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Abstract

Traditionally, pose estimation is considered as a two step
problem. First, feature correspondences are determined by
direct comparison of image patches, or by associating fea-
ture descriptors. In a second step, the relative pose and the
coordinates of corresponding points are estimated, most of-
ten by minimizing the reprojection error (RPE). RPE opti-
mization is based on a loss function that is merely aware of
the feature pixel positions but not of the underlying image
intensities. In this paper, we propose a sparse direct method
which introduces a loss function that allows to simultane-
ously optimize the unscaled relative pose, as well as the set
of feature correspondences directly considering the image
intensity values. Furthermore, we show how to integrate
statistical prior information on the motion into the opti-
mization process. This constructive inclusion of a Bayesian
bias term is particularly efficient in application cases with
a strongly predictable (short term) dynamic, e.g. in a driv-
ing scenario. In our experiments, we demonstrate that the
‘JET‘ algorithm we propose outperforms the classical re-
projection error optimization on two synthetic datasets and
on the KITTI dataset. The JET algorithm runs in real-time
on a single CPU thread.

1. Introduction

The main contribution of this work is the introduction
of a joint loss function which is based on the photomet-
ric error of all feature correspondences. The correspon-
dences are parameterized by one underlying epipolar ge-
ometry. This guarantees all correspondences to be epipolar-
conform by construction, and allows to directly optimize the
pose based on image intensities. Starting point is the well
known Lucas-Kanade tracking method [19] which employs
a quadratic photometric loss function (SSD) on a single im-
age patch to optimize feature correspondences. Given the
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Figure 1: Flow chart of the JET algorithm.

epipolar geometry, the search space can be drastically de-
creased from a 2D to a 1D search by including an epipolar
constraint [23, 24].

We show how to optimize all correspondences simulta-
neously and optimize the epipolar geometry at the same
time, given coarse initial values of these entities (the typical
situation in many applications). This is achieved by varying
the epipolar geometry, and by this the adjusted correspon-
dences of all features, in a way that minimizes the joint pho-
tometric loss function. We denote the resulting procedure as
Joint Epipolar Tracking (JET). As this joint optimization is
performed directly on the intensity values, JET is a ‘direct‘
method, in today’s terminology. This is in contrast to the
widely used minimization of the reprojection error which
distills photometric information into geometric information
and subsequently disregards the mere image intensities.

ar
X

iv
:1

70
3.

05
06

5v
1 

 [
cs

.C
V

] 
 1

5 
M

ar
 2

01
7



We show that JET outperforms the standard minimiza-
tion of the reprojection error (RPE), when optimizing the
relative pose (ego motion of the camera). The compari-
son was performed on synthetic and real data sets (all pub-
licly available), synthetic data sets in order to have perfect
ground truth and real data sets to demonstrate the feasibil-
ity under realistic conditions. The synthetic data sets are
COnGRATS [5] (driving scenes on a road scene) and RGB-
D data from ICL-NUIM [16] (indoor footage of a hand-held
camera). As a representative of real data, we utilize the well
known KITTI dataset [14, 15], which consists of real driv-
ing scenes in urban and highway scenarios. As dense depth
information or optical flow ground truth are not available
for this data set, we focus on comparing the quality of JET
against RPE by regarding the relative pose.

Since we regard monocular image data, the scale of the
pose remains undetermined and we only analyze the relative
rotation and the relative unscaled translation of the motion.
For a calibrated camera, these entities will entirely define
the epipolar geometry as it is scale independent as well.

2. Related Work
Approaches to relative pose or 3D motion estimation can

be divided into two basic categories: feature-based methods
and direct methods, with some hybrid approaches existing
as well. Feature-based methods are characterized by the
extraction and the matching of salient and reproducible fea-
tures that are tracked over frames. Prominent examples of
feature point based optimization methods are [3], [22], and
[8]. Usually, these approaches minimize the reprojection
error of tracked feature points.

