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Abstract. Tracking many vehicles in wide coverage aerial imagery is
crucial for understanding events in a large field of view. Most approaches
aim to associate detections from frame differencing into tracks. However,
slow or stopped vehicles result in long-term missing detections and fur-
ther cause tracking discontinuities. Relying merely on appearance clue
to recover missing detections is difficult as targets are extremely small
and in grayscale. In this paper, we address the limitations of detection
association methods by coupling it with a local context tracker (LCT),
which does not rely on motion detections. On one hand, our LCT learns
neighboring spatial relation and tracks each target in consecutive frames
using graph optimization. It takes the advantage of context constraints
to avoid drifting to nearby targets. We generate hypotheses from sparse
and dense flow efficiently to keep solutions tractable. On the other hand,
we use detection association strategy to extract short tracks in batch
processing. We explicitly handle merged detections by generating addi-
tional hypotheses from them. Our evaluation on wide area aerial imagery
sequences shows significant improvement over state-of-the-art methods.

Keywords: multi-target tracking, context tracker, wide area motion im-
agery

1 Introduction

Wide area motion imagery (WAMI) is acquired by high altitude unmanned
aerial vehicles (UAV) and has made it possible to understand activities in a
large area of interest. With current sensor and storage technologies, WAMI is
typically captured in large format (tens ∼ hundreds of megapixels), low frame
rate (1 ∼ 2 Hz), grayscale, and with ground sampling distance from 0.2 ∼ 0.5
meter/pixel. Because of these unique characteristics and its wide applications, it
has gained attention in the computer vision field in recent years [1,2,3,4,5,6,7].
Tracking many vehicles in WAMI [6,7,8,9,10] is an essential component since it
is needed for higher level activity analysis and scene understanding.

Detection association strategy has become standard for multi-target tracking
with unknown number of targets [12,13,14]. By assigning detections in each
frame into tracks, short-term missing detections are recovered by using motion
interpolation. In the following, we call this type of tracker detection-based tracker
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Fig. 1. A cropped view of WPFAB dataset [11]. The green rectangle shows details of
two vehicles which are close to each other.

(DBT). Unique characteristics in WAMI bring additional challenges in DBT.
First, low frame rate WAMI leads to a very large search space. Displacement of
a target is up to 80 pixels in consecutive frames. Second, the size of a vehicle
is extremely small (usually less than 20 pixels in length). Along with grayscale
imagery, appearance information is less discriminating in WAMI than in many
other scenarios. Fig. 1 shows a cropped view from a WAMI dataset. Notice that
in this work, we assume that vehicles are the only moving targets, since other
moving objects such as pedestrians are nearly invisible even for human beings.

Instead of using an appearance-based detector, current tracking approaches
in WAMI [7,8,9,10] rely on motion detection. They first stabilize the imagery
and then apply frame differencing methods. However, stopped or slow vehicles
result in long-term missing detections, which can not be recovered using DBT
only.

To alleviate the limitation of detectors, a new strategy that couples DBT with
an appearance-based category free tracker (CFT) has been proposed in multi-
target tracking [15,16]. CFT does not rely on a detector and it recovers missing
detections at the ends of a track. However, appearance-based CFT is not robust
in WAMI because targets are with weak appearance. Moreover, it is difficult to
escape from local maximums when the frame rate is low. Prokaj and Medioni [6]
proposed to run DBT and a regression based tracker in parallel. Though using
a regressor is more efficient than using a classifier in low-frame-rate WAMI, the
regression model is still not discriminating enough to avoid drifting.

Based on the above discussion, incorporating CFT with DBT in WAMI still
remains very challenging. We conclude that there are three major issues that
make it difficult in WAMI: 1) Discriminating ability of target appearance is very
low because of the small target size and grayscale imagery. Illumination change
can easily confuse a target appearance model with its local background or other
neighboring targets. 2) Motion detections are imprecise especially at merged
detections, which contain more than one target. Thus, it is difficult to have good
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Fig. 2. Framework of our tracking system. Green rectangles represent motion detec-
tions. Solid circles show hypothesis centers that form tracks. Dashed circles represent
hypothesis centers in LCT. Dashed black lines show context constraints in LCT.

initialization for CFT. 3) Displacement of a target between consecutive frames
can be very large. A good strategy for hypothesis sampling in CFT is essential
to keep the solution tractable.

