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Abstract

Facial micro-expressions (MEs) are fast and involuntary
facial expressions which reveal people hidden emotions.
ME spotting refers to the process of finding the temporal
locations of rapid facial movements from a video sequence.
However, detecting these events is difficult due to their short
durations and low intensities. Also, a distinction must be
made between MEs and eye-related movements (blinking,
eye-gaze change, etc). Taking inspiration from video mag-
nification techniques, we design a workflow for automati-
cally spotting MEs based on the Riesz pyramid. In addi-
tion, we propose a filtering and masking scheme that seg-
ment motions of interest without producing undesired arti-
facts or delays. Furthermore, the system is able to differ-
entiate between MEs and eye movements. Experiments are
carried out on two databases containing videos of sponta-
neous micro-expressions. Finally, we show that our method
is able to outperform other methods from the state of the art
in this challenging task.

1. Introduction

Although the study of automatic emotion recognition
based on facial micro-expressions (MEs) have gained mo-
mentum in the last couple of years, much of this work has
focused on classifying emotions [3, 5]. However, most of
these papers use temporally and manually segmented videos
(that are known to contain MEs).

Considering that a lot of real-life applications require to
detect when an event takes place, spotting MEs becomes a
primary step for a fully automated facial expression recog-
nition (AFER) system. However, this is a challenging task
because MEs are quick and subtle facial movements of low-
spatial amplitude which are very difficult to detect by the
human eye.

Some authors propose to spot MEs by analyzing the dif-
ference between appearance-based features of sequential
frames and searching the frame in which the peak facial
change occurs [7, 21]. In addition, [8] provides not only

temporal information but also spatial information about the
movements in the face. In [11], the authors propose to cal-
culate the spatio-temporal strain (the deformation incurred
on the facial skin during non-rigid motion) using dense op-
tical flow.

Another possible approach would be to use Eulerian mo-
tion amplification techniques [17, 19] in order to enhance
the spotting process. These techniques have already been
used in the past for ME recognition [9, 10]. Although it
has been used as a pre-processing step, it has been shown to
degrade the spotting accuracy [5]. Our careful examination
showed that intermediate representations produced by the
latter methods can be used as proxies for motion.

In this paper, we propose a method which is able to
spot MEs in a video by analyzing the phase variations be-
tween frames obtained from the Riesz Pyramid. The pro-
posed method does not require training or pre-labeling of
the videos. This paper is organized as follows. Sec. 2 serves
as an introduction to the theoretical material to understand
the Riesz Pyramid outputs, its quaternionic representation
and filtering. Sec. 3 describes our proposed methodology
and contributions. Sec. 4 describes our experiments, results
and discussion. Finally, Sec. 5 presents our conclusions.

2. Background

Eulerian motion magnification is a family of techniques
that amplifies subtle motion in videos. They are inspired
by the Eulerian perspective, in reference to fluid dynamics
where the properties of a voxel of fluid, such as pressure and
velocity, evolve over time. The first of these techniques [19]
exaggerates motion by amplifying temporal color changes
at fixed positions. However, this method can significantly
amplify noise when the magnification factor is increased.
[17] proposed a method to amplify the phase variation over
time within each image subband using the steerable pyra-
mid (an over-complete transform that decomposes an im-
age according to spatial scale, orientation, and position).
However, the main disadvantage of this method comes from
the complex steerable pyramids which are very overcom-
plete and costly to construct. Later, a new method based on
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Figure 1: ME spotting framework. From the input video (a) the face is detected and cropped. Facial landmarks locations
are also extracted (b). Each frame in the cropped video sequence is processed with the Riesz Pyramid to obtain the local
amplitude and the quaternionic phase (c). We apply an improved spatio-temporal filter to the quaternionic phase (d). Then
we use local amplitude and facial landmarks to mask relevant areas in the quaternionic phase (e). The phase is processed into
a series of 1-D signals (f) and we detect and classify the resulting peaks to spot the MEs.

the Riesz pyramid was proposed which produced motion-
magnified videos of comparable quality to the previous one,
but the videos can be processed in one quarter of the time,
making it more suitable for real-time or online processing
applications [16, 18].

Although, video magnification is a powerful tool to mag-
nify subtle motions in videos, it does not precisely indicate
the moment when these motions take place. However, the
filtered quaternionic phase difference obtained during the
Riesz magnification approach [18] seems to be a good proxy
for motion, thus it could potentially be used for temporally
segmenting subtle motions. In this section, we introduce the
Riesz pyramid, its quaternionic representation and quater-
nionic filtering.