So called ‘direct‘, appearance- or intensity-based meth-
ods, on the other hand, operate directly by matching pixel
intensities. They propagate the original image information
into the optimization scheme, usually using a differential
optimization approach and therefore can often provide more
accurate estimates of pose and structure. DTAM [21] was
among the first real time dense systems. Semi-Dense Visual
Odometry for a Monocular Camera [11] and its successor
LSD-SLAM [10] as well as SVO [13] are more recent ex-
amples. We share the opinion of the authors of [11] who
state that the separation into feature detection and tracking
versus a state estimation creates an artificial gap between
the data and the state sought.

PTAM [17] could also be considered as a hybrid method:
A weak motion prior is used to initialize the search for a
small number of features using a modified KLT at the high-
est level of a scale pyramid. The resulting tracks provide a
better egomotion prediction which is then used to search for
a larger number of KLT tracks at lower pyramid levels and
so on until the bottom level is reached.

Stabilizing the estimation of correspondences by inte-
grating a given (or assumed) epipolar relation into the

matching process has been used in numerous approaches.
For instance, the authors of [2, 23, 25, 27, 28] use epipolar
constraints for stabilizing discrete matching, whereas Val-
gaerts et al. [26] proposed a variational approach to esti-
mate dense optical flow and the epipolar geometry (repre-
sented by the fundamental matrix) simultaneously. Other
direct methods that also explicitly take into consideration
the depth structure of the scene are [4, 18, 20].

An important property which typically distinguishes ap-
pearance, direct, dense or semi-dense from feature based
approaches is that direct methods often use parametric mod-
els of the flow field and hence can utilize edges as well as
corners. If no explicit motion priors or dynamic models are
used, these direct methods generally depend on a high frame
rate that ensures moderate displacements, whereas feature-
based matching can work even with very large displace-
ments. However, even in this case a photometric ‘direct‘
post-optimization can be performed. JET is a well suited
method to do just this.

3. Approach
We outline our approach and introduce our notation,

starting from plain Lucas-Kanade tracking [19] in section
3.1 and subsequently revisiting epipolar constrained KL
tracking in section 3.2. This leads to the presentation of
joint epipolar tracking in section 3.3.

3.1. General Lucas-Kanade Tracking

The aim of differential direct tracking, often denoted as
Lucas-Kanade tracking [19] is to successively determine the
corresponding image feature point position ~yk = ~xk + ~vk
in image J for a given feature point ~xk in another image I.
We use the weighted sum of squared differences (WSSD) as
loss function for patch comparisons, thus implicitly model-
ing the image noise as signal-independent, i.i.d. and Gaus-
sian.

Qk
def
=
∑
~x

W[~x− ~xk] ·

I[~x]− J [~x+ ~v0k︸ ︷︷ ︸
~y

]


2

. (1)

The non-negative pixel weights and the size of the patches
are defined by a normalized kernel W. All points ~x and
~y = ~x + ~v0k with a non-zero weight W[~x − ~xk] are taken
into account for the patch difference. In a typical scenario, a
feature point ~xk and an initial estimate ~yk = ~xk +~v0k for the
corresponding feature are given and the task is to optimize
this correspondence by minimizing the WSSD

Qk(~vk)
def
=
∑
~x

W[~x− ~xk] · (I[~x]− J [~y + ~vk])
2 → min

(2)



for a specific realization of the image displacement ~vk.
Since this problem cannot be solved directly in closed form,
a local first order Taylor approximation of the image differ-
ence I[~x] − J [~y + ~vk] is usually applied. This yields the
approximated weighted sum of squared differences:

Q̃k(~vk)
def
=
∑
~x

W[~x− ~xk] ·
(
I[~x]− J [~y]− ~vTk ·

∂J
∂~x

[~y]

)2

= ~vTk ·Ak · ~vk + 2 · ~vTk ·~bk + ck, (3)

using the abbreviations

Ak
def
=
∑
~x

W[~x− ~xk] ·
(
∂J
∂~x

[~y]

)
·
(
∂J
∂~x

[~y]

