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Abstract

Zero-shot Learning (ZSL) can leverage attributes to
recognise unseen instances. However, the training data
is limited and cannot adequately discriminate fine-grained
classes with similar attributes. In this paper, we propose
a complementary procedure that inversely makes use of
attributes to infer discriminative visual features for un-
seen classes. In this way, ZSL is fully converted into
conventional supervised classification, where robust clas-
sifiers can be employed to address the fine-grained prob-
lem. To infer high-quality unseen data, we propose a novel
algorithm named Orthogonal Semantic-Visual Embedding
(OSVE) that can discover the tiny visual differences be-
tween different instances under the same attribute by an
orthogonal embedding space. On two fine-grained bench-
marks, CUB and SUN, our method remarkably improves
the state-of-the-art results under standard ZSL settings. We
further challenge the Open ZSL problem where the number
of seen classes is significantly smaller than that of unseen
classes. Substantial experiments manifest that the inferred
visual features can be successfully fed to SVM which can
effectively discriminate unseen classes from fine-grained
open candidates.

1. Introduction

Conventional object recognition approaches, such as
deep neural networks [12], rely on capturing a large num-
ber of training examples paired with annotations to train re-
liable models. Such a premise can become unattainable in
many real-world applications for following reasons: 1) An-
notating visual data is expensive. Although numerous im-
ages and videos can be freely retrieved from the Internet, the
labels of these data are noisy and not competent for exist-
ing supervised learning. 2) In the big-data era, the number
of new concepts is exponentially increasing, which makes
the categories go wider and deeper. It is impractical to col-
lect sufficient visual data for each of the new classes. 3)

Figure 1. Comparison between our procedure (Red) and the con-
ventional ZSL framework (Blue). Fine-grained classes are often
compact and non-describable in the attribute space. Our OSVE
can discover tiny visual differences between different instances
under the same attribute so as to infer discriminative visual fea-
tures for unseen classes from fine-grained open candidates.

Capturing instances for rare classes can be infeasible. For
example, it is difficult to acquire real photos of ancient or
rare species to train a recognition system since the available
knowledge could be only textual descriptions or imagined
appearances.

As a feasible solution, Zero-Shot Learning (ZSL) [15,
13, 23, 33] aims to train semantic models that can gener-
alise to new classes without acquiring unseen visual data
at training stage. The standard paradigm of ZSL frame-
work is shown in Fig. 1 (blue path), where a closed-set
of seen instances are used to learn a visual-semantic map-
ping. During the test, images from unseen classes can be
firstly mapped to the semantic space and predictions can be
made by choosing one of the candidates that are pre-defined



by attribute descriptions. However, while new semantics
and unseen classes can be incrementally added to the sys-
tem, the training data is restricted to the closed-set of seen
classes without expansion. Under such a framework, there
are mainly two problems impeding existing ZSL methods
from scaling-up. The first is the Fine-grained problem.
Namely, the classes are close in the taxonomy, which re-
sults in very similar semantic descriptions. Due to existing
methods rely on visual-semantic mapping, unseen classes
with similar attributes cannot be adequately discriminated.
The second is known as the Open Zero-shot Learning prob-
lem which removes two main unrealistic restrictions of con-
ventional ZSL: 1) all of the candidates for test image must
come from unseen classes; 2) the number of seen classes
is larger than unseen classes. The first restriction is caused
by the correlation problem during attribute designing the
results in two attributes A and B may be present or absent
together all the time during training. As a result, the test im-
age with only attribute A will be predicted as A& B that is
biased towards the seen classes. The second restriction con-
siders the limited size of the training set. Without various
seen instances, the learnt semantic model can hardly adapt
to unseen classes from a large number of candidates.