Our goal is to maximize the merit of both trackers and compensate their lim-
itations in WAMI. Unlike [15,16,6] training an appearance model for CFT, we
relax the dependency on appearance clue, which is not reliable in our scenario,
by introducing local context tracker (LCT). LCT explores spatial relations for
a target to avoid unreasonable model deformation in the next frame. We de-
sign two sampling strategies based on dense and sparse optical flow to overcome
large search space in low frame rate aerial videos. In DBT, short tracks (track-
lets) are produced by associating hypotheses from motion detections in a sliding
temporal window. We explicitly handle merged detections by generating addi-
tional hypotheses from them. This step is important for combing DBT with LCT
to ensure reasonable appearance and motion consistency. The track association
step concludes results from both trackers and updates the “track pool”, which
stores all existing tracks and is used to initialize LCT in the next frame. Fig. 2
illustrates the framework of our system.

The contributions of this paper are:
1. We propose LCT that relaxes the dependency on frame differencing motion
detection and appearance information.
2. We propose DBT that explicitly handles merged detections in detection asso-
ciation.
3. We propose a unified framework that couples LCT with DBT and takes ad-
vantages of both trackers.
4. Our performance shows significant improvement over state-of-the-art methods
in two WAMI sequences.

The rest of the paper is organized as follows: We discuss related work in
Section 2. We then illustrate LCT in Section 3. Our DBT is introduced in Section
4. The track association module is described in Section 5. In Section 6, we
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show comparison results on two sequences from real WAMI datasets. Finally, we
conclude this paper in Section 7.

2 Related Work

Multi-target tracking has been investigated in the computer vision society for
many years. Joint probabilistic data association filter (JPDAF)[17] and multiple
hypothesis tracking (MHT)[18] are two early successful approaches. However,
the association step requires very high computational and memory cost in both
methods; therefore, solutions are usually intractable in real-world applications.
In practice, JPDAF has been incorporated with Kalman filter [19] and particle
filter [20] to increase the efficiency. More recently, Rezatofighi [21] improves the
efficiency of JPDAF by obtaining m-best solution using integer linear program-
ming and shows state-of-the-art result. MHT usually introduces tree pruning
strategies [22,23,24] to reduce the possible solution space. In recent years, net-
work flow optimization has become popular in multi-target tracking approaches
[25,26,27,28]. Despite that these methods have shown promising results in their
scenario, they all use one-to-one matching assumption. Therefore, they are not
suitable for WAMI where split-and-merge motion detections often occur.

Solving tracking problem with machine learning techniques has shown to be
effective in boosting discriminative ability of appearance model for single target
tracking [29,30,31] and multi-target tracking [32,15,33]. However, it is almost
impossible to learn meaningful information in WAMI because the target size
is extremely small and the imagery is typically in grayscale. Targets are often
visually similar to each other and background patches.

Using context information is an appealing strategy for tracking against dis-
tracters and occlusion. This concept has been applied on single target track-
ing [34,35,36]. Recently, [37] incorporates spatial constraints with tracking-by-
detection. Nevertheless, these trackers require accurate annotation for initializa-
tion. It is not trivial to directly apply these approaches in WAMI, where the
number of targets varies with time and perfect initialization is not available.

Most WAMI tracking approaches focus on associating noisy motion detec-
tions into tracks. Motion detections are typically acquired by applying frame dif-
ferencing methods to stabilized imagery. Perera et al. [8] propose to first generate
short tracks using nearest-neighbor strategy and then handle split-then-merge
situations in track linking. Reilly et al. [9] formulate the data association prob-
lem in Hungarian algorithm. Prokaj et al. [38] extract tracklet from detections
by Bayesian network. Shi et al. [39] associate motion detections by rank-1 tensor
optimization. Keck et al. [40] provide a real-time implementation for tracking
based on multiple hypothesis tracking. The object-centric association method
is proposed in [10] to relax the one-to-one matching assumption for motion de-
tections. Additional context constraints are used to alleviate track intersection.
Chen and Medioni [7] extract tracklets by finding the longest path through de-
tection trees. These above trackers mainly rely on motion detections. Therefore,
they cannot recover long-term missing detections from slow or stopped vehicles.
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Fig. 3. A turning vehicle and rotation variants of si. Blue rectangle represents si and
the green rectangle represents the selected template with the highest NCC score.