)T

,

~bk
def
=
∑
~x

−W[~x− ~xk] · ∂J
∂~x

[~y] · (I[~x]− J [~y]) ,

ck
def
=
∑
~x

W[~x− ~xk] (I[~x]− J [~y])
2
. (4)

Since the image difference has been linearized, this is
an approximation to the ‘true‘ optimization problem, well
known in nonlinear optimization theory as the Gauss-
Newton method. The approximation in equation (3) yields
a convex parabolic function which allows to solve for the
optimal displacement ~vk. Due to the linearization of the
image, this approximation should only be used to improve
the feature correspondence which then serves as a new ini-
tialization for another step of the incremental optimization
process.

3.2. Epipolar Constrained Tracking

In constrained epipolar tracking, we consider the rela-
tive pose given by a rotation matrix R and a translation vec-
tor ~t to be known, and adjust the feature correspondences
{~xk ↔ ~yk + ~vk} to comply with the given epipolar geome-
try. This yields the epipolar constraint:

(~yTk + ~vTk , 1) · F ·
(
~xk
1

)
!
= 0 (5)

⇔ ~vTk ·
(

1 0 0
0 1 0

)
· F︸ ︷︷ ︸

def
= F′

·
(
~xk
1

)
!
= −(~yTk , 1) · F ·

(
~xk
1

)
.

In equation (5), F is the fundamental matrix,

F
def
= K−T ·

[
~t
]
× ·R ·K

−1, (6)

which is defined up to a scale factor. K is the camera ma-
trix holding the intrinsic camera parameters and

[
~t
]
× is the

skew symmetric matrix of the translation vector. We write
F = F(~p) to denote that, for a given camera matrix, the
fundamental matrix is fully determined by the (unscaled)

motion parameters ~p. We use the polar parametrization of
the rigid transformation as proposed in [6]:

~p
def
= (θ, ψ, φ, α, β)T . (7)

These parameters are a minimum representation of the rel-
ative unscaled pose. The pitch angle θ, the yaw angle ψ
and the roll φ are the rotational degrees of freedom about
the x-, y- and z-axis. The azimuth α and the polar angle β
represent the unscaled translation ~t in polar coordinates.

Using Lagrange multipliers, we solve the approximated
problem in equation (3) under the epipolar constraint intro-
duced in equation (5):

Q̃k(~vk) = ~vTk ·Ak · ~vk + 2 · ~vTk ·~bk + ck

+ 2 · λ ·
(

(~yTk + ~vT , 1) · F ·
(
~xk
1

))
. (8)

The optimal displacement ~vk,opt can be computed via the
minimization of Q̃k(~vk):

1

2
· ∂Q̃k

∂~vk
(~vk,opt) = Ak · ~vk,opt +~bk + λ · F

′
·
(
~xk
1

)
!
= ~0.

(9)

In combination with equation (5) this yields the linear equa-
tion system: Ak F

′ ·
(
~xk
1

)
(

F
′ ·
(
~xk
1

))T

0

 · (~vk,opt
λ

)
!
=

 −~bk
−(~yTk , 1) · F ·

(
~xk
1

) . (10)

The matrix on the left hand side of this equation system is
symmetric and F is a function of the motion parameter ~p,
i.e. there is a closed form solution to the optimal displace-
ment ~vk,opt showing the following dependency:

~vk,opt = ~f(Ak,~bk, ~xk, ~yk,K, ~p) = ~fk(~p). (11)

For a given epipolar geometry (which is equivalent to a
given unscaled relative pose and a calibrated camera) the
linear equation system (10) is the extension of the standard
Lucas-Kanade equation (see equation (3)) with an epipo-
lar constraint. It can be used to optimize image correspon-
dences if the epipolar geometry is already known in before-
hand.

3.3. Joint Epipolar Tracking

The present work extends the epipolar constrained track-
ing in the following sense: We do not only optimize each



feature correspondence ~xk ↔ ~yk individually with respect
to a given epipolar geometry, but build a joint loss function
which can be optimized with respect to the underlying mo-
tion that characterizes the displacements of all image points
(given that all points obey the same epipolar relation).