In this paper, we propose a complementary approach
that inversely infers visual data to train discriminative mod-
els for unseen classes. Our method is inspired by the fact
that we human can roughly imagine the appearance of un-
seen objects by associating previous seen classes. Accord-
ingly, as shown in Fig. 1 (Red), our method can inversely
infer discriminative visual features from attribute descrip-
tions of unseen instances. In this way, inferred features can
be used to train classifiers for unseen classes as conven-
tional supervised learning, e.g. SVM. Such a new frame-
work has two potential advantages. Firstly, the training set
can be expanded to new unseen classes, which can bene-
fit the open ZSL problem if the number of unseen classes
becomes large. Secondly, our classifier is now trained on
the original visual feature space without quantisation to
the attribute space that is often too compact for the fine-
grained problem. For example, the Biology Lab and Chem-
ical Lab are not discriminative in the semantic space since
they share most of the attributes. But, in the visual space, we
can enlarge tiny differences between various instances with
the same attribute, which, consequently, make fine-grained
classes more discriminative.

In spite of that our idea is simple and intuitive, there are
two main unsolved technical issues. 1) Semantic-visual dis-
crepancy: since attributes are compact high-level represen-
tations whereas visual data is usually long-tailed low-level
features, the data structure in the two spaces are distinc-
tive. Two close points in the attribute space can be far
away in the visual feature space, and vice versa. Due to
the structural difference, normal embedding processes are

prone to learn the principal components between the two
spaces, by which the learnt feature distribution is concen-
trated and not discriminative. 2) Semantic correlation: like
that in the conventional ZSL framework, different attributes
may be assigned to the same pattern of visual features. As
a result, the inferred unseen features are prone to fall into
the clusters of seen features. Considering the above two
problems, we propose a novel Orthogonal Semantic-Visual
Embedding (OSVE) algorithm to infer visual features from
attributes. The key idea is to find an intermediate embed-
ding space that can compromise the structural difference
between the visual and semantic space. Meanwhile, we
hope to remove the correlations between different attributes,
and between seen and unseen classes. To this end, our al-
gorithm jointly optimise the semantic-visual reconstruction
error and the orthogonalisation, where the redundancy can
be removed in the orthogonal embedding space so that the
remaining bases are then decorrelated. We summarise our
contribution as follows.

i. We propose to inversely infer discriminative visual
features from the attributes unseen classes. Such a frame-
work can make the training set grow with newly added un-
seen classes in the open ZSL problem. Typical power classi-
fiers, such as SVM, can be employed directly in the feature
space rather than the attribute space to improve the fine-
grained recognition performance.

ii. We propose a novel OSVE algorithm that can effec-
tively infer visual features and meanwhile remove the corre-
lations. On two benchmarks, our OSVE outperforms state-
of-the-art methods under conventional ZSL scenarios

iii. We further challenge two sets of Fine-grained Open
ZSL tasks. On both sets of tasks, our OSVE demonstrates
promising recognition performance. Extensive experiments
manifest that our algorithm can successfully capture the sig-
nificant visual features from the attributes of unseen classes.

The rest of the paper is organised as follows. In Sec-
tion 2, we review related ZSL approaches. In Section 3,
our algorithm is formalised and introduced. We provide ex-
tensive experiments on both conventional and fine-grained
open ZSL settings in Section 4. In the last Section 5, we
conclude our work and state some possible future work.

2. Related work
We compare our paradigm and that of conventional ZSL

in Fig. 1. Most of previous ZSL work is based on (or
similar to) the framework called Direct Attribute Predic-
tion (DAP) [13, 14, 20, 38]. For each attribute, a binary
classifier is trained using all of the seen classes. During
the test, a prediction can be made by Maximum-a-Posteriori
criteria over all of the outputs of the binary classifiers. The
main drawback of such framework is the correlation prob-
lem that reported in [10]. Besides, the human-defined at-



tribute list can be unrealistic and noisy and need to be se-
lected [9, 7, 16, 18]. Therefore, many previous work seeks
for an effective form of semantic representation such as
class taxonomies [22, 28, 19], or textual features [29, 21].
However, due to other semantic sources cannot provide di-
rect and compact descriptions to the visual appearances, se-
mantic attributes remain the most popular side information
for ZSL learning.

