We suggest a CNN architecture tailored for
the unique challenges of activity recognition in egocentric
video. (ii) Our network is compact with respect to the pre-
vious CNNs for activity recognition, enabling training on
the relatively small datasets currently available to the ego-
centric vision community. (iii) The input to our network is
built from sparse optical flow (a fixed grid of only 32×32
flow vectors) while all previous CNNs for activity recogni-
tion used dense optical flow.

3. CNN Using Sparse Optical Flow
3.1. Network Input

First person activity in egocentric videos is usually man-
ifested over multiple frames. Previous works in egocentric
activity recognition have therefore derived features from 2
seconds of video for short term actions [14], and up to 17
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Figure 3. The input to our network is sparse optical flow. Left
and Center: We divide each frame into a grid of 32 × 32 cells
and find optical flow independently between each corresponding
grid cells of two consecutive frames (one global (x, y) translation
pair for each grid cell). Right: We alternately stack the x and y
optical flow components corresponding to 60 consecutive frames.
The network’s input is a data volume of 32×32×120 elements.
Stacking optical flow from such a large number of frames enables
the network to learn features for long term activities.

seconds of video for long term activities [24]. The input to
our network is sparse optical flow derived from 4 seconds.
We note the observation made in [30] that their network per-
forms better when it doesn’t need to learn to estimate mo-
tion implicitly.

Given a video sequence, we begin by normalizing its
frame rate to 15 FPS (frames per second). Next, we di-
vide each video into overlapping blocks of 4 seconds (60
frames). The overlap between consecutive blocks is 2 sec-
onds (30 frames). We then compute sparse optical flow vec-
tors as described in [24, 23, 9] by dividing each frame into
a non-overlapping grid of size 32×32. Optical flow is then
estimated between two corresponding grid cells in consec-
utive frames using LK [19]. An optical flow field is rep-
resented by a 32×32×2 volume, corresponding to the flow
in x and y directions. The input to our network is created
by stacking 60 such flow fields, resulting in a volume of
32×32×120 scalars (see Fig. 3).

Formally, let uk(i, j) and vk(i, j) denote optical flow in
x and y directions between grid cells (i, j) of frame k and
frame k+1. Let t denote the time instance (frame number)
for which we want to assign an activity label. The input to
our CNN at time instance t is the volume It ∈ R32×32×120,
which is computed from the optical flow as follows:

It(i, j, 2τ) = ut+τ (i, j)

It(i, j, 2τ + 1) = vt+τ (i, j)
(1)

where τ is in the range of 0..59.

Data normalization for CNNs has become standard prac-
tice. We perform the following normalization procedure.
Once we obtain all the input volumes Iτ of a certain video
dataset, we find the 95th percentile of ut(i, j) and vt(i, j)
separately and clamp all values to the respective 95th per-
centile value. We then scale the data to the range [−1, 1].
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Figure 4. We extend the dataset of [24] with an additional 16 hours of video, introducing 7 new activity classes. This figure shows
representative frames from the 7 new activity classes we introduce (top row) as well as from the original 7 classes. All together, we have
14 activity classes. See Section 4 for details.

3.2. Network Architecture

The first hidden layer in our network C1 is a 3D con-
volutional layer. In this layer we learn 30 kernels of size
17×17×20. The kernels are applied with a spatial stride of
2 and temporal stride of 4 (a stride along the 3rd dimen-
sion). By keeping the temporal stride even we ensure that
the learned kernels do not mix optical flow from x and y
directions. We apply the Rectified Linear Unit (ReLU) non-
linearity to the output of this layer.

The feature maps generated by each of the 30 kernels of
C1 are of size 8×8×26. All these outputs are concatenated
along the 3rd dimension to give an output volume of size
8×8×780. The exact start time and duration of an activity
within an input block can vary. To overcome this, layer P1
pools the feature volume generated by C1 using a 3D max
pooling operator of size 2×2×13 and a temporal stride of
13. This means that each feature map generated by a single
kernel in C1 is pooled temporally exactly twice. Therefore,
the output of P1 is a volume of size 4×4×60.