Using this approach, we can additionally optimize the
motion parameters themselves. We call this method Joint
Epipolar Tracking (JET). To this end, we perform a re-
parametrization of the loss function Q̃k(~vk) by substitut-
ing the functional dependency ~vk = ~fk(~p) into it (compare
equations (8) and (11) respectively):

Q̃k(~p)
def
= Q̃k(~v = ~fk(~p))

= ~fTk (~p) ·Ak · ~fk(~p) + 2 · ~fTk (~p) ·~bk + ck

+ 2 · λ ·
(

(~yTk + ~fTk (~p), 1) · F ·
(
~xk
1

))
︸ ︷︷ ︸

0

. (12)

By using this definition of the displacement, the optimiza-
tion of the loss function is no longer performed with respect
to an image displacement ~vk but with respect to an epipolar
geometry which is induced by the relative pose of the cam-
era and the environment. This relative pose is evoking the
optical flow in the image domain.

Joining together the loss functions from equation (12) for
several feature correspondences {~xk ↔ ~yk}k and adding a
prior term for the motion (expressing a statistical model of
‘typical‘ motion) yields the joint loss function

Q̃(~p) =
1

N

N∑
k=1

Q̃k(~p)︸ ︷︷ ︸
image information

+ ξQ · (~p− ~̂p)T ·C−1

~p−~̂p
· (~p− ~̂p)︸ ︷︷ ︸

prior term on motion parameters

.

(13)

The minimization of this function allows to determine the
motion parameters, and hence the unscaled relative pose,
that best describes the optical flow. In equation (13) the
part of the joint loss function that is dependent on the image
information has been extended by a second part that incor-
porates statistical prior knowledge coupled via the coupling
constant ξQ. The prior information is characterized by a
prediction of the expected motion ~̂p and a covariance ma-
trix of the prediction residuals C~p−~̂p.

These motion prior terms are determined by a linear re-
gression approach on a dataset of motion parameters that are
representative for the type of motion to be expected (e.g. re-
stricted car motion, unrestricted motion of a handheld cam-
era). We use a very similar approach as in [6] to deter-
mine the parameters of a linear predictor. The difference
is that we employ a third order predictor, i.e. the preced-
ing three motion parameter sets are taken into consideration

when evaluating the statistics and performing the dynamic
prediction.

Equation (13) can be expressed in vertex form and the
optimization of Q̃(~p) is represented as the following least
squares problem:

Q̃(~p) =

N∑
k=1

‖~qk(~p)‖22 + const. ,

~qk(~p) =

√
1

N
·

(
A

1/2
k · (~fk(~p) + A−1

k ·~bk)√
ξQ ·C−1/2

~p−~̂p
· (~p− ~̂p)

)
. (14)

With an initial estimate ~p(0) of the motion parameters (e.g.
the prediction ~̂p based on the previous motion parameters),
we can now solve this optimization problem using a nonlin-
ear solver like the Ceres solver [1]. The result of this motion
optimization ~popt is then used to improve the feature corre-
spondences ~xk ↔ ~yk by shifting the corresponding image
point to its epipolar line by ~yk → ~yk + ~fk(~popt) (see equa-
tions (10) and (11)). Since the original image difference has
been replaced by a linear approximation during the Gauss-
Newton approach at the beginning, these improved corre-
spondences and the improved motion parameters serve as an
initialization for the second iteration step of this optimiza-
tion procedure. We continue with this procedure as long as
the target loss function

Q(~popt)
def
=

1

N

N∑
k=1

Qk(~vk = ~fk(~popt)) (15)

is decreased. Note that the target loss function incorporates
the exact image difference as introduced in equation (2).