Xiao et al. [41] propose to use appearance and shape templates to handle
missing detections. To avoid drifting, they use road network information and
consider pairwise spatial relation in optimization. However, road network infor-
mation is not always available and considering spatial relations in Hungarian
optimization is costly. Basharat et al. [42] apply an appearance-based tracker
whenever detection association fails for a track or the motion of a target is slow.
More recently, a hybrid approach that combines DBT with a regression-based
tracker is proposed [6] to handle stop-then-go vehicles. Nevertheless, relying only
on weak appearance information makes these trackers prone to drift and limits
its ability in recovering missing detections.

3 Local Context Tracker

In this section, we present the details of our LCT. It explores context informa-
tion to increase the robustness of tracker. Given a track pool Te = {T1, T2, ..., TN},
which contains N tracks from time 1 to t − 1, our goal is to extend each track
that ends at the previous frame It−1 to the current frame It. We introduce
our hypothesis generation method using sparse and dense flow in Section 3.1.
In Section 3.2, we formulate the tracking problem in graph optimization and
find the optimal hypothesis tree considering appearance, motion, and context
information.

3.1 Hypothesis Sampling

As mentioned in Section 1, the displacement of a target is in a very large range
(0∼ 80 pixels). In practice, it is not affordable to densely sample all possibilities.
We propose a search mechanism which is based on motion information. We use
the fact that visible targets are either fast enough to produce discontinuities in
dense flow or slow enough to meet the small motion assumption of optical flow.
For each track Ti, we construct a set of hypotheses Hi for graph optimization in
Section 3.2.
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(a) target at It−1 (b) binary voting map (c) hypotheses at It

Fig. 4. An example of generating hypotheses using a binary voting map.

Sample from Dense Flow In WAMI, most of the targets move fast and the
small motion assumption fails in optical flow methods. Therefore, motion vectors
from optical flow in a target region are usually noisy. Instead of using the motion
vectors directly, we find discontinuities in dense flow for hypothesis sampling.
We use 3 × 3 Sobel operators to get the gradient of flow and produce a binary
voting map by thresholding the gradient magnitude. We search each target in
a 160 × 160 window based on its location and size at previous frame. Here,
we assume that the target size is consistent between consecutive frames because
roads are typically flat and the UAV does not change its altitude drastically while
flying. A valid hypothesis should have enough votes from the binary voting map.
We set the threshold as one-fourth of the target size in all experiments.

In addition, we ensure that hypotheses match the target by using two kinds
of templates including the target region at the previous frame oit−1 and a “stable
template” si for the track Ti. We use normalized correlation coefficient (NCC)
as template matching score. Non-maximum suppression is applied to reduce the
number of candidates. The idea of stable template is to maintain a robust ap-
pearance model that only updates at high confidence to avoid gradually drifting
[43]. In this work, we take the advantage of DBT for the confidence measure.
We describe the update criterion of stable template in Section 5.

NCC template matching handles target motion in translation but not in
rotation. Therefore, it fails when a target turns if we do not consider rotation of
si, which may have different orientation compared with the target at the current
frame. A collection of rotation variants of si are used so that the tracker can
deal with turning targets as shown in Fig. 3. We use 7 rotation variants (−90,
−60, −30, 0, 30, 60, 90 degrees) in our implementation. The following rules are
used to adopt hypotheses with strong appearance similarity:

NCC(ht, o
i
t−1) > φ, (1)

MAXj(NCC(ht, s
j
i )) > φ, (2)

where φ is a constant which is set to 0.5, ht represents a template of a hypothesis
candidate, and sji is the jth rotation variant of si. Fig. 4(c) shows an example
of samples from the dense flow. Note that generating hypotheses directly from
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(a) Slow target (b) Occluded target

Fig. 5. Different situations of sampling from the sparse flow. Points with the same color
represent correspondences from the sparse optical flow. Hollow rhombuses show failure
points in forward-backward check. (a) Optical flow tracks most points successfully when
the target is slow and visible. A valid hypothesis in It is shown in the red rectangle. (b)
Most points fail in forward-backward check when the target is occluded. No hypothesis
is generated in this case.

connected components of the voting map is not suitable since merged blobs
appear frequently in practice. Fig. 4(b) shows an example of this situation.