A recent trend of ZSL methods adopts the framework of
Attribute-Label Embedding (ALE) that jointly estimate all
of the attributes by an embedding function from visual to
attribute space. Such a framework skilfully avoid the cor-
relation problem or attribute selection since the embedding
can optimise the weight of each attribute. Moreover, such a
framework be straightforwardly combined with Deep Ner-
aul Network [26]. The much recent research adopts the em-
bedding approach and demonstrates state-of-the-art perfor-
mance [30, 2, 39, 40, 11, 25]. The remaining challenges so
far is to break the restrictions of conventional ZSL settings.
[8, 27] focus on transituctive settings which view ZSL as a
domain adaptation problem. These methods are based on
the assumption that unlabelled data of unseen classes can
be obtained. Reed et al. [26] addresses fine-grained ZSL by
a Deep Symmetric Structured Joint Embedding (DA-SJE).
Zhang and Saligrama [39] investigate how their method can
withstand the reduction of the training set size.

Aside of ALE, some work also considers the drawbacks
of direct mapping from visual to semantic spaces. Accord-
ingly, latent attributes [35, 3, 32, 37] aims to discover the
statistical relationships between visual and semantic fea-
tures so as to eliminate the human bias in the attributes. Yu
et al. [36] use one-to-one classifiers to estimate the similar-
ity of between pair of classes. [3, 17, 31] aim to remove
the visual-semantic ambiguity through an intermediate em-
bedding space. [35, 4] proposes bilinear joint embeddings
to mitigate the distribution difference between visual and
semantic spaces. In [5], classifiers of unseen classes are di-
rectly estimated by aligning the manifolds of seen classes.

In comparison to previous methods, our work aims to si-
multaneously address both fine-grained and open ZSL prob-
lems using a unified framework. Our work also adopts at-
tributes as the side information and shares the idea of latent
embedding, but our method is inverse and complementary
to existing work. While most of the previous methods focus
on visual to semantic embedding, our approach focuses on
semantic-visual embedding, which is more challenging and
requires more consideration. We also consider the imper-
fection of human-designed attributes, for which we propose
a novel orthogonalised embedding approach. The most re-
lated work is [6] that attempts to predict visual exemplars
for unseen classes. However, their output is a single point
in the semantic embedding space, whereas our method can
infer instance-level visual features, the number of which

equals to that of unseen instances. In short, our unique con-
tribution is to convert ZSL problem into the conventional
supervised classification for fine-grained open ZSL using
orthogonalised latent embedding.

3. Visual Feature Inference
3.1. Problem setup

The training set contains samples, attributes, and class
labels that are in 3-tuples: (x1, a1, y1), ..., (xN , aN , yN ) ⊆
Xs ×As ×Ys, where N is the number of training samples;
Xs = [xdn] ∈ RD×N is a D-dimensional feature space;
As = [amn] ∈ RM×N is a M -dimensional attribute
space; and yn ∈ {1, ..., C} consists of C discrete class
labels. In order to deal with fine-grained open ZSL, we
use instance-level attributes, i.e. each image is paired
with a unique attribute signature. Suppose there are
N̂ pairs of ‘unseen’ attributes from Ĉ discrete classes:
(â1, ŷ1), ..., (âN̂ , ŷN̂ ) ⊆ Au × Yu, where Yu ∩ Ys = ∅,
Au = [amn̂] ∈ RM×N̂ . The goal of zero-shot learning
is to learn a classifier, f : Xu → Yu, where the samples
in Xu are completely unavailable during training. We use
Calligraphic typeface to indicate a space. Subscript s and
u refer to ‘seen’ and ‘unseen’. hat denotes the variables
that are related to ‘unseen’ samples.

Semantic-Visual Embedding: We aim to infer the visual
features of unseen classes by given the semantic attributes.
Specifically, we learn a embedding function on the training
set f : As → Xs. After that, we are able to infer Xu

though: Xu = f(Au) .