The optimization of the relative pose using JET does not
merely minimize the reprojection error1, but rather than that
minimize the photometric error of the feature correspon-
dences by including the full image information encoded in
the quantities Ak, ~bk and ck. Compared to other leading
direct methods, such as [9, 10], JET is the most compact
formulation of the direct 2-view n points pose optimization
problem based on minimizing the photometric error.

4. Experiments
We evaluated the JET procedure presented here on syn-

thetic data [5, 16], applying noise to the different input
parameters to investigate the stability against noise in our
components. As we used synthetic data, we had perfect
ground truth for our results to compare against, a situation
usually very hard to obtain for real-life driving scenarios,
e.g. [15, 14].

The aim in our experiment is to optimize the motion pa-
rameters and correct the feature correspondences {~xk ↔

1Actually the reprojection error is zero, since the feature correspon-
dences are just optimized with respect to the relative pose.



Dataset ρin ρJET ρRPE Ωin ΩJET ΩRPE

µ σ µ σ µ σ µ σ µ σ µ σ

Construction 0.96 0.28 0.06 0.09 0.11 0.08 7.65 2.83 1.62 2.39 2.04 1.71
Construction* 0.96 0.28 0.03 0.03 0.1 0.06 7.64 2.84 0.77 0.87 0.89 0.99
Highway 0.96 0.28 0.03 0.05 0.06 0.03 7.63 2.85 0.6 1.4 1.12 0.91
Highway* 0.96 0.28 0.02 0.02 0.05 0.05 7.65 2.85 0.25 0.47 0.23 0.18
LivingRoom02 4.8 1.39 0.38 0.39 0.64 0.47 12.9 5.61 14.8 14.7 20.1 14.8
OfficeRoom02 4.81 1.39 0.41 0.49 0.71 0.72 12.8 5.62 18.9 20.7 23.1 18.0

Table 1: First two moments of ρ and Ω from the evaluation on COnGRATS and ICL-NUIM RGB-D dataset. Datasets ending
with * indicate the use of prior knowledge. All values are in degrees.

~yk} → {~xk ↔ ~yk,opt} so that they obey the epipolar geom-
etry induced by the optimized motion parameters ~popt:(

~yk,opt
1

)T

· F(~popt) ·
(
~xk
1

)
= 0 , k ∈ {1, . . . , N} (16)

We compare the results achieved with JET against the re-
sults achieved with a method that minimizes the reprojec-
tion error (RPE).

4.1. Competing method: Optimization of the repro-
jection error

The competitor RPE optimization is a method that min-
imizes the reprojection error and performs the following
steps:

1. Optimize correspondences:
{~xk ↔ ~yk} → {~xk ↔ ~y

′

k} (optional)

2. Minimize the reprojection error:
~p→ ~popt

3. Perform a minimum correction of the correspon-
dences, so that they are in agreement with ~popt:
{~xk ↔ ~y

′

k} → {~xk ↔ ~yk,opt}

The first task is optional and optimizes the feature corre-
spondences using standard Lucas-Kanade tracking as it is
implemented in OpenCV [7]. We will run experiments with
both, step one enabled and disabled. In the mandatory sec-
ond step, RPE optimizes the motion parameters by mini-
mizing the reprojection error

dk(~p)
def
=

(
~yk
1

)T

· F(~p) ·
(
~xk
1

)
/

∥∥∥∥F′
(~p)

(
~xk
1

)∥∥∥∥
2

(17)

for all feature correspondences. dk(~p) is the distance of the
image point ~yk to the epipolar line specified by the funda-
mental matrix F(~p) (see equation (6)) and ~xk. We dele-
gate the optimization of the loss function R(~p) of the RPE

method to the Ceres-Solver from Google [1].