Sample from Sparse Flow When a target moves slowly or stops, there is no
discontinuity in dense flow between the target region and its local background
region. Fortunately, small motion assumption of optical flow is valid in this case.
We attempt to generate a hypothesis from densely sampled sparse flow to handle
the situation that a target moves relatively slow or stops. For each pixel in the
target bounding box at the previous frame, we use Lucas-Kanade optical flow
[44] to track them at the current frame. Note that target hypotheses with fast
motion are already covered by using dense flow in the previous section. Thus, we
only use a relatively small window for sparse flow. In all our experiments, this
window is set to 15× 15 in pixels.

The main reason of using sparse flow is that we can apply a forward-backward
check [31,33] efficiently to remove inconsistent correspondences. The median flow
vector of remaining points is used to predict the hypothesis region. We avoid in-
troducing false alarms by rejecting hypotheses without enough number of valid
correspondences as shown in Fig. 5 (b). The threshold is set to 1/8 of the tar-
get size at t − 1. Additionally, two NCC template matching policies, which are
illustrated in equation 1 and 2, are applied to select valid hypotheses.

3.2 Optimization in Hypothesis Graph

Assuming independence between all tracks causes ambiguities between neigh-
boring targets with similar appearance in WAMI. While considering every linking
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(a) (b) (c)

Fig. 6. (a) Context relation at It−1 (b) Hypothesis graph at time t (c) The tracking
result of LCT at It

possibilities between all hypotheses and all tracks is computationally expensive,
we argue that each target trajectory is mainly affected by other targets with a
similar motion direction in a local neighborhood. The movement of each vehi-
cle is constrained to avoid collisions with its neighbors. For each target track
Ti ∈ Te, we find its neighboring tracks with similar moving direction at t − 1
as its “motion neighbors”. We resolve the tracking problem for each Ti and its
motion neighbors at the same time. Fig. 6 (a) shows the neighborhood of the
target (red). In our implementation, we use a search radius R = 50 pixels.

Given a target track Ti, its motion neighbors, and their hypothesis sets, we
construct a hypothesis graph G = (V,E) as shown in Fig. 6 (b). Each sample in
a hypothesis set is represented by a node, while edges are constructed between
every node from target track and every node from each of its motion neighbor.

Let k = {kit|
|V |
i=1, k

i
t ∈ V } be a set of nodes that forms a tree, we formulate the

tracking problem as maximizing the following objective function:

O(k) = λ
∑
ki
t∈V

U(kit) +
∑

(ki
t,k

j
t )∈E

B(kit, k
j
t ), (3)

where U(kit) is the unary score at node kit, and B(kit, k
j
t ) is the binary score

between nodes that forms an edge in E. We use λ, which is set to 3 in our
experiments to leverage weighting between these two scores. Using the trajectory
of Ti, we define U(kit) as:

U(kit) = Capp(kit) · Cmot(k
i
t), (4)

where Capp(kit) is the appearance measurement based on NCC calculated be-
tween the template of hypothesis and the template of its corresponding target
at the previous frame. Cmot(k

i
t) is computed by multiplying the velocity sim-

ilarity with the acceleration similarity. Here, we adopt the same velocity and
acceleration measure as in [7], which uses different Gaussian kernels for magni-
tude and orientation components.

We calculate a binary score B(kit, k
j
t ) according to the local context. This pro-

vides discriminating power against id-switches and false alarms. Given a target



Title Suppressed Due to Excessive Length 9

Fig. 7. Context constraint model at time t− 1 and one of the hypothesis pairs at time
t. Triangles represent the motion neighbor and its hypothesis while square represents
the target and its hypothesis. The blue arrow shows the latest velocity vector of the
target.

track and one of its motion neighbors, we observe that the relative displacement
between them is more flexible along the moving direction of the target than
along its normal direction. Therefore, we decompose the displacement accord-
ing to the target velocity vector and use different Gaussian kernels for structure
consistency in different components. Fig. 7 shows our local context modeling.

d̂
‖
t−1 and d̂⊥t−1 are spatial relations between the target and the neighbor while d

‖
t

and d⊥t represent one of the hypothesis pairs between them. The binary score is
defined as:

B(kit, k
j
t ) = C‖(k

i
t, k

j
t ) · C⊥(kit, k

j
t ), (5)

C‖(k
i
t, k

j
t ) = exp(−α ·Abs(d̂‖t−1 − d

‖
t )), (6)

C⊥(kit, k
j
t ) = exp(−β ·Abs(d̂⊥t−1 − d⊥t )), (7)

where Abs(·) returns the absolute value. We set α = 0.01 and β = 0.05 as
constants in our experiment to penalize deformation in different components.