The second hidden layer C2 is a standard 2D convolu-
tional layer with 100 kernels of size 3×3, followed by a
ReLU and a max pooling operator of size 2×2. Layers FC1
and FC2 are fully connected of size 400 and 50 respectively.
The last layer is a softmax with the number of nodes equal
to the number of classes at hand (application dependent).
In total, our network contains 287, 400 trainable variables,
two orders of magnitude less than [30, 34]. Fig. 2 shows the
complete network structure.

3.3. Classification with Temporal Context

The duration of long-term activities can range from a few
seconds to minutes. The input to our CNN, on the other
hand, covers only 4 seconds. Contradicting short-term ac-
tions (e.g. pausing for a second while running) might result

in sporadic misclassifications (outliers). As in [9], we add
up the softmax scores of η consecutive samples and select
the activity label with the highest score. This reflects our
prior domain knowledge (e.g. skiing for 4 seconds while
running is unlikely). We have explored several values for
η in the range of [0, 30] and found that η = 21, which is
equivalent to 44 seconds, gives good results.

3.4. Design Choices

In deep learning, the objective’s dependency on hyper-
parameters is notoriously complex. This problem is ampli-
fied when the dataset has its own set of hyperparameters, as
in our case (e.g. flow field resolution, temporal receptive
field, output filtering etc.). Our primary goal was to design
a CNN that performs well on the egocentric tasks at hand,
while keeping the number of trainable variables to a mini-
mum to overcome the data scarcity problem.

We first used the 10×5 flow field as in [24]. Tem-
poral receptive fields of 32, 60, 120, and 240 frames did
not yield satisfactory results. We believe this is because
the CNN needs more spatial information for the convolu-
tion to effectively learn recurring spatial motion patterns
in the data. The large 3D kernel size which we converged
to (17×17×20) seems to support this reasoning by indeed
learning “meaningful” spatio-temporal patterns.

Increasing the spatial resolution of the flow field to
32×32 and performing a similar temporal length search
fared much better. It is possible that a denser optical flow
could have performed even better, but with a drastic in-
crease in size of input data and trainable parameters. Re-
ducing the input temporal length to 4 second blocks also
helps reduce the number of trainable parameters. Activity
duration is accounted for during post-processing, using the
scheme described in Sec. 3.3.
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Figure 5. A slice from a 17×17×20 kernel learned by our network
for the task of temporal segmentation. The kernel has strong affin-
ity to the Walking class. Note: For clarity we show only half of the
flow vectors. Visualization of learned kernels by pixel intensities
is less informative for a network using optical flow as input. We
suggest a visualization where the weights of a 3D convolution ker-
nel from two adjacent slices are displayed as an optical flow field.
The two images on the left show weights as intensities. The figure
on the right shows the same weights as an optical flow field. With
this visualization it is clear that the motion pattern learned by the
kernel is rotation.

As with CNNs, a better combination of data and network
hyperparameters may exist.

3.5. Visualization of Learned Kernels

One way of gaining insight into a fully-trained CNN is
through visualization of its learned kernels and input activa-
tions [37]. When natural images are used as network input,
kernel weights are usually mapped to intensities and visu-
alized as an image. However, the input to our network is a
volume composed of stacked flow fields. We therefore sug-
gest visualizing the kernels as vector fields instead of inten-
sity images. We note that each kernel is composed of slices
that represent optical flow in the x and y directions. Each
such pair is then visualized as flow field. This essentially
inverts the stacking process of Equation 1. Fig. 5 shows an
example in which the learned z-rotation motion pattern is
hard to infer from the intensity images, but becomes clear
when visualized as a vector field. While this may seem triv-
ial, to the best of our knowledge it has not done before in
the field of CNNs [9, 10, 7, 11, 30].

4. Experiments
In this section we evaluate the performance of the pro-

posed network for several activity recognition tasks in ego-
centric vision. We do not fine-tune the parameters our net-
work for the different experiments and keep the architecture
fixed throughout the experiments.