R(~p)
def
=

1

N
·

N∑
k=1

d2k(~p) + ξR · (~p− ~̂p)T ·C−1

~p−~̂p
· (~p− ~̂p)

=

N∑
k=1

‖~rk(~p)‖22 ,with

~rk(~p) =

√
1

N
·

(
dk(~p)√

ξR ·C−1/2

~p−~̂p
· (~p− ~̂p)

)
(18)

After having computed the optimized motion parameters
~popt, we determine the optimized corresponding points ~yk,opt
by projecting all ~yk to the closest points on their respective
epipolar line. For that purpose we introduce the abbrevia-
tions

~lk =

lk,0lk,1
lk,2

 = F(~popt) ·
(
~xk
1

)
, ~yk =

(
yk,0
yk,1

)
(19)

and obtain for the optimized corresponding point:

~yk,opt =
1

(lk,0)2 + (lk,1)2
·(

yk,0 · (lk,1)2 − yk,1 · lk,0 · lk,1 − lk,0 · lk,1
−yk,0 · lk,0 · lk,1 + yk,1 · (lk,0)2 − lk,1 · lk,2

)
.

(20)

4.2. Initialization

Both methods were initialized with exactly the same esti-
mated image correspondences and the same estimate of mo-
tion parameters. When using synthetic data, it is straightfor-
ward to obtain ground truth reference values for the corre-
spondences as well as for the motion parameters. The COn-
GRATS [5] scenes we used in the evaluation, re-use pose
sequences from the KITTI Benchmark. To make a coarse
estimate of the variation range of the motion parameters,
we checked the statistics of the motion parameters on the
KITTI dataset, which covers a wide range of driving sce-
narios and can be considered as representative for realistic
car motion.



If we assume a normal distribution of ~pn− ~pn−1 and use
the KITTI motion statistic to find upper bounds for the vari-
ances of the translational and rotational degrees of freedom
(σ2

rot < 10−5 and σ2
trans < 10−3), we can estimate the 3σ

interval to be 3σrot < 10−2 and 3σtrans < 10−1. More than
99.7% of the motion parameters do not deviate by more than
3σrot/trans from their temporal predecessor.

We use these insights to justify a realistic variation range
of ±1◦ and ±10◦ for the rotation and translation parame-
ters respectively. These ranges correspond to more than 5
standard deviations σrot/trans. We apply uniformly distributed
noise with the just derived intervals to the motion parame-
ters.

A similar consideration for a hand held camera, as it is
used in the second synthetic dataset [16], leads to a varia-
tion range of ±5◦ and ±20◦ for the rotation and translation
parameters, respectively.

For the corresponding image points ~yk, we apply uni-
form noise to the x- and y-component of the ground truth
value, each with a level of ±5 pixels.

4.3. Evaluation measures

Each experiment gets initialized with an approximation
of the pose and with initial image correspondences. To
quantify the quality of the input and the output of the meth-
ods, the deviation from ground truth is expressed by the fol-
lowing four evaluation measures:

• Rodrigues angle ρ (rotational error):
The rotation parameters θ, ψ and φ define a rotation
matrix R which is to be compared against the ground
truth Rgt via the relative rotation Rrel = Rgt · RT .
According to Rodrigues‘ formula, Rrel can be inter-
preted as a rotation of an angle ρ about some axis ~n.
The absolute value of the Rodrigues angle ρ serves as
a measure for the deviation from the ground truth rota-
tion.

• Angle of intersection Ω (translational error):
The translation parameters α and β represent the direc-
tion of the translation vector. The translation direction
is compared to the ground truth via the absolute value
of its angle of intersection Ω.

• RMS distance of corresponding points (positional er-
ror):
The quality of the point correspondences is char-
acterized by the mean deviation from ground truth:

RMS
def
=
√

1
N

∑N
k=1 ‖~yk − ~yk,gt‖22.

• Joint weighted sum of squared differences SSD (photo-
metric error):
The only measure that is absolute and not relative to
the ground truth is the SSD. It is the average squared

gray value difference over all patches of the image cor-
respondences ~xk ↔ ~yk = ~xk + ~vk:

Q
def
= 1

N

∑N
k=1

∑
~x W[~x−~xk] ·(I[~x]− J [~x+ ~vk])

2.