Zero-shot Recognition: Using the inferred visual features,
we can directly estimate the probability distribution of the
unseen classes. It is straightforward to employ existing su-
pervised classification methods, i.e. f : Xu → Yu.

3.2. Orthogonal Semantic-Visual Embedding

Conventional ZSL methods minimise the single classifi-
cation error of each attribute. Due to the attributes are sep-
arately learnt, as aforementioned, such a framework highly
depends on the quality of the designed attributes. Recently,
there is a new scheme that addresses ZSL by an embedding
approach [1]. In particular, an objective function is learnt to
simultaneously minimise the multi-class error and also con-
sider the relationship between different attributes. A typical
multi-attributes classifier can be formalised as the following
problem:

min
W
L(WXs,As) + λΩ(W ), (1)

where W is the mapping matrix, L is a loss function, and Ω
is a regularisation term with its hyper-parameter λ. During
the test, an unseen instance can be directly mapped to the



attribute space by: â = Wx̂.

However, due to W is learnt using only the training data,
the inferred attributes â are prone to be biased towards the
‘seen’ attributes As. Since the number of dimension of
the visual feature is dominantly large, i.e., D � M , the
mapped semantic data is too compact to distinguish fine-
grained unseen classes. Inspired by the idea that a hu-
man can imagine the visual appearance of an unseen object
through given semantic descriptions, we proposed to infer
the visual feature of the unseen classes by reversely learn-
ing a mapping function from semantic space to the visual
feature space:

min
W
L(WAs,Xs) + λΩ(W ). (2)

The loss term accounts the reconstruction error between
the semantic input and visual output; whereas the regular-
isation ensures the discrimination to unseen classes. Such
a framework provides a direct mapping to the visual space
without computing a pseudo-inverse matrix that can lead to
information loss. Before the test, it is straightforward to
infer the visual features of unseen classes using their class
attributes:

Xu = WAu. (3)

In spite of the simplicity of the above framework, sev-
eral problems are worth noting. Firstly, in practice, there is
often a huge gap between visual and semantic spaces. Com-
pared to the compact attribute representation, the variance
of visual data is usually larger due to outliers and noise.
Also, the data distribution of the two spaces is distinctive.
Thus, directly mapping from semantic to visual space can
lead to inferior performance. We propose to insert a latent
embedding space V to reconcile the semantic space with
the visual feature space, where V = [vkn] ∈ RK×N , and
K is an adjustable number of dimension of V . Secondly,
in order to learn discriminative features, we need to remove
the correlation between each attribute ao as to ensure better
generality. For this purpose, the embedding space should
be strictly orthogonal. If we consider a multi-variable lin-
ear regression model, the loss function can be defined as:

J = ‖Xs −W1V‖2F + ‖V −W2As‖2F (4)
+λ‖W1‖2F + λ‖W2‖2F , s.t. VVT = I ,

where ‖.‖F is the Frobenius norm of a matrix, which es-
timates the Euclidean distance between two matrices. The
latent embedding space V is decomposed from X , and A
is decomposed from V . W1 = [w1dk ] ∈ RD×K and
W2 = [w2km

] ∈ RK×M are embedding matrices. The
above Eq. 4 helps us to understand our approach. The em-
bedding space can preserve the principal components be-
tween the visual and semantic spaces. Meanwhile, the data

structure is scattered so that the inferred features can be dis-
criminative and decorrelated to the original attributes. How-
ever, because of the fast decay of eigenvalues, the strict or-
thogonal constraint can impair the reconstruction of the vi-
sual features. Therefore, we relax the constraint. The over-
all loss function is:

J = ‖Xs −W1V‖2F + ‖V −W2As‖2F (5)
+λ‖W1‖2F + λ‖W2‖2F + β‖VVT − I‖2F .

3.3. Optimisation Strategy

Each term of the above Eq. 5 is convex. However,
It is non-convex in W1,W2,V all together. To our best
knowledge, there is no direct solution to find the global
optima. In this paper, we adopt an alternating optimisation
strategy to find the local minima for each term separately.
Specifically, the whole task is in turn separated into three
sub-problems.