Implementation Details Our network implementation is
based on Caffe [12]. The parameters for the network are
fixed as follows: Network weights are initialized using the
Xavier normalized initialization procedure [8]. The learn-

Recall
Class [24] [29] [34] Ours

Walking 83% 91% 79% 89%
Driving 74% 82% 92% 100%
Standing 47% 44% 62% 79%
Riding Bus 43% 37% 58% 82%
Biking 86% 34% 36% 91%
Sitting 62% 70% 62% 84%
Static 97% 61% 100% 98%

Mean 70% 60% 70% 89%

Table 1. Our proposed method does 19% better compared to [24]
and [34] on 7 class activity recognition, and 29% better compared
to [29]. Our method achieves a high accuracy on Driving, while
Sitting, Standing and Riding Bus continue to be the more difficult
classes to recognize, as in [24].

ing rate for all convolutional and fully connected layers is
set to 0.01. We use mini-batches of 64 training samples
each and stop training after 3000 iterations. It takes 15
minutes to train a network to classify 14 classes with 1300
training samples per class using a single Nvidia Titan Black
GPU.

Sparse optical flow is estimated using the implementa-
tion released by [24]. Their implementation is based on LK
[19]. In the rare cases that LK fails to converge, we interpo-
late the flow value from temporally adjacent frames.

4.1. Temporal Segmentation into 7 Classes

Dataset: We evaluate the performance of our architecture
on the dataset of [24]. Their dataset contains 65 hours of
egocentric videos collected from multiple subjects at Dis-
ney World [4], YouTube and others. The subjects perform
various tasks, both indoors and outdoors. The dataset con-
tains annotation for 7 activity classes: Walking, Driving,
Riding Bus, Biking, Standing, Sitting, Static. Two classes
out of the 7 (Static and Bus) had less than 30 minutes of
video, which reduced to less than 900 samples per class.
In order to train our network, we shot additional sequences
for these categories using a GoPro Hero3 camera. The se-
quences we shot are similar to the original sequences in the
dataset in terms of content (scenario), resolution, FPS and
even the camera make. We will release the new sequences
and their annotations.

Results: We follow evaluation protocol of [24] for this
task. We randomly pick sequences until we have 1300 sam-
ples (approximately 90 minutes of video) per class. A se-
quence from which we take samples for the training set is
disqualified from the test set. Table 1 details the classifi-
cation results. The proposed network is able to reduce the
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Figure 6. Class-kernel affinity matrix for the first hidden layer. For each sample of a particular class, we find the kernel giving the strongest
response. The class-kernel affinity is defined as the number of times the kernel has the strongest response for samples of this class. Brighter
colors mean stronger affinity (more votes). We can see in this matrix that kernel #16 has strong affinity to Standing, Static and Sitting,
whereas kernel #20 seems to be popular for Riding Bus, Biking and Driving. These classes are indeed semantically closer to each other.
This indicates that the proposed network may be able to learn meaningful kernels. We cautiously speculate that such affinity matrices can
be used to design class hierarchies for classification.

error in all the classes with respect to [24]. The mean error
is reduced from 30% to 11%. In addition, we used the code
released by [29] and [34] to compare with their methods.
Our method outperforms theirs by 29% and 19%, respec-
tively. The worst accuracy is observed for class Standing,
similar to the current state-of-the-art.

Analysis: To gain insight into what the network is learn-
ing, we analyze the kernels of the first convolutional layer
(C1). We run the test set through the network again and for
each sample find the top 3 kernels that give the highest re-
sponse with that sample. Each sample then ‘casts a vote’ to
each of these top 3 kernels. The votes are accumulated in
an affinity matrix. We expect kernels that received signif-
icantly more votes from a particular class to have a strong
affinity to that class. Fig. 6 visualizes the affinities between
kernel and classes for the 7-class classification task at hand.
Brighter colors mean stronger affinity (more votes). We in-
vestigate dominant kernels from each class by visualizing
their weights as flow fields. Fig. 5 shows the last slice of
kernel #24, which has strong affinity with Walking. This
slice captures rotation about the z-axis, which is a common
instantaneous motion in egocentric video captured while
walking. We show additional intuitive examples in the next
experiment (See Sec. 4.2). It is interesting to see that certain
kernels are dominant in several classes. For example, ker-
nel #16 has strong affinities to Standing, Static and Sitting.
Similarly, kernel #20 has strong affinities to Riding Bus,
Biking and Driving. We cautiously regard this observation
as another indication that kernels at the first convolutional
layer capture characteristic motion patterns.