2.1. Riesz Monogenic Signal

The Riesz pyramid is constructed by first breaking the
input image into non-oriented subbands using an efficient,
invertible replacement for the Laplacian pyramid, and then
taking an approximate Riesz transform of each band. The
key insight into why this representation can be used for mo-
tion analysis is that the Riesz transform is a steerable Hilbert
transformer and allows us to compute a quadrature pair that
is 90 degrees out of phase with respect to the dominant ori-
entation at every pixel. This allows us to phase-shift and
translate image features only in the direction of the domi-
nant orientation at every pixel.

Following [14], in two dimensions, the Riesz transform
is a pair of filters with transfer functions
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with o = [w,,w,] being the signal dimensions in the fre-

quency domain. If we filter a given image subband I using
Eq. 1, the result is the pair of filter responses, (R1; R2). The
input I and Riesz transform (R1; Rs) together form a triple
(the monogenic signal) that can be converted to spherical
coordinates to yield the local amplitude A, local orientation
6 and local phase ¢ using the equations

I = Acos(¢)
Ry = Asin (¢) cos (6) 2)
Ry = Asin (¢)sin ()

2.2. Quaternion Representation of Riesz Pyramid

The Riesz pyramid coefficient triplet (I; R;; Ro) can be
represented as a quaternion r with the original subband [
being the real part and the two Riesz transform components
(R1; R2) being the imaginary ¢ and j components of the
quaternion.

r=1+iR 4+ jR 3)

The previous equation can be rewritten using (2) as:
r = Acos (¢)+iAsin (¢) cos (0) + jAsin (¢) sin (0) (4)

However, the decomposition proposed by (4) is not unique.
That means that both (A, ¢,0) and (A, —¢, 8 + ) are pos-
sible solutions. This can be solved if we consider

¢ cos (6), ¢ sin (6) 5)

which are invariant to this sign ambiguity. If the Riesz pyra-
mid coefficients are viewed as a quaternion, then Eq. 5 is the
quaternion logarithm of the normalized coefficient'. Thus,

! An extended review of the quaternionic representation including com-
plex exponentiation and logarithms can be found in [18].



the local amplitude A and quaternionic phase defined in
Eq. 5 are computed:

A= ©
i¢cos (0) + josin (0) = log (x/||r|]) %)

In previous Eulerian motion amplification papers, mo-
tions of interest were isolated and denoised with temporal
filters. However, the quaternionic phase cannot be naively
filtered since it is a wrapped quantity. Therefore, a tech-
nique based on [4] is used to filter a sequence of unit quater-
nions by first unwrapping the quaternionic phases in time
and then using a linear time invariant (LTI) filter [18] in or-
der to isolate motions of interest in the quaternionic phase.

Furthermore, the signal to noise ratio (SNR) of the phase
signal can be increased by spatially denoising each frame
with an amplitude-weighted spatial blur using a Gaussian
kernel with standard deviation p on the ¢ and j components
of the temporally filtered signal. In the following section,
we show how the phase signal can be used to spot MEs.

3. Proposed Framework

Our proposed algorithm goes as follows: First we de-
tect and track stable facial landmarks through the video.
Secondly, we use the Riesz Pyramid to calculate the am-
plitude and quaternionic phase of the stabilized face im-
ages and we implement a proper spatio-temporal filtering
scheme which can enhance motions of interest without pro-
ducing delays or undesired artifacts. Thirdly, we isolate ar-
eas of potential subtle motions based on amplitude and fa-
cial landmarks. Finally, we measure the dissimilarities of
quaternionic phases over time and transform it into a series
of 1-D signals, which are used to estimate the apex frame
of the MEs. A graphic representation of our framework can
be seen in Fig. 1.

3.1. Face Detection and Registration

We start by detecting the face in the first frame using the
cascade object detector of Viola and Jones [15]. Then, we
use the active appearance model (AAM) proposed by Tz-
imiropoulos and Pantic [13] to detect a set of facial land-
marks. Next, we select certain facial landmarks which
won’t move during facial expressions (we selected the inner
corner of the eyes and the lower point of the nose between
the nostrils). We track these points using the Kanade-Lucas-
Tomasi (KLT) algorithm [12] and use them to realign the
face over time. Finally, we use these landmarks to crop the
aligned facial region of interest for each frame in the video
(See Fig. 1(b)).