1. W1-step: Suppose we compute the partial derivative of
the overall loss function J with respect to W1, then W2 and
V are fixed as constants. The loss function becomes a stan-
dard least squares problem. Let the partial derivative equal
to zero; then we have the closed form solution:

min
W1

‖Xs −W1V‖2F + λ‖W1‖2F
∂J

∂W1
= −2(W1V − Xs)VT + 2λW1 = 0

W1 = XsVT
(
VVT + λI

)−1
. (6)

2. W2-step: Similar to the step 1, we can fix W1 and V ,
and compute the partial derivative of J with respect to W2.
The corresponding solution is:

min
W2

‖V −W2As‖2F + λ‖W2‖2F
∂J

∂W2
= −2(W2As − V)AT

s + 2λW2 = 0

W2 = VAT
s

(
AsAT

s + λI
)−1

. (7)

3. V-step: V should be solved carefully. Since V is re-
lated to all of the three terms, it balances how accurate can
we infer the visual feature and how discriminative can the
inferred features generalise to unseen data. We propose to
solve V as an independent sub-problem inside the overall
optimisation. Fix W1 and W2, we can get the partial loss
function Jv for V . We then set the partial derivative respect
to V to zero:

min
V
Jv = ‖Xs −W1V‖2F + ‖V −W2As‖2F

+β‖VVT − I‖2F
∂Jv
∂V

= 2WT
1 (W1V − Xs) + 2(V −W2As)

+2β(VVT − I)V . (8)



Figure 2. An example of the convergence situations shows the loss
with respect to the number of iterations. Term 1 and 2 corresponds
to the reconstruction errors to visual and semantic spaces. Term 3
accounts how orthogonal is the embedding space.

Adaptive Gradient Descent: In order to solve the optimal
V , we adopt the adaptive gradient decent strategy to solve
Eq. 8. We introduce τ to control the learning rate. If Jv
keeps converging, τ is increased to accelerate the process.
Once Jv becomes diverged, τ is reduced correspondingly to
increase the tolerance. Such a strategy is vital for keeping
the balance between reconstruction and orthogonalisation.
As shown in Fig. 2, the solver firstly focuses on optimis-
ing the semantic reconstruction and the orthogonality. Af-
ter 200 iterations, the learning rate becomes over large that
causes the loss of visual reconstruction increased dramati-
cally. Thus, τ is immediately reduced so that the three terms
start to be optimised together again. Without such an adap-
tive scheme, it is unable to control the unpredictable diver-
gence of any of the terms. The whole learning procedure is
summarised in Algorithm 1.

Vt+1 = Vt − τ
∂Jv
∂V

(9)

τt+1 =

{
1.2τ if Jvt+1 < Jv

0.5τ otherwise
. (10)

3.4. Zero-shot Recognition

Once we obtain the embedding matricesW1 andW2, the
visual features of unseen classes can be easily inferred from
their attributes:

Xu = W1 ∗W2 ∗ Au. (11)

It is noticeable that for instance-level attributes, Xu con-
tains as many instances as the test set. The zero-shot recog-
nition task now becomes a conventional classification prob-
lem. Thus, any existing supervised classifier, e.g. SVM, can
be applied. Since we focus on the quality of the inferred
features in this paper, we compare NN to SVM s well. For
NN approach, given a test unseen instance x̂, we can predict
its class label ĉ by:

ĉ = arg min
c
‖x̂− xn̂‖2, where xn̂ ∈ Xu, yn̂ = c ∈ Yu.

(12)

Algorithm 1: : OSVE
Input: {X , A, Y}, K, λ, β, τ .
Output: W1, and W2.