4.4. COnGRATS & ICL-NUIM RGB-D dataset

The COnGRATS dataset contains two road scenes of a
construction site on a highway (‘ConstructionSite‘) show-
ing maneuvers at low velocities and another highway scene
(‘Highway‘) with the car travelling mainly straight ahead at
a much higher speed. Both scenes use a setup of the camera
similar to KITTI [14] and were generated using the pose
information from the KITTI odometry dataset [15]. This
enables us to use the extensive motion data in KITTI to
generate a statistical model of ego-dynamics to be used as
statistical prior. The results are shown in the first and sec-
ond column of figure 2 and the mean and standard devia-
tion are listed in table 1. The results show that JET, using
image information, reduces the rotational error ρ to approx-
imately the half of the value of RPE without using prior
knowledge. While using prior knowledge does not seem to
have a large impact on the optimization of the rotation of
RPE, it does have it for JET. Using the prior, JET is able
to nearly halve the rotational error once more, compared to
not using a prior. The observations for JET are also true for
the translational error Ω: the use of a prior more than halves
the error. In contrast to the optimization of the rotation, the
translation optimization of RPE also greatly benefits from
using the prior, leading to a reduction of the error by more
than a half. This behavior becomes very clear when com-
paring the histograms of ρ and Ω for the cases with and
without prior information (first and second column of figure
2 respectively). JET is the clear winner for the rotation op-
timization and also dominates the optimization of the trans-
lation without using the prior. Enabling the prior leads to a
head to head situation for the translational error.

Regarding the SSD, it is very easy to see the influence of
the optional Lucas-Kanade tracking for RPE. The value is
strongly decreased. However, JET also dominates this area.
It achieves SSD values that are clearly below the ground
truth value indicating a very good quality of the optimiza-
tion of the feature correspondences. Nevertheless, on an av-
erage the feature correspondences of JET deviate by about
1 pixel off the ground truth position. The reason for this
behavior (similar and even better SSD value while still de-
viating from the ground truth position) can be explained by
the use of patch matching and the existence of a locally non-
constant optical flow field (caused by rotation and transla-
tion in the direction of the optical axis leading to different
scalings). Apart from that, the RMS value of JET is clearly
superior to the results of RPE.

The ICL-NUIM RGB-D dataset we evaluated on con-
tains synthetic data of a hand held camera which is carried
through a living room (‘LivingRoom02‘) and an office room



KITTI
Seq No.

Rotation ρ [deg] Translation Ω [deg] SSD
RPE JET RPE JET RPE JET

0 0.188 0.096 6.582 6.749 1209.95 180.39
1 0.364 0.253 8.374 7.998 1553.32 178.64
2 0.154 0.061 1.703 1.502 1178.16 266.20
3 0.098 0.035 0.970 0.891 388.74 138.38
4 0.142 0.045 1.123 0.951 774.49 176.47
5 0.138 0.049 1.445 1.274 1120.63 212.27
6 0.436 0.358 11.129 10.765 1342.75 220.85
7 0.262 0.152 28.411 28.070 1587.19 219.49
8 0.169 0.063 9.536 9.429 1188.83 206.49
9 0.107 0.029 0.752 0.676 687.81 243.71

10 0.237 0.131 1.614 1.361 1218.97 275.59

Table 2: Evaluation on the KITTI training dataset.

(‘OfficeRoom02‘). The motion is dominated by strong ro-
tations and involves only slight translation. As the motion is
less constrained, compared to vehicle motions, the positive
influence of integrating prior knowledge is less pronounced.
Therefore, we only present results without using the prior
(ξq = 0, ξR = 0). They are visualized in the third column
of figure 2 and listed in table 1.