Kernel #28

Kernel #14

Kernel #28 Kernel #14

Figure 7. Two slices from two kernels having strong affinity to the
Driving class (bottom) and possible matching locations (top). The
kernels learn ‘mixed’ flow patterns, that represent locations inside
the car and through the car’s windows.

4.2. Temporal Segmentation into 14 Classes

Dataset: We extended the original 7-class dataset of
[24]. Data for 6 additional classes (14 hours of YouTube
videos) was collected by Mechanical Turkers. The GTEA
Gaze+ dataset [5] is used in its entirety to form a 7th
new class (Cooking). The new classes are: Running, Stair
Climbing, Skiing, Horseback Riding, Sailing, Boxing and
Cooking. Fig. 4 shows a representative frame from each
new class. The data is distributed evenly across the 7 new
classes with roughly 2 hours of footage per class. We have
manually annotated the new dataset and will release it and
its annotations. All together we have about 82 hours of
annotated data for 14 activity classes. Here too we use
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Figure 8. The first 4 slices of the kernel having the strongest affinity for the Running class. The flow field visualization helps to see that
the kernel learns alternating vertical motions (up/down). It seems that the kernel captures the sharp camera vibration that occurs when the
runner’s foot hits the ground.

1300 training samples (approximately 90 minutes of video)
per class.

Results: We evaluate the performance in terms of Pre-
cision, Recall and F-score. The F-score is the harmonic
mean of the precision P and recall R, defined as F =
2PR/(P+R). Values range from 0 to 1, where 1 represents
perfect performance. Table 2 gives the results of our exper-
iments on the 14 activity classes. We achieve an average
recall rate of 86% for this task, a drop of 3% with respect
to our performance on the original 7 classes only. This per-
formance drop is expected since we doubled the amount of
classes. We note that the network is able to achieve a recall
rate of 100% for Cooking and 99% for Sailing as well as
Static. Fig. 9 shows the full confusion matrix for this task.

Analysis: Similar to the analysis done in the previous ex-
periment (Sec. 4.1), for each class we find the C1 kernels
with the strongest affinity. Fig. 8 shows 4 slices from the
kernel that is most associated with Running. The kernel’s
slices capture alternating vertical motions (up/down). It
seems that the network learns the sharp camera vibration
that occurs when the runner’s foot hits the ground. Fig. 7
shows representative slices from the top two kernels associ-
ated with class Driving. It is interesting to note that kernels
learn ‘mixed’ flow (inside the car and through the car’s win-
dows). While the learned flow vectors from inside the car
are small and randomly oriented, the vectors from outside
the car match those of forward motion.

4.2.1 Evaluation by Transfer Learning

One way of assessing a CNN’s generalization capacity is
by evaluating the transferability of its learned features to
another dataset or task. We attempt this by first training our
network on the 7 new classes from the previous experiment
(Sec. 4.2). We then fix the weights for all layers in the
network except the last, which is initialized randomly. We
proceed by training only the last layer on a randomly chosen

Class Precision Recall F1-Score

Walking 0.93 0.91 0.92
Driving 0.94 0.98 0.96
Standing 0.62 0.59 0.60
Biking 0.92 0.94 0.93
Static 0.44 0.99 0.61
Riding Bus 0.94 0.87 0.91
Sitting 0.73 0.71 0.72
Running 0.91 0.78 0.84
Stair Climbing 1.00 0.59 0.74
Skiing 0.92 0.82 0.87
Horseback 1.00 0.92 0.96
Sailing 0.65 0.99 0.79
Boxing 0.47 0.93 0.62
Cooking 0.80 1.00 0.89

Mean 0.80 0.86 0.81

Table 2. Our network achieves an average recall rate of 86% in the
14 activity classes task. The classes Drving, Static, Sailing and
Cooking achieve near perfect recall rates. On the other hand, the
network struggles with the Stair Climbing and Standing classes.
See confusion matrix in Fig. 9.

training subset of the original 7 classes of [24]. Concretely,
we train a network with videos of the following 7 classes:
Boxing, Cooking, Skiing, Stair Climbing, Running, Horse-
back and Sailing. We then transfer the learned weights to
a new network and retrain only its classification layer with
videos from the following 7 classes: Walking, Driving, Rid-
ing Bus, Standing, Sitting, Static and Biking.