1: Initialisation: random initial matrix V .
2: while Rq. 5 is not converged do
3: Update W1 by Eq. 6;
4: Update W2 by Eq. 7;
5: while Eq. 8 is not converged do
6: Update V by Eq. 9;
7: Update τ by Eq. 10;
8: end while
9: end while

10: return W1, and W2;

Table 1. Key statistics of CUB and SUN datasets.
Dataset CUB SUN
# of Attributes 312 102
Attribute Type Binary Continues
Annotation Level per image & per class per image
# of Total Images 11788 13430
Seen/Unseen Split 150/50 707/10

4. Experiments
We first introduce the datasets, on which we compare

our approach to existing state-of-the-art methods. Since the
published results are obtained on different settings, in terms
of visual features, seen/unseen splits, and semantic side in-
formation, we aim to provide a fair comprehensive compar-
ison to most of the outstanding models. We also provide
detailed self-comparisons to baseline methods so as to ver-
ify the claims we made in this paper. Finally, we investigate
our method on the fine-grained open ZSL tasks.

4.1. Setup

Datasets and Settings Our method is evaluated on two
fine-grained datasets, Caltech-UCSD Birds (CUB) [34] and
SUN attribute (SUN) [24]. We summarise the key statis-
tics in Table 1. For CUB, there are 11788 images from 200
classes of birds. Many bird species can be hardly differ-
entiated by humans. The usual Seen/Unseen split for ZSL
is 150/50. For SUN, the number of classes is 717, which
is larger than that of CUB. The total number of images is
13430. Some classes are close on both semantic meanings
and visual appearances, e.g. theatre and ballroom.
Visual Features Existing methods differ in adopted visual
features. To make a comprehensive comparison, we im-
plement our method using both shallow features that are
released by the datasets and deep features extracted using
VGG-19 and released by [39].
Semantic Attributes Both of the datasets now provide
instance-level attributes. Each test image is paired with a



Table 2. Comparison to state-of-the-art methods for both datasets. Results are overall accuracies in %.
Caltech-UCSD Birds SUN attribute

Methods SI Shallow features Deep features Methods Shallow features Deep features
DAP[13] A 10.5 31.4 DAP[13] 52.50 72.00
AHLE[1] A+H 18.0 27.3 ZSRwUA[9] 56.18 -
SJE[2] A+W+H 19.0 47.1 ESEZL[30] 65.75 82.10
UDA[11] A+W 28.1 40.6 SSE[39] - 82.50
DS-SJE[26] A+W+H - 56.8 JLSE[40] - 83.83
OSVE+NN A 20.2 45.2 OSVE+NN 56.96 76.21
OSVE+SVM A 28.9 60.1 OSVE+SVM 70.59 83.23

SI: side informations, A: attributes, H: hierarchy, W: word2vec.

Figure 3. A. overall accuracies of baseline methods by substituting key components of the proposed framework. B. ROC curves of our
method on the two datasets. For clarity, only 10 of the 50 unseen classes on CUB are shown.

unique attribute signature based on the actual visual appear-
ance, which is different from the class-level attributes that
let all of the images in a class share the same attribute sig-
nature. Our method benefits from such a scenario for open
ZSL for the reason that, if the number of training classes
is small, our algorithm can still discover the differences be-
tween instances under the same attribute.
Zero-shot Cross-validation We obtain the optimal hyper-
parameters through a new cross-validation strategy. Since
we aim to address ZSL problems, traditional cross-
validation for multi-label classification is not helpful be-
cause all of the seen classes are used for both training and
validation. Therefore, we propose a novel leave-one-fold-
out strategy. The seen classes are divided into ten disjointed
folds. We use one fold as unseen validation set and train
models on remaining folds. We choose the set of hyper-
parameters which can lead to the highest mean accuracy on
all of the ten folds. We fix this set of parameters for the
following experiments.

4.2. Benchmark Comparison

Comparison to State-of-the-art Methods We first com-
pare to previous published results. Due to few methods are
evaluated on both of the datasets, separate the results by the
two datasets. We summarise our comparison in Table 2.