3.2. Riesz Transform and Filtering

For the sequence of cropped images obtained in 3.1 of
N frames, we perform the process described in Sec. 2.1 and

Sec. 2.2 for each frame n € [1,..., N]. However, depend-
ing on the spatial resolution of the cropped faces and the
speed of the image acquisition system, the local phase com-
puted from certain frequency subbands will contribute more
to the construction of a certain motion compared to the ones
from other levels. In other words, not all the levels of the
pyramid are able to provide useful information about the
subtle motion. Thus, we must test the quaternionic phase
from different subbands (pyramid level) and select the level
which better represents the subtle motion we want to detect.

We then obtain both local amplitude A, and quater-
nionic phase (¢, cos (6), ¢, sin (6)) from the selected sub-
band. We apply the process described in Sec. 2.2 to ob-
tain the filtered quaternionic phase ¢ (Sec. 2.2). However,
since we are aiming to detect any significant quaternionic
phase shifts between frames and to compensate for the cu-
mulative sum made done in the quaternionic phase unwrap-
ping [18], we calculate the difference of two consecutive
filtered quaternionic phases:

A¢nu = ¢n u-— ¢n71 u (®)

where u = i cos 6 + j sin 6.

We also must consider what kind of temporal filter we
must implement for our application. The previous works
in Eulerian motion magnification (See Sec. 2.2) have given
their users freedom to choose any temporal filtering method
available. However, since we require to pinpoint the exact
moment when a subtle motion is detected we cannot use
traditional causal filters which delay the signal response (for
example, Fig. 2c shows the delay caused by the filtering
scheme used in [16]). Therefore, we propose to use a digital
non-causal zero-phase finite impulse response (FIR) filter.

p
Cpu=boAdpu+ > b(Agnisu+ Ady_ju)  (9)
k=1

where p is an even number and by, is a coefficient of a FIR
filter of length 2p 4 1. One limitation of this method is that
non-causal filters requires to use the previous and follow-
ing p frames from the current frame (therefore for online
applications there must be a delay of at least p frames).

Another element to consider is that Eulerian amplifica-
tion methods are tailored for a particular task. These meth-
ods focus on amplifying subtle periodical movements (such
as human breathing, the vibration of an engine, the oscil-
lations of a guitar string, etc) by temporally band-passing
some potential movements. However, these methods do not
consider subtle non periodical movements (such as blink-
ing or facial MEs). The latter type of motion, when band-
passed, creates some large oscillations near the beginning
and the end of the subtle motion (Fig. 2d) as stated by Gibbs
phenomenon. Therefore, we decided to use low-pass filter-
ing for this type of signals (Fig. 2e).



Figure 2: A comparison of different filter responses for sub-
tle motion detection. (a) is a slice in time of an input im-
age sequence with subtle non periodical motion (The yellow
dashed lines indicate when the subtle movement starts and
ends). (b) is the calculated quaternionic phase shift A¢,, of
(a). We reduce the noise in (b) using three different filtering
schemes: (c) an IIR Butterworth causal filter which delays
the signal; (d) a FIR non-causal band-pass filter which does
not delay the signal but it creates some artifacts before and
after the motion has taken place (Gibbs phenomenon); (e) a
FIR non-causal low-pass filter (our proposal).

3.3. Masking regions of interest

In order to optimize the spotting process, we decided to
mask facial regions of interest (ROIs) in which, according
to the Facial Action Coding System (FACS) [2], MEs might
appear. For that purpose, we create a mask M; using the
facial landmarks localized in Sec. 3.1.

Another thing to consider before motion spotting is the
problem of image noise. Assuming the general case of two
static images corrupted with some level of additive Gaus-
sian noise, their quaternionic phase difference would be
non-zero (|]®,| > 0) even after the phase SNR is improved
by ways of spatial and temporal filtering (Sec. 2.2). We
have observed that the ®,, values could have a high vari-
ance in areas where local amplitude A has a relative low
value regardless of the presence of motion. Considering
that the motion phase-signal in regions of low amplitude is
not meaningful [17], we decided to isolate these areas using
an adaptive threshold of validation computed from the lo-
cal amplitude. However, since the scale of local amplitude
might vary from subject to subject (for example, in videos
with subjects wearing glasses the local amplitude in the bor-
der of the glass frames was very high compared to the rest of
the face), we need to normalize the local amplitude before
we can threshold it.

b
3

1 if f< 4o
M2_{0 if 5>j—: (10)

where A, is the calculated local amplitude of the image at
frame n, A, is the 95-percentile of the empirical distribu-
tion of the amplitudes along the video and S is a threshold

e
-

Figure 3: Masking facial regions of interest. (a) from the in-
put video the face has been cropped, facial landmarks have
been located and some ROIs have been delimited (green
rectangles). (b) is the filtered quaternionic phase shift ®,,
and (c) is its local amplitude. (d) is the mask created using
the amplitude and the facial ROIs. Finally, (e) is the result
of masking (b) with (d).