The optimization can be solved by using dynamic programming efficiently
in polynomial time [45]. Fig. 6 (c) shows an example LCT tracking result. By
considering the local context as well as the trajectory history, LCT does not
drift to other targets or false alarms.

4 Detection Based Tracker

One of the difficulties in coupling DBT and LCT is: LCT assumes that the
observation at the end of a track contains only one target. This assumption fails
when a merged detection occurs. The appearance of these detections accounts for
multiple targets. The center of them may be far from any target. This makes both
appearance and motion information unreliable for LCT initialization. Unlike
most DBT methods that do not handle this situation in the detection association
level, we address this problem by generating additional hypotheses rather than
merely adopt motion detections directly.
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(a) (b) (c)

Fig. 8. Generate additional nodes from merged detection. (a) parent node (red) (b)
child node (a merged detection) (green) (c) child node with additional nodes (purple).

Our DBT is based on the motion proprogation approach proposed in [7]. It
builds detection trees layer-by-layer from motion detections at each frame in a
sliding temporal window, which is set to 8 frames in our implementation. Each
tree node represents a detection. Edges are constructed iteratively based on the
best path from the root to each node at the previous frame. Each detection tree
produces at most one tracklet by finding an optimal path from root to leaf based
on appearance and motion consistency.

Using this framework, we identify abnormal changes of detection size for
each edge in a detection tree. Then, we estimate additional hypotheses from
these cases to improve tracking accuracy. Let dt−1 be a parent detection of
a child node, dt. If 1.5 · Size(dt−1) < Size(dt), we call dt a “potential merged
detection”. Size(d) returns the size of a detection d. Fig. 8 (a) shows an example
of dt−1 and (b) shows an example of dt.

Appearance consistency is used to generate hypotheses from a potential
merged detection. We scan the region with the template of the parent node
and calculate NCC score. Local maximums with scores larger than φ produce
new tree nodes. We insert the new nodes into the detection tree and add a link
between each new node and dt−1 to update the detection tree. In Fig. 8 (c), pur-
ple rectangles show two additional nodes from a potential merged detection in
the green rectangle. Their parent node is shown in Fig. 8 (a) in the red rectangle.
By inserting these hypotheses, the optimal solution avoids choosing merged de-
tections. This is because the additional hypothesis at the correct location leads
to higher appearance and motion consistency than a merged detection, which is
suboptimal.

5 Track Association

With new tracklets from DBT and tracking results from LCT, we describe
how to generate the final result in this section. This result is further used to
update the track pool. We find associations between new tracklets Tn from DBT
and existing tracks Te in the track pool in two steps. Let tnst, t

n
ed, test, t

e
ed be the

first frame index and the end frame index of a new tracklet Tn and an existing
track Te. We define the association score A(Te, Tn) = Sp(Te, Tn) × Sv(Te, Tn),



Title Suppressed Due to Excessive Length 11

where Sp(Te, Tn) and Sv(Te, Tn) represents the position and velocity similarity.
Since most successfully associated pairs are with overlapping time, given Tn, the
first step is to find the best match among existing tracks with test ≥ tned. In this
case, we calculate Sp(Te, Tn) as:

Sp(Te, Tn) = Match(Te, Tn)/(test − tned + 1), (8)

where Match(Te, Tn) returns the number of matched observation pairs in the
overlapping period. Here, we define an observation as a bounding box region in
a track or a tracklet. Given a time index, if the center of an observation from a
tracklet lies in the observation from an existing track or vice versa, we treat them
as matched observation. Sv(Te, Tn) is based on the Euclidean distance between
the velocities from Te and Tn at time tnst with a Gaussian kernel. The constant
threshold ζ = 0.6 is used to adopt valid association.

If the successful association cannot be found in overlapping existing tracks, we
interpolate the first observation of Tn to time teed of each non-overlapping track
using a linear motion model and compute Sp(Te, Tn) = exp(−0.01∗Dist(Te, Tn)),
where Dist(Te, Tn) is the Euclidean distance between the interpolated observa-
tion and the last observation of Te. Sv(Te, Tn) is calculated using the Euclidean
distance between velocities at tnst in Tn and at teed in Te. Again, ζ is used to
accept successful association pairs. Unassociated tracklets initialize new tracks
in the track pool.