For CUB, we compare to five methods. DAP [13] is the
most common ZSL framework that trains binary SVM clas-
sifier for each attribute separately and makes a prediction by
Maximum-a-Posteriori. AHLE [1] and SJE [2] both adopt
a bilinear compatibility function to make visual to semantic
embedding using hierarchical information. But SJE incor-
porates 1K-dim GoogleNet and textural features. DS-SJE
[26] use deep learning to substitute the embedding func-
tion and gives state-of-the-art results. UDA [11] views ZSL
as a domain adoption problem. Although their setting is
slightly different that uses unlabelled unseen data, we still
make a comparison because we use inferred unseen data
for classification. For both shallow and deep features, our
method achieves significant improvements over all of the
published results. It is noticeable that our method only uses
attributes as side information. Also, the results of using
Nearest Neighbour (NN) classifier are slightly lower than
that of using SVM, which is caused by that the inferred
features become more discriminative after the orthogonal
embedding. However, the data structure can be slightly dif-
ferent to real distribution.

For SUN, DAP is also compared. ZSLwUA [9] consid-
ers the unreliability of human-defined attributes and make
predictions by random forest. ESEZL [30] combines visual-
attribute and attribute-label embedding into one joint func-



Figure 4. Comparing the data distribution between real (A) and inferred (B) visual features of unseen classes. Note that t-SNE can result
in slight distortion and colour differences.

tion. SSE [39] and JLSE [40] are similarity-based ap-
proaches that jointly learn a dictionary learning function
for both visual and attribute domains. Note that all of the
compared methods use attributes as side information. Us-
ing deep features, ESEZL, SSE, and JLSE achieves state-
of-the-art results. Our result is only 0.5% lower than that of
JLSE. However, using shallow features, our method is 5%
higher than other methods. Again, we observe that using
SVM can significantly boost the performance, which bene-
fits from using inferred visual features.

Fig. 3 (B) depicts the resulting ROC curves of our results
on the two datasets. One can see that the performances on
all classes are balanced and reasonable.
Analysis To understand how each part of our approach con-
tributes to the overall performance, we also implement a
set of baseline methods. We summarise the results in Fig.
3 (A). All of the baseline methods are implemented using
deep features. The first three baselines examine the conven-
tional visual-attribute embeddings. We train SVM using the
attributes of unseen instances. During the test, images are
mapped to the attribute space and classified by the trained
attribute-SVM. X-A directly learns a mapping from visual
features. X-VV’-A is the inverse version of the proposed
method, where we insert an intermediate latent embedding
spaces with orthogonal constraints. To see the effect of or-
thogonality, we remove the orthogonal constraint in X-V-A
as a reference. Similarly, for the later three methods us-
ing attribute-visual embedding, we compare to A-X that di-
rectly maps attributes to the visual space without orthog-
onalised embedding space. A-V-X is implemented by re-
moving the orthogonal constraint in Equation 5.

We observe the orthogonality contributes the most to the
overall performance. Also, embedding from attribute to vi-
sual space significantly boosts the performance, which ver-
ified our statements that, fine-grained classes are more dis-
criminable in the visual space due to the semantic repre-
sentations are too close. Another conclusion can be made
that inserting an intermediate embedding space is helpful to
compromise the data structural differences to some extents.
Although without orthogonal constraints, the results of X-

Figure 5. the performance curve respects to the dimension K of
the intermediate embedding space.

V-A and A-V-X are higher than that without the V space.
How many dimensions do we need for V? Since orthog-
onalisation can effectively remove the redundant informa-
tion, each dimension of the orthogonal space indicate a
reliable component. In Fig. 5, we show the recognition
rates vary with respect to the dimension K of the embed-
ding space for the two datasets. It can be seen that best re-
sults are given withK equals to 1500 and 2500 respectively.
Since the classes in SUN are more various than that in CUB,
higher dimensional V can give better results in general.
Data Distribution of inferred Visual Features One of the
fundamental questions is whether our inferred visual fea-
tures are close to the real data. In Fig. 4, we demonstrate
the data distribution of real and inferred visual features us-
ing t-SNE. Although t-SNE can result in slight distortion
and colour changes, we can still recognise the data struc-
tures are preserved. The only difference is that some of the
inferred visual features are shown further than the real data.
For example, the blue cluster of points at the top in CUB
is pulled further by t-SNE, which is because our OSVE can
reduce the correlations and make the inferred data more dis-
criminative.