In summary, the results of the RGB-D dataset are sim-
ilar to the ones achieved on COnGRATS. JET is superior
to RPE in optimizing the rotation and translation (see his-
tograms in third column of 2). It is dominating the SSD re-
sults by achieving SSD values below the ground truth value
and it is also clearly superior in optimizing the image point
correspondences (RMS). Due to the harder requirements of
data from a hand held camera, all results are slightly worse
than they were for the COnGRATS dataset. Especially the
optimization of the translation direction is very tough (see
Ω in third column of figure 2 and table 1), when only slight
magnitudes of the translation can be observed. Already a
minor shaking of the hand, as it is simulated in the scenes,
can lead to constantly and much pronounced changes in the
direction of the translation. Even though the effect of this
behavior only has a small influence on the relative pose and
the optical flow in the image domain, it has a strong influ-
ence when looking at the evaluation of the direction of the
translation. This is a limitation of our parametrization: the
direction of the translation is almost undetermined due to
its vanishing magnitude, and no scale is available due to the
use of a mono camera setup.

Apart from this, the optimization of the unscaled relative
pose and the feature correspondences was very successful
and largely improved by including the photometric match-
ing information when using JET.

4.5. KITTI Dataset

We also performed experiments on the KITTI dataset.
Since KITTI does not provide ground truth for image point
correspondences (e.g. via a dense depth or optical flow
map), we cannot use ground truth for the correspondences
and apply noise to them to serve as an initializiation. There-
fore, we initialize the correspondences by employing prop-
agation based tracking as presented in [12]. Similar to the
experiments on the synthetic data, we compare the results of
both methods. We use the KITTI ground truth of the pose
and compare JET and RPE with respect to the rotational er-
ror ρ and the translational error Ω. In order to compare the
quality of the feature correspondences of the two methods,
we regard the photometric error (SSD).

The results of the experiment on the KITTI dataset are
shown in table 2. The table presents the mean values of the
Rodrigues angle (ρ), the angle of intersection of the trans-
lation (Ω), and the SSD for each KITTI sequence that has
ground truth available. The results confirm that JET per-
forms clearly better than RPE in matters of rotation opti-
mization. The mean of the rotational error ρ is two to three
times lower than the one of RPE. In terms of translation,
the results show a head and head situation of RPE and JET
with a slight lead of JET. Thus, in summary JET yields a
significantly better pose than RPE.

Besides improving the pose, JET also refines the feature
correspondences. However, as correspondence ground truth
is not available in KITTI, the residual error in feature cor-
respondences after performing JET cannot be determined.
However, the feature correspondences from JET possess a
much smaller photometric error (SSD) than after RPE opti-
mization as can be seen in table 2.
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Figure 2: Evaluation on the COnGRATS sequence ‘ConstructionSite‘ using prior knowledge (ξQ = 1, ξR = 0.5) (first
column) and evaluation on the COnGRATS sequence ‘Highway‘ and on the RGB-D sequence ‘LivingRoom02‘ without
using prior knowledge (second and third column). First and second row visualize the distributions of the quality measures ρ
(rotational error) and Ω (translational error) of the relative pose. The third row exhibits the SSD measure (photometric error)
over the courses of the sequences and the last row visualizes the distribution of the RMS measures (positional error) of the
correspondences.

5. Summary and Conclusion

This paper proposed a novel algorithm in the area of
feature tracking and frame-to-frame pose estimation, de-
noted as Joint Epipolar Tracking (JET). The proposed al-
gorithm employs a direct method to simultaneously opti-
mize the epipolar geometry and feature correspondences.

It iteratively solves the minimization problem of the newly
introduced joint loss function where additional statistical
information about the motion can be included to serve as
prior knowledge. The proposed method has been shown
to perform better than the competing method of RPE opti-
mization by experiments on several datasets, synthetic and
real, such as COnGRATS, ICL-NUIM, and KITTI. It at-



tains real-time performance: approximately 30fps utilizing
roughly 400 features with patch size of 9 × 9 pixels on a
single thread of an Intel Core i7-6700 CPU. On an aver-
age, the rotational errors are three times smaller compared
to RPE. The translation direction can be improved as well
if the translation is sufficiently encoded in the optical flow
of the image. Furthermore, the photometric error (SSD) of
the feature patches is massively reduced in all cases which
suggest a better quality also of the 3D information that can
be computed from the point correspondences.
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