Given a track in the track pool, if a tracklet is associated with it and LCT
also tracks the target successfully, we append the observation at time t with
larger NCC score compared with the observation at time t − 1 in the tracklet.
If only one of the trackers produce a valid result, we will extend the track using
this result.

Updating template robustly is difficult in tracking problems. A template
has to adapt to changes of target appearance. At the same time, the template
should not drift to background gradually because of the update. Fortunately,
DBT tracklet provides strong evidence in target existence without using template
information. Thus, we update the stable template of a track whenever a valid
tracklet is associated with it. The latest observation of the track is used to update
the rotation variants of the stable template.

6 Experiments

6.1 Setup

We compare our methods with state-of-the-art trackers [9,38,6,21,7] on two
WAMI sequences. In order to get a fair comparison, we use the same motion
detection result as input for all trackers. The detection approach is based on
background subtraction with 3-D stabilization [46], which reduces most false
alarms from parallax effect.

We obtain executables of [9] and [6] from the authors of [6]. The programs
of [38,7] are provided by their authors. We do not change parameters for the
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Method Recall Precision FP/F FP/GT MODA S/T B/T MOTA

Reilly et al. [9] 0.573 0.94 0.887 0.037 0.536 0.851 1.293 0.522
Prokaj et al. [38] 0.504 0.985 0.18 0.007 0.497 0.249 1.515 0.493
Prokaj et al. [6] 0.539 0.96 0.548 0.023 0.516 0.237 1.022 0.512

Rezatofighi et al. [21] 0.44 0.74 3.746 0.155 0.285 0.529 2.855 0.276
Chen et al. [7] 0.55 0.987 0.171 0.007 0.543 0.2 0.5 0.54

Ours (DBT only) 0.537 0.985 0.195 0.008 0.529 0.061 0.573 0.528
Ours (DBT+LCT) 0.606 0.99 0.145 0.006 0.6 0.015 0.317 0.599

Table 1. Comparison of tracking results of the WPFAB 2009 sequence. Best results
in each indexes are shown in bold text.

above methods except for the metadata information, which includes frame rate
and the ground sampling distance of imagery. Evaluation of [21] is based on
the MATLAB code provided by its authors. We tune parameters based on their
helpful advice in order to apply it on low-frame-rate WAMI.

6.2 Evaluation Metrics

Our quantitative evaluation is based on commonly used metrics which are
also adopted in [6,7], including recall : number of true positive detection/number
of ground truth detection; precision: number of true positive detection/number
of detection in tracks; false positive per frame (FP/F); false positive per ground
truth detection(FP/GT); multiple object detection accuracy (MODA); number of
swaps (id-switches) per track (S/T); number of breaks per track (B/T); multiple
object tracking accuracy (MOTA). The definition of MODA and MOTA can be
found in [47].

6.3 Results on WPAFB 2009 Sequence

The sequence is selected and preprocessed by the authors of [6] from a public
WAMI dataset [11]. This dataset is recorded around 1 Hz and it provides ground
truth labels for vehicles. The sequence covers a 429 m × 429 m suburb area in
OH, USA with 1408 pixels× 1408 pixels. The ground sampling distance is around
0.3 meters per pixel. There are 1025 frames and 410 tracks. Several stop-then-go
situation happens in the scene. Many merged detections appear when vehicles
are close to each other.

Fig. 9 shows the qualitative comparison between our methods with DBT only
and with DBT + LCT. The target slows down then stops to make a left turn.
Motion detection fails from frame 11 to frame 21. Without LCT, the track breaks
into two tracks as shown in the first row of Fig. 9, the yellow arrow indicates
the missing detection at frame 17. On the contrary, DBT + LCT successfully
recovers missing detections and continue the track.

Table 1 shows the quantitative results. By inserting additional hypotheses
from potential merged blobs in the optimization, our DBT reduces the number
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frame 6 frame 10 frame 17 frame 22 frame 24

Fig. 9. Snapshots of results from our two methods. First row shows the result using
our DBT only. Second row shows the result by coupling DBT + LCT. Tracking results
of other targets are not shown for clarity.

Method Recall Precision FP/F FP/GT MODA S/T B/T MOTA

Reilly et al. [9] 0.562 0.841 2.344 0.106 0.455 0.545 1.591 0.444
Prokaj et al. [38] 0.519 0.953 0.563 0.025 0.493 0.205 1 0.489
Prokaj et al. [6] 0.569 0.905 1.323 0.06 0.509 0.773 1.455 0.493

Rezatofighi et al. [21] 0.554 0.842 2.292 0.104 0.45 0.227 1.205 0.445
Chen et al. [7] 0.5 0.973 0.302 0.014 0.486 0.023 0.636 0.486

Ours (DBT only) 0.497 0.999 0.01 0.001 0.497 0 0.568 0.497
Ours (DBT + LCT) 0.761 0.999 0.01 0.001 0.761 0 0.159 0.761

Table 2. Comparison of tracking results of the Rochester sequence. Best results in
each indexes are shown in bold text.

of S/T significantly. Combining LCT with DBT, we recover many missing de-
tections between DBT. This increases Recall and reduces B/T. Note that false
alarms and id-switches further decrease because LCT reduces the gap between
DBT tracks and partially avoid errors from linear interpolation. Our method
outperforms state-of-the-art methods in all indexes.

6.4 Results on Rochester Sequence

We select a sequence with 650 pixels × 650 pixels (250 m × 250 m) from
Rochester dataset, which is captured from the city of Rochester, NY, USA.
This imagery is recorded at 2 Hz and the ground sampling distance is around
0.38 meters per pixel. We manually label ground truth for each target from
the frame it starts to move to the frame right before it leaves the scene. The
sequence contains 96 frames and 44 tracks. Since it is an urban-view dataset,
many vehicles stop at intersections for a long period.

The quantitive results are shown in Table 2. We do not produce any swaps
in this sequence in both of our methods. Using LCT further improves more than
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Reilly Prokaj Prokaj Chen Ours Ours
et al. [9] et al. [38] et al. [6] et al. [7] (DBT) (DBT+LCT)

WPFAB 0.121 0.094 9.413 0.21 0.124 1.009

Rochester 0.093 0.026 15.166 0.064 0.018 0.361

Table 3. Comparison of computation time in seconds per frame in the WPFAB 2009
sequence and the Rochester sequence.

19% in recall from move-then-stop situations. Methods that rely on only motion
detections [9,38,21,7] fail in these cases.

This sequence has higher ground sampling distance and lower contrast than
the WPFAB 2009 sequence. These factors make the appearance of a target less
discriminating from the background. Therefore, although [6] performs the second
best among all methods in recall, it introduces many false alarms because the
regression based tracker may drift to visually similar background patches. On
the contrary, LCT recovers missing detections by exploring stronger evidence
based on context information. We maintain high precision compared with other
methods. Again, DBT + LCT is clearly the leader in all indexes.

6.5 Computation Time

Our approach is implemented using C++ on a desktop with 3.6GHz CPU,
16GB memory and a NVIDIA GeForce GTX 580 GPU. We use GPU only for
dense flow computation using FlowLib [48]. Table 3 shows the computational cost
of methods with C++ implementation. Our DBT achieves similar computation
time compared with other detection association methods [9,38,7].

The major limitation of our DBT + LCT is the higher computational cost
compared with other DBTs [9,38,7]. In the WPFAB 2009 sequence, dense flow
calculation takes 0.482 seconds which accounts for nearly half of computation
time in our DBT + LCT. However, we are still more efficient than the state-of-
the-art hybrid approach [6]. In the Rochester sequence, since the image size is
smaller, the flow computation time reduced to 0.013 sec/frame, and our DBT
+ LCT takes 0.361 sec/frame. Notice that the computation time of [6] increases
because appearance models have to update whenever regression trackers lose
track. Failure of the regression tracker happens more frequently in the Rochester
sequence where target appearance is less discriminating.

7 Conclusions

Existing multi-target tracking approaches in WAMI have limitations in re-
covering long-term missing detections from slow or stopped targets. We propose
a unified approach which couples LCT with DBT. Instead of merely relying on an
appearance model, LCT explores context information between a target and its
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motion neighbors so that it is robust against neighboring distracters and back-
ground clutter. Hypotheses are generated by dense and sparse flow efficiently.
We reduce id-switches by handling merged detections in DBT with additional
hypotheses. Our DBT+LCT significantly improves tracking results compared
with state-of-the-art methods on two WAMI sequences.

Our future work is to reduce the computation time by using parallel pro-
gramming. Note that both DBT and LCT can be processed in parallel for each
target; therefore, we expect obvious reduction in computation time. Furthermore,
we want to infer the association between tracks under long-term occlusion, which
often happens in urban view scenarios.
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