(e)

selected by the user (See Sec. 4.2). By masking the low
amplitudes areas we have effectively selected the regions
in which MEs can be detected. We combine both masks
(M = M;& M>) and refine the result further using morpho-
logical opening. Finally, we mask the quaternionic phase
(®,,u) with M (as seen in Fig. 3e).

3.4. Micro-Expression Spotting
3.4.1 Preprocessing

Our first step is to minimize the effect of potential macro-
movements from the spotting process. For this, we will con-
sider any head pose change or translation that might occur
during the video as rigid motion. With this in mind, we
subtract the average of the masked quaternionic phase:

Z O, (11)

TEM

!/ /
(I)msu s = (I)n,sus -

where s is a masked pixel, u’y; = icos6, + jsin6, and
card(M) is the cardinality of the mask M. All the elements
of a rigid motion such as translation follow the same orien-
tation and magnitude, thus Eq. 11 reduces the effect of this
kind of movements for the spotting step while the elements
in non-rigid movements such as facial expressions follow
different orientations and magnitudes and are not heavily
affected by this step. Next, we get rid of orientation and
calculate the euclidean norm of the phase thus:

|7, = /(] 5in0')?

+ (P!, cos )2 (12)

3.4.2 Feature Signal Generation

The next step would be to calculate the phase variations over
time and spot any subtle movements as MEs. However, by
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Figure 4: Micro-expression spotting process. The vertical
dashed lines represent the time period between the true on-
set and true offset. First, we detect peaks on the signal that
go over a threshold (the horizontal dashed line). For (a)
these peaks (magenta dots) represent eye blinks or move-
ments while in (b) represent ME candidates. Finally, we
select the pair of peaks in (b) that does not coincide in time
with the ones in (a) as a true MEs (cyan dots)

this logic, eye blinks and eye gaze changes could be wrong-
fully considered as MEs. Instead of just ignoring the in-
formation given by the eye areas, we can use it to help our
system discard the possible false-positives. Thus, we divide
our masked data in five different areas: two eye areas (left
and right eye), and three facial features areas (left and right
eyebrow and mouth area). For each area and each frame,
we calculate the variance:
1 = ! 2
S(n) =7 D 1% — pml (13)

=0

where S is a 1-D signal which peaks represent subtle
changes in the video, p, is the mean value of |®/ | in a
given area, [ is the index of the pixels in a selected area and
L is the total number of pixels in that area.

3.4.3 Peak Analysis

From the previous step, we obtain 5 signals: S; and S,
which correspond to the left and right eye areas and Sj.,

Sre and S, which correspond to the left eyebrow, right eye-
brow and mouth areas respectively. Next, we compute the
median and maximum values of the calculated signals:

mazs = max (Ste, Sre, Sm) (14)
meds = Ir\;ggi%n (Ste, Sre, Sm) (15)

and we use them to create a series of adaptive thresholds:

T = % (16)

Tr = meds + (maxs — medg) X « a7

The next step is to localize any peak or local maxima in
the signals that surpasses the previously computed thresh-
olds (using Tz as threshold for S; and S, and T as thresh-
old for Sj¢, Sye, Sm). For each signal S, we obtain a matrix:

r1 N1
P= : (18)

T Nk

where £ is the total number of detected peaks, x; and n; are
the magnitude and time (frame number) of a detected peak.

We perform a procedure to refine P by choosing the
tallest peak and discard all peaks which are closer than a
minimal peak-to-peak separation (¢ frames). Then, the pro-
cedure is repeated for the tallest remaining peak and iterates
until it runs out of peaks to consider.

The next step is to discard redundant information
by combining different peak matrices into one with-
out duplicates (see Algorithm 1). We obtain Py =
FUSEPEAKS(P;,P,) for the eyes areas and Pp =
FUSEPEAKS(Pje, P, P,,) for the facial features areas. Fi-
nally, we discard as an eye blink any peak from Py that has
a corresponding peak in Pg (see Algorithm 2).

One thing to take into consideration is the nature of MEs.
During most MEs, the face goes from a neutral state (onset)
to a moment when the ME is at its peak (apex) and then,
after a short period of time, it goes back to a neutral state
(offset). However, there are some micro-expressions that
have fast onset phase but very slow offset phase (some even
remain in apex for seconds) which some methods would
fail to detect. That means that a ME is comprised of either
one or two subtle motions. Therefore, our method has been
adapted to detect either one or two peaks per ME (a pair
of peaks would be identified