4.3. Fine-grained Open Zero-shot Learning

There are two restrictions for conventional ZSL settings
that are not realistic. 1) The test images can only come from
unseen class. 2) The number of seen class is substantially



Table 3. Results (in %) of Open ZSL 1: add extra seen classes as
candidates or add instances from seen classes for testing.

Dataset #Extra Seen For Candidate Add to Test

CUB

50 56.5 51.9
100 52.7 43.2
150 47.1 36.8

0 60.1

SUN

10 79.98 76.63
100 74.38 70.47
300 65.53 59.81
500 61.72 54.26
707 58.42 49.59

0 83.23

larger than that of unseen classes. By breaking the restric-
tions, we investigate two scenarios of open zero-shot learn-
ing, both of which widely exist in real-world applications.
Scenario 1: Test images come from a mixture of seen and
unseen classes. Scenario 2: Testing by a large number of
unseen classes using a small training set.

For scenario 1, the seen/unseen splits are the same
(150/50 for CUB and 707/10 for SUN). But we use half
of each seen class for training and the other half for testing.
Before the test, we infer the visual features for both seen and
unseen test images, using which we train SVM classifiers.
In this way, the seen classes are added as candidates, i.e. test
unseen image now may be misclassified to seen classes. We
also add images from seen classes for testing. The potential
challenge is that the seen classes may be misclassified into
unseen classes. We summarise our results in Table 3. We
show the results of conventional ZSL (0 extra seen) as ref-
erences. It can be seen that by testing on the whole datasets
(200 classes in CUB and 717 classes in SUN), our method
can still lead to acceptable results.

For scenario 2, we investigate how our method can with-
stand a significant reduction of seen class number and an in-
creasing unseen class number. Our results are summarised
in Fig. 6. Results using a various size of training sets are
shown in different colours of lines. We gradually add re-
maining classes as unseen classes for testing and see the
trend of overall recognition rates. We observe the result
on the most extreme splits (10/190) on CUB is only 8%
lower than that of 10/50. For SUN, increasing the number
of unseen classes from 10 to 100 only result in 15% recog-
nition drop in average. Under the extreme setting on SUN
(10/707), we achieve 22.4% recognition rate, where the ran-
dom guess is only 0.14%.
Qualitative Results As shown in Fig. 7, given a query un-
seen instance, we infer its visual feature and examine what
do the original images of the nearest features look like. We
compare the results under conventional and extreme open
ZSL settings. It can be seen that the tasks are difficult even
for humans. The inferred visual features can still retrieve

Figure 6. Open ZSL 2: test by increasing number of unseen classes
using different size of training sets.

Figure 7. Top-5 nearest neighbours of the query image under con-
ventional and open ZSL. Correct and incorrect matches are shown
in green and red respectively. Corresponding seen/unseen splits
are shown on the right.

the most visually similar instances.

5. Conclusion
In this paper, we proposed a novel semantic-visual em-

bedding framework that was inverse to conventional ZSL
frameworks . Using inferred visual features, we could con-
vert the ZSL problem into conventional supervised clas-
sification and employ powerful classifiers for fine-grained
open ZSL. On standard seen/unseen settings, our method
achieved significant improvements over the state-of-the-art
results. Furthermore, we challenged two scenarios of open
ZSL tasks, on both of which our method manifested promis-
ing performance. Also, the inferred visual features were
shown under the same data distribution as real data. We
ascribe the success of our method to the orthogonal embed-
ding space that can jointly compromise the structural differ-
ences between visual and attribute spaces and remove the
redundant correlations simultaneously.

For future work, our method is helpful to synthesise vi-
sual data for rare unseen classes. Our method can also be
applied to incremental ZSL frameworks that can mutually
infer new attributes and visual data in a large-scale recogni-
tion system.
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