We achieve 73.8% classification accuracy (recall) on the
complementary test subset in this setting. As expected, the
results are inferior compared to when full network training
is done end-to-end. While the accuracy is significantly less
than the 89% we report in Table 1, it is still better than the
current state-of-the-art. This implies that the learned fea-
tures of the network are able to generalize to other egocen-
tric activities.
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Figure 9. Confusion matrix for 14 activity classes recognition task.
A confusion between Sitting and Standing is evident, similar to
[24]. There is room for improving the network’s ability to distin-
guish between Stair Climbing and Sailing, Boxing and Cooking.

To further explore this direction, we perform a slightly
different experiment. This time, we use the weights learned
from training on the 7 new classes to initialize a new net-
work, which we train end-to-end on the original 7 classes.
We use only half the training samples (650 instead of 1300),
run only 800 iterations (instead of 3000 iterations) and reach
an accuracy of 82%. This implies again that the network in-
deed learns general motion features for egocentric videos.
It also shows that given a pre-trained network, generalizing
to new classes requires significantly less data and run-time.
This is particularly important in egocentric vision due to the
data scarcity problem.

4.3. Discriminating Egocentric Videos

Dataset: We use the dataset-of-datasets provided by Tan
et al. [33], which contains more than 165 hours of video
(approximately 107 hours of egocentric and 59 hours of
non-egocentric) covering a diverse set of activities, objects
and locations. The egocentric datasets provided have con-
siderable variation, making any attempt to characterize ego-
centric video as a whole very challenging. Some ego-
centric videos are shot indoors and with little whole-body
movement, while others included walking from indoors
to outdoors (and vice-versa). Furthermore, some videos
were captured from cameras with wide-angle lenses. Non-
egocentric videos were taken from 7 different third-person
video datasets containing sports, movie and surveillance
footage.

Results: We use the same experimental methodology as
suggested by Tan et al. [33]. In the first experiment we
divide each dataset in half, and use one half for training
and the other for testing. This experiment is referred to as

Seen Unseen
[33] Ours [33] Ours

Egocentric 71% 99.1% 62.7% 90%
Non-Egocentric 99.3% 99.4% 67.1% 95.3%

Weighted Mean 75.7% 99.2% 63.4% 90.9%

Table 3. Comparison with [33] for determining if a video is ego-
centric or not. Our method achieves high recall rates, making it
practical for large scale search applications (e.g., automatic ego-
centric video collection).

‘Seen’, since every dataset has some representation in the
training set. The second experiment, referred to as ‘Un-
seen’, is performed in an iterative manner. In each iteration,
one dataset is left out from the training set and serves as a
test set. Our experiments indicate an almost perfect classifi-
cation accuracy for the ‘Seen’ experiments, while the accu-
racy for the ‘Unseen’ experiments is 90.9%. See Table 3 for
a complete comparison. The high accuracy achieved by our
network makes it practical for large scale video repositories
such as YouTube, etc. This can also potentially automate
collecting large amount of samples for new research topics
in egocentric vision.

Analysis: We repeat the process of finding the kernels
with the strongest affinity to each class and visualize them
as optical flow fields. The kernels in this case were more
difficult to decipher. We attribute this to the significant
inner-class diversity, stemming from the unique properties
of each dataset.

5. Concluding Remarks

A convolutional neural network architecture is proposed
for long term activity recognition in egocentric videos. The
input to the network is a sparse optical flow volume. The
network improves the classification accuracy by 19% com-
pared to state-of-the-art for activity-based temporal seg-
mentation. We extend the dataset by 7 more classes and
show that the proposed network is able to learn features for
the new activities and achieve an overall recall rate of 86%
on the 14 activities dataset. Another classification prob-
lem supported by our network is discriminating egocentric
videos from non-egocentric videos. We achieve a near per-
fect accuracy of 99.2% in this task. To understand what the
network is learning, we visualize the learned kernel as flow
fields and analyze affinities between kernels and classes.
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