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Abstract

Face recognition performance has improved remarkably
in the last decade. Much of this success can be attributed to
the development of deep learning techniques such as convo-
lutional neural networks (CNNs). While CNNs have pushed
the state-of-the-art forward, their training process requires
a large amount of clean and correctly labelled training
data. If a CNN is intended to tolerate facial pose, then
we face an important question: should this training data
be diverse in its pose distribution, or should face images be
normalized to a single pose in a pre-processing step? To
address this question, we evaluate a number of facial land-
marking algorithms and a popular frontalization method to
understand their effect on facial recognition performance.
Additionally, we introduce a new, automatic, single-image
frontalization scheme that exceeds the performance of the
reference frontalization algorithm for video-to-video face
matching on the Point and Shoot Challenge (PaSC) dataset.
Additionally, we investigate failure modes of each frontal-
ization method on different facial yaw using the CMU Multi-
PIE dataset. We assert that the subsequent recognition and
verification performance serves to quantify the effectiveness
of each pose correction scheme.

1. Introduction
The advent of deep learning [28] methods such as con-

volutional neural networks (CNNs) has allowed face recog-
nition performance on hard datasets to improve signifi-
cantly. For instance, Google FaceNet [39], a CNN based
method, achieved over 99% verification accuracy on the
LFW dataset [19], which was once considered to be ex-
tremely challenging due to its unconstrained nature. Be-
cause CNNs possess the ability to automatically learn com-

* denotes equal contribution

Figure 1: Examples of different pre-processing on a sample image (a) from
the CASIA-WebFace dataset [51]: (b) 2D aligned – no frontalization, (c)
Zhu and Ramanan [55] & Hassner et al. [15], (d) Kazemi and Sullivan [23]
& Hassner et al., (e) CMR & our frontalization method (OFM), (f) CMR
& Hassner et al. [15], (g) Zhu and Ramanan [55] & OFM, and (h) Kazemi
and Sullivan [23] & OFM. The left and right images are frontalized asym-
metrically and symmetrically respectively for (c), (d), (e), (f), (g) and (h).
Note how different the results look for each approach. Does this difference
impact face recognition performance? We seek to answer this question.

plex representations of face data, they systematically out-
perform older methods based on hand-crafted features.
Since these representations are learned from the data it-
self, it is often assumed that we must provide CNNs well-
labelled, clean, pre-processed data for training [5]. Accord-
ingly, complex frontalization steps are thought to be inte-
gral to improving CNN performance [41]. However, with
the use of a pose correction method comes many questions:
How extreme of a pose can the frontalization method han-
dle? How high is its yield? Should the method enforce
facial symmetry? Does training CNNs with frontalized im-
ages yield better results, or can they learn robust representa-
tions invariant of facial pose on their own? To answer these
questions, we conducted an extensive comparative study of
different facial pre-processing techniques.

For this study, we used the CASIA-WebFace (CW) [51]
dataset for CNN training. Two frontalization techniques
were chosen for our training and testing evaluation:
the well-established method proposed by Hassner et al.
(H) [15], and our own newly proposed method. Further-
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more, to evaluate the effect of facial landmarking on the
frontalization process, we used three landmarking tech-
niques: Zhu and Ramanan (ZR) [55], Kazemi and Sulli-
van (KS) [23], and our own technique - a Cascade Mixture
of Regressors (CMR). Different frontalization results using
various combinations of these methods can be seen in Fig. 1.

We used the popular VGG-FACE [32] as our base archi-
tecture for training networks using different pre-processing
strategies. The PaSC video dataset [38] was used for testing.
We extracted face representations from individual video
frames in PaSC using a network trained with a particular
pre-processing strategy. These features were used for veri-
fication and recognition purposes by applying a cosine sim-
ilarity score-based face matching procedure.

As a set of baselines, we used - 1) a simple 2D alignment
that corrects for in-plane rotation, 2) no pre-processing at
all, and 3) a snapshot of the VGG-FACE model [32] pre-
trained on the 2D aligned VGG-FACE dataset. This was
used to evaluate how much the additional training on CW
improved the face representation capability of the CNN
model. The effect of each data augmentation is manifested
in the performance of each subsequent CNN model.

The focus of our study was to evaluate the effect of
frontalization on CNN-based face recognition instead of
achieving near state-of-the-art results on PaSC. Therefore,
we chose not to study use any elaborate detection algorithm
or scoring scheme like those used by most of the PaSC 2016
Challenge participants [38].

In summary, the contributions of this paper are:

• The evaluation of popular facial landmarking and
frontalization methods to quantify their effect on
video-based face recognition tasks using a CNN.

• A new, effective facial landmarking and frontalization
technique for comparison with the other methods.

• An investigation of frontalization failure rates for each
method as a function of facial pose using the CMU
Multi-PIE dataset [13].

2. Related Work
Previous work relevant to this subject can be categorized

into three broad groups as listed below.
Facial landmarking: Facial landmarks are used in

frontalization to determine transforms between a facial im-
age and template. Over the past decade, an array of land-
marking techniques have been developed that rely on hand-
crafted features [23]. Recently, deep learning has been used
for landmark training and regression [46]. Current algo-
rithms provide landmark sets of a size between 7 and 194
points. Of late, landmarkers have begun to conform to a 68-
point standard to improve comparative analysis between al-
gorithms, and across different landmarking challenges and

datasets [55, 23, 40]. More recently, methods leveraging
deep learning have been proposed for face detection [18, 22]
and landmark estimation [47, 16] at extreme yaw angles
from relatively lower resolution face images.

Face frontalization: Once facial landmarks are detected
on a non-frontal face, frontalization can be performed using
one of the two main approaches. The first approach uti-
lizes 3D models for each face in the gallery, either inferred
statistically [14, 21, 3], collected at acquisition time [7], or
generic [15]. Once the image is mapped to a 3D model,
matching can be performed by either reposing the gallery
image to match the pose of the query image or the query
image can be frontalized [53]. These methods have been
utilized in breakthrough recognition algorithms [41]. The
second approach uses statistical models to infer a frontal
view of the face by minimizing off-pose faces to their low-
est rank reconstruction [37]. Additionally, recent methods
have leveraged deep learning for frontalization [52].

Face recognition: In its infancy, face recognition re-
search used handcrafted features for representing faces [34].
More recently, deep CNN methods for face recognition
have achieved near-perfect recognition scores on the once-
challenging LFW dataset [19] using learned representa-
tions. While some of these methods concentrate on creat-
ing novel network architectures [32], others focus on feed-
ing a large pool of data to the network training stage [41,
39]. Researchers have now shifted their attention to the
more challenging problem of face recognition from videos.
The Youtube Faces (YTF) dataset [45], IJB-A [27] and
PaSC [38] exemplify both unconstrained and controlled
video settings. Researchers have used pose normalization
as pre-processing [11, 12] or multi-pose based CNN mod-
els [30, 1] or exploited reposing as a data augmentation
step [31] for recognizing faces from these video datasets.

3. Description of Chosen Landmarking &
Frontalization Methods

Here we present brief descriptions of the facial land-
marking and frontalization techniques used in this paper.

3.1. Landmarking

Zhu and Ramanan (ZR) [55]: The ZR method allows
for simultaneous face detection, landmarking, and pose de-
tection, accommodating up to 175 degrees of facial yaw. ZR
uses a mixture of trees approach, similar to that of phyloge-
netic inference. The algorithm proposed in [26] is used to
optimize the tree structure with maximum likelihood cal-
culations based on training priors. Due to the algorithm
performing localization and landmarking concurrently, it is
relatively slow.

Kazemi and Sullivan (KS) [23]: KS uses a cascade of
multiple regressors to estimate landmark points on the face



using only a small, sparse subset of pixel intensities from
the image. This unique sub-sampling renders it extremely
fast, while maintaining a high level of accuracy. This land-
marker is popular due to its ease of use and availability —
it is implemented in the widely used Dlib library [25].

Cascade Mixture of Regressors (CMR): We introduce
the CMR landmarking model as one that builds on recent
nonlinear regression methods. The CMR model simultane-
ously estimates the location ofN fiducial points (xi, yi)

> in
a facial image I through a series of T regression steps, sim-
ilar to [23, 4, 9, 29, 35, 42, 48, 49, 50, 54]. Starting with
an initial shape estimate S0 = [x1, y1, . . . , xN , yN ]> ∈
R2N×1, the following iterative scheme updates the face
shape:

St+1 = St + ∆St, for t = 0, . . . , T, (1)

The t-th shape update ∆St = Rt(I, St) is predicted using
the regression function Rt defined as a mixture of C linear
regressors, similar to [55, 43]:

∆St =

C∑
i=1

ψi,t(xt)(W
>
i,tx
′
t), (2)

where xt ∈ Rd×1 is a feature vector extracted from I
from landmark locations St, x′t = [xt, 1] ∈ R(d+1)×1,
W>

i,t ∈ R2N×(d+1) denotes the regression matrix of the
i-th (local) regressor of mixture t, and ψi,t(xt) represents
a membership function that clusters features to regressors,
as depicted on the top brackets of Fig. 2. Memberships are
trained using a bottom-up Gaussian Mixture Model (GMM)
with Expectation-Maximization (EM) to create a predefined
number of fuzzy clusters C, as described in [2]. Regres-
sion matrices are subsequently computed for each cluster in
C using a least-squares approach, using HoG features ex-
tracted from 300-W dataset [36].

This method strikes a balance between accuracy and
speed, utilizing simultaneous updating like in [23] for fast
performance, while delivering more accurate updates using
a mixture-based landmarking scheme like in [55].

3.2. Frontalization

Hassner et al. (H) [15]: This method allows 2D face
images to be frontalized without any prior 3D knowledge.
We chose to analyze this method due to its prominence
in the facial biometrics community, and because an open
source implementation of the algorithm exists. Using a set
of reference 3D facial landmark points determined by a 3D
template, the 2D facial landmarks detected in an input im-
age are projected into the 3D space. A 3D camera homog-
raphy is then estimated between them. Back-projection is
subsequently applied to map pixel intensities from the orig-
inal face onto the canonical, frontal template. Optional soft
symmetry can be applied by replacing areas of the face that
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Figure 2: Visualization of multiple regressors fitting the feature xt ∈
Rd×1 vs. shape update ∆St = Rt(I, St) curve

are self-occluded with corresponding patches from the other
side. Due to the global projection of this method, incor-
rect landmarking can stretch and distort the frontalized face,
causing loss of high-frequency features used for matching.

4. Our Frontalization Method (OFM)

In this section, we present our proposed frontalization
procedure, which is capable of synthesizing a frontalized
face image from a single input image with arbitrary facial
orientation without requiring a subject-specific 3D model.

4.1. Face Detection, Landmarking & Model Fitting

Our proposed frontalization procedure starts (see Fig. 3
(a)) by detecting the facial region in the input image I0
using the Viola-Jones face detector [44]. Using the CMR
method, we detect N = 68 facial landmark points, i.e.,
Sz = [x1, y1, . . . , xN , yN ]> ∈ R2N×1. The landmarks
can be used to determine the pose and orientation of the
processed face. We crop the facial area, Ic, based on the
detected landmarks and use it as the basis for frontalization.

To transform the face in the input image to a frontal
pose, we require a depth estimate for each of the pixels in
the cropped facial area. To this end, we use a generic 3D
face model and fit it to the cropped image Ic. Our model
is a frontal depth image Ir from the FRGC dataset [34]
manually annotated with the same 68 landmarks as de-
tected by the CMR procedure. We fit the 3D model to
the cropped image through a piece-wise warping procedure
guided by the Delaunay triangulation of the annotated land-
marks. Since the annotated landmarks reside in a 3D space,
i.e., Sr = [x1, y1, z1 . . . , xN , yN , zN ]> ∈ R3N×1, we use
the 2D coordinates in the XY-plane for the triangulation.
The fitting procedure then aligns the generic 3D model with
the shape of the cropped image and provides the depth infor-
mation needed for the 3D transformation of the input face
to a frontal pose (see Fig. 3 (b)). The depth information



Figure 3: Overview of the proposed frontalization procedure. The procedure first detects the facial area and a number of facial landmarks in the input image
(a). It then aligns a generic 3D model with the input face (b) and calculates a 3D transform that maps the aligned 3D model back to frontal pose (c). Based
on the known 2D-to-3D point correspondences, a synthetic frontal view of the input face is generated (d) and post-processed to generate the final results of
the frontalization (e).

generated by the warping procedure represents only a rough
estimate of the true values, but as we show later, is sufficient
to produce visually convincing frontalization results.

4.2. 3D Transformation & Texture Mapping

After the fitting process, we use the landmarks Sa ∈
R3N×1 corresponding to the aligned 3D model Ia and the
landmarks Sr ∈ R3N×1 of the generic 3D face model to
estimate a 3D transformation, T ∈ R4×4, that maps the
fitted model Ia back to frontal pose (Fig. 3 (c)). We use
Horn’s quaternion based method [17] to calculate the neces-
sary scaling, rotation and translation to align the 3D points
in Sa and Sr and construct the transformation matrix T .
Any given point of the aligned 3D model P = [X,Y, Z, 1]>

can then be mapped to a new point in 3D space based on the
following expression:

P ′ = TP , (3)

where P ′ = [X ′, Y ′, Z ′, 1]> represents a point of the
frontalized 3D model If (see Fig. 3 (d)).

The cropped image Ic and the aligned model Ia are de-
fined over the same XY-grid. The known 2D-to-3D point
correspondences can, therefore, be exploited to map the tex-
ture from the arbitrarily posed image Ic to its frontalized
form It. Values missing from It after the mapping are filled
in by interpolation. The results of the presented procedure
are shown in Fig. 3 (d). Here, images in the the upper row
illustrate the transformation of the 3D models in accordance
with T , while the lower row depicts the corresponding tex-
ture mapping. The mapped texture image It represents an
initial frontal view of the input face, but is distorted in some
areas. We correct for these distortions with the postprocess-
ing steps described in the next section.

4.3. Image Correction & Postprocessing

Similar to the method of [15], our approach utilizes a
generic 3D face model to generate frontalized face images.
Unlike [15], we adapt our model in accordance with the
shape of the input face to ensure a better fit. Triangulation
is performed on the input face landmark coordinates. Each
triangle is then mapped back to the generic 3D face model,
and an affine transform is calculated per-triangle. Because
the piecewise alignment is performed with a warping pro-
cedure, minor distortions are introduced into the shape of
the aligned 3D model, which lead to artifacts in the mapped
texture image It. Additional artifacts are also introduced by
the interpolation procedure needed to compensate for the
obscured or occluded areas in the input images caused by
in-plane rotations and self-occlusions.

We correct for the outlined issues by analyzing the
frontalized 3D model If . Since Eq. (3) defines a mapping
from Ia to If , the frontalized 3D model If is not necessar-
ily defined over a rectangular grid, but in general represents
a point cloud with areas of different point density. We iden-
tify obscured pixels in Ia based on point densities. If the
density for a given pixel falls below a particular threshold,
we mirror the corresponding pixel from the other side of the
face to form a more symmetric face.

The effect of the presented image correction procedure
is illustrated in Fig. 3 (e). The image, marked as Im, con-
tains white patches that were identified as being occluded
in Ia, while In represents the corrected image with pixels
mirrored from one side of the face to the other (examine
the difference in the appearance of the nostrils between It
and In). In the final step of our frontalization procedure we
map the image In to a predefined mean shape, similar to
AAMs [10]. This mapping ensures a uniform crop as well
as unified eye and mouth locations among different probe
images. Consequently, distortions induced by the 3D shape



fitting (via warping) and frontalization procedures are cor-
rected and all facial features are properly aligned as all faces
are mapped to the same shape (mesh). This is not the case
with other frontalization techniques, as they simply ensure
frontal pose but not necessarily alignment of all facial parts.
This mapping generates the final frontalized output I1 of
our procedure and is shown in the last image of Fig. 3 (e).

The code for our landmarking and frontalization method
(OFM) can be accessed online here1.

5. Face Recognition Pipeline

In this section, we provide details about our face recog-
nition pipeline.

5.1. Training Data: CASIA-WebFace

The CASIA-WebFace dataset (CW) [51] contains
494,414 well-labeled face images of 10,575 subjects, with
46 face images per subject on average. The dataset contains
face images of varying gender, age, ethnicity and pose, and
was originally released for training CNNs. In comparison,
MegaFace [24] and VGG-FACE [32] contain over a million
face images, but have significantly more labeling errors
[5]. For this reason, coupled with what was feasible to
process with available GPU hardware, we ultimately chose
a reduced subset of CASIA-WebFace, containing 303,481
face images of 7,577 subjects, as our training dataset.
The exact list of CW face images used in our experiments
can be found in https://github.com/joelb92/
ND_Frontalization_Project/blob/master/
Release/CW_Subset.txt.

5.2. Pre-processing Methods

The pre-processing schemes used in our experiments
were comprised of different combinations of landmarkers
and frontalizers described in Sections. 3 and 4: 1) ZR [55]
& H [15], 2) KS [23] & H [15], 3) CMR & OFM, 4) CMR
& H [15], 5) ZR [55] & OFM, and 6) KS [23] & OFM.

In addition, we compared these methods to three baseline
approaches: 1) Training VGG-FACE with only 2D aligned
CW images, rotated using eye-centers, i.e., no frontalization
(Figure 1.b). The aligned faces were masked, to be con-
sistent with the frontalization results. The eye-centers and
mask contours were obtained using the KS [23] landmarker
available with Dlib [25]. 2) Training VGG-FACE with orig-
inal CW images, i.e., no pre-processing. 3) A snapshot of
the original VGG-FACE model, pre-trained on 2.6 million
2D aligned face images from the VGG-FACE dataset [32],
as a comparison against a prevalent CNN model.

1https://github.com/joelb92/ND_Frontalization_
Project/blob/master/Release

5.3. CNN architecture: VGG-FACE

We chose the VGG-FACE architecture [32] because
it generates verification results comparable to Google
FaceNet [39] on LFW [19] while requiring a fraction of its
training data. Additionally, the model performs reasonably
well on popular face recognition benchmarks [33]. Lastly,
a snapshot of this model, pre-trained with 2.6 million face
images, is present in the Caffe [20] model zoo2. We used
this pre-trained model to fine-tune connection weights in
our training experiments for faster convergence.

5.4. Testing Datasets

For completeness, we performed two types of frontal-
ization tests to gain a more holistic understanding of the
behavior of different frontalizer schemes. The first set of
tests, which analyze the performance impact of different
frontalization methods on facial recognition, utilized the
PaSC Dataset [38]. The second set of tests were designed
to analyze the yield rates and failure modes of frontalizers
for different pose conditions. For these tests, we utilized the
CMU MultiPIE dataset [13]

PaSC - The PaSC dataset [38] is a collection of videos
acquired at the University of Notre Dame over seven weeks
in the Spring semester of 2011. The human participants in
each clip performed different pre-determined actions each
week. The actions were captured using handheld and sta-
tionary cameras simultaneously. The dataset contains 1,401
videos from handheld cameras and 1,401 videos from a sta-
tionary camera. A small training set of 280 videos is also
available with the dataset.

While both YTF [45] and IJB-A [27] are well-
established datasets, they are collections of video data from
the Internet. On the other hand, PaSC consists of video se-
quences physically collected specifically for face recogni-
tion tasks. This type of controlled acquisition is is ideal for
our video-to-video matching-based evaluation.

MultiPIE - To evaluate the success rate of each land-
marker and frontalizer combination at specific facial pose
angles (yaw), we used the CMU Multi-PIE face database
[13] which contains more than 750K images of 337 dif-
ferent people. We utilized the multipose partition of the
dataset, containing 101,100 faces imaged under 15 view
points with differing yaw angles and 19 illumination con-
ditions, with a variety of facial expressions. For pose con-
sistency, we excluded the set of view points that also induce
pitch variation.

5.5. Feature Extraction and Scoring

We used networks trained on data pre-processed with
each of the combinations mentioned above as feature ex-
tractors for PaSC video frames. Before the feature extrac-

2https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/joelb92/ND_Frontalization_Project/blob/master/Release/CW_Subset.txt
https://github.com/joelb92/ND_Frontalization_Project/blob/master/Release/CW_Subset.txt
https://github.com/joelb92/ND_Frontalization_Project/blob/master/Release/CW_Subset.txt
https://github.com/joelb92/ND_Frontalization_Project/blob/master/Release
https://github.com/joelb92/ND_Frontalization_Project/blob/master/Release
https://github.com/BVLC/caffe/wiki/Model-Zoo


tion step, the face region from each frame was extracted
using the bounding box provided with the dataset. Bad de-
tections were filtered by calculating the average local track
trajectory coordinates to roughly estimate the locations of
neighboring detections, and removing detections with coor-
dinates outside a 2.5σ (standard deviation) distance range
from their estimated location.

After pose correction, a 4,096 dimensional feature vec-
tor was extracted from the fc7 layer for every face image
using each CNN model. Once feature vectors for all frames
were collected, the accumulated feature-wise means at each
dimension were calculated to generate a single representa-
tive vector for that video. This accumulated vector can be
represented as [f1, f2, f3, ..., f4096], such that

fk =
1

N

N∑
i=1

(vk)i (4)

where (vk)i is the k-th feature in frame i of the video and N
is the total number of frames in that video.

Cosine similarity was then used to compute match scores
between different accumulated feature vectors from two dif-
ferent videos. These scores were used for calculating the
verification and identification accuracy rates of each CNN.

6. Method Yield Rates
Compared to simple 2D alignment, face frontalization

often experiences higher failure rates with decreased opera-
tional ranges. For instance, a landmarker may have failed to
detect the 68 points needed for frontalization due to extreme
pose and terminate before the frontalization step. Con-
versely, a landmarker could have detected all needed points,
but incorrectly localized just one or two, leading to an in-
valid 3D transform matrix in frontalization. These type of
cascading failures lead to many samples in CW and PaSC
to fail in the landmarking or frontalization step due to ex-
treme scale, pose (> 45◦ yaw), or occlusion. Hence each
pre-processing method yields a unique subset of frontaliz-
able images well below the total original number. The yield
varies for each combination, as shown in Table 1.

To better understand the operational ranges of each
scheme, we frontalized face images from the multi-view
partition of the Multi-PIE dataset [13]. All six frontaliza-
tion techniques (ZR & H, KS & H, CMR & OFM, CMR &
H, ZR & OFM and KS & OFM) were tested for each pose
in the dataset, including differing expressions and illumina-
tion. The pose angles tested were binned into subsets of 0◦,
15◦, 30◦, 40◦, 60◦, 70◦and 90◦, along with respective neg-
ative angles, using the included labeling from [13]. Failures
from landmarking steps or from frontalization steps were
not differentiated. The results can be seen in Fig. 4.

In general, all methods experienced high failure rates on
facial pose angles beyond 40◦. Methods using CMR for

Figure 4: Frontalization success (expressed as yield rate) of the six meth-
ods over different pose angles in the CMU Multi-PIE dataset [13].

landmarking performed best in the 0 - 40◦ range. OFM
caused slightly more failures than H [15] within a +/- 40◦

range, but had equal performance on more extreme poses.
KS [23] provided superior performance on extreme poses
(ZR’s [55] profile landmarker was not used in this study, as
we deliberately chose not to include pose estimation).

7. Experiments & Results
In this section we present details about our experiments

and the subsequent results.

7.1. Methodology

To analyze the effect of facial frontalization on recogni-
tion performance, we trained the VGG-FACE network sep-
arately for each subset of training data pre-processed with
a given method. For each method, we randomly partitioned
90% of the CW subset for training, with 10% for valida-
tion. A single NVIDIA Titan X GPU was used to run all of
our training experiments using Caffe [20]. Network weights
were initialized from a snapshot of VGG-FACE pre-trained
on 2 million face images. We used Stochastic Gradient De-
scent [8] for CNN training. The set of hyperparameters for
this method was selected using HyperOpt [6] and the same
set was repeated across the different experiments to main-
tain consistency. The base learning rate was set to 0.01,
which was multiplied by a factor of 0.1 (gamma) follow-
ing a stepwise learning policy, with step size set to 50,000
training iterations. The training batch size was set to 64,
with image resolution of 224×224. The snapshot at the 50th
epoch was used for feature extraction in the testing phase.

For each frontalization method, we also kept two pre-
processed versions of the same face: one without any sym-
metry (asymmetric), such as the left hand side of Fig. 1 (c),
and the other with symmetry, where one vertical half is used



Table 1: Yield of each pre-processing method (“OFM” represents our frontalization method)

Pre-processing
method CMR & H KS & H ZR & H CMR & OFM KS & OFM ZR & OFM

2D alignment
(not frontalized)

CASIA images
(yield)

252,294
(83.13%)

255,571
(84.22%)

261,951
(86.31%)

252,222
(83.11%)

266,269
(87.74%)

254,381
(83.82%)

268,455
(88.45%)

PaSC videos
(yield)

2,691
(96.03%)

2,510
(89.57%)

2,497
(89.11%)

2,604
(92.93%)

2,476
(88.36%)

2,508
(89.51%)

2,726
(97.28%)

Figure 5: Recognition performance on the full set of handheld PaSC videos
(1st pipeline). Pre-processing both the training and testing data with KS
[23] & our frontalization method (OFM) outperforms all other methods.
Interestingly, the wide gap between the bottom two curves suggests that
training with non pre-processed images actually hampered the face repre-
sentation capability of the network (dotted curve).

for both sides of the face, as in the right hand side of Fig. 1
(c). The half to replicate was chosen automatically based
on the quality of the facial landmark points.

For testing each trained network we set two different
pipelines for video to video face matching on PaSC - 1)
the full set of PaSC video frames was fed to each pre-
processing method and only the successfully pre-processed
frames were used to test the network trained on CW pre-
processed with the same scheme, and 2) the intersection of
all PaSC videos successfully pre-processed by all methods
was used for testing. Since the yield of each method was
different (see Table 1), the number of PaSC videos varied
for each method in the 1st pipeline. In the 2nd pipeline, all
the networks were tested on their congruent pre-processed
versions of the same 2267 (out of 2802) PaSC videos.

2During processing, a slightly larger set was obtained from this method
due to an error causing frontalization on images with no detected face.

Figure 6: Verification performance on full handheld PaSC videos (1st
pipeline). The trends from Fig. 5 transfer to the ROC as well.

7.2. Results of Recognition Experiments

For each pipeline, we computed verification perfor-
mance with a ROC curve, as well as the rank-based recog-
nition performance, i.e., identification using a CMC curve.
These performance measures are pertinent in analyzing the
behavior of each frontalization scheme. For the 1st pipeline
i.e. full handheld PaSC video data, the identification and
verification performance of the different CNN models can
be seen in Fig. 5 and 6 respectively. We only show the repli-
cation mode (symmetric or asymmetric) which performed
the best for each frontalization method.

Pre-processing both CW and PaSC using the KS [23]
landmarker coupled with OFM produced the best results
with VGG-FACE. The rank-1 accuracy improved overall
when the data was frontalized (using any method) compared
to just 2D-alignment. OFM outperformed H [15] in almost
all cases, i.e., using different landmarkers. We attribute this
to the local adaptation of our 3D model described in Sec-
tion 4.3, in contrast to H [15] which can distort faces (see
Section 3.2). This preserves higher-frequency features as a
result, which can be seen in Fig. 1.d and 1.h.

To further investigate these findings, we leveled the play-
ing field, using a subset of PaSC testing videos successfully



Figure 7: Recognition performance on the common handheld PaSC videos
(2nd pipeline). KS [23] & OFM slightly exceeded the best performance
reported in Fig. 5. The 2D alignment (dashed) curve made a big jump from
Fig. 5 suggesting the 2D alignment bin from Table 1 had more difficult
frames than other methods due to its higher yield.

Figure 8: Verification performance on the common handheld PaSC videos
(2nd pipeline). Although KS [23] & OFM slightly outperformed other
methods at FAR = 0.01, a simple 2D alignment step beat other methods for
higher FARs.

pre-processed by all methods in the 2nd pipeline. A total
of 1070 handheld videos were used for these experiments.
The performance results of this experiment can be seen in
Fig. 7 and 8. Even with equal datasets, KS [23] and OFM
outperform other methods. The increased performance of
the 2D alignment network suggests that its higher yield in
the previous experiment provided more difficult frames to
match, and subsequently hindered performance.

A curious observation we made was that training the

network with 2D-aligned face images (diverse in facial
pose) negatively affected recognition performance when
PaSC was frontalized, regardless of the pre-processing
method used for frontalization This suggests that perform-
ing frontalization at testing time may not benefit perfor-
mance on pre-trained networks. Instead, training and testing
must be pre-processed under consistent methods to realize
any performance benefit.

Another recurring trend that we noticed is that recogni-
tion performance is slightly improved when the face images
are reconstructed asymmetrically rather than symmetrically.
This is validated by the fact that only the symmetric version
of CMR & H [15] outperformed its asymmetric counterpart
among the six frontalization schemes. While symmetrically
reconstructing faces can provide a more visually appealing
result, important data still present in the occluded side of
an off-pose face can be destroyed by such operations. By
superimposing portions of the non-occluded face regions to
fill in gaps on the occluded side, artifacts are inevitably in-
troduced onto the reconstructed face. We suspect these arti-
facts to be detrimental to the feature learning of a CNN, and
consequently its recognition performance suffers.

8. Conclusion
Several conclusions can be drawn from our experiments

and used to moderate future face recognition experiments:
1) Frontalization is a complex pre-processing step,

meaning it can come at a cost. Due to the large number
of failure modes it introduces, there can be significant loss
of data, i.e. lower yield, specifically with images containing
extreme pose or occlusion. Additionally, frontalization can
prove to be computationally expensive, meaning the perfor-
mance benefit frontalization can provide must be weighed
against the needed increase in computational resources.
2) Our proposed method, which dynamically adapts local
areas of the 3D reference model to the given input face, pro-
vides better performance improvements than that of Hass-
ner et al. [15] for PaSC video recognition.
3) Both the training and testing data must be pre-processed
under consistent methods to realize any performance bene-
fit out of frontalization.
4) While symmetrically reconstructed frontalized faces may
yield more visually appealing results, asymmetrical frontal-
ization provides slightly superior performance for face
recognition.

From these observations, we can conclude that the use-
fulness of frontalization to pre-process test set faces can be
dependent on the facial recognition system used. Depend-
ing on how the recognition system in question was trained,
and the failure threshold set, as noted in Section 7.2, a sim-
ple 2D-alignment might be more productive in some cases.
Therefore, face frontalization should be taken with a grain
of salt, as it may not always provide superior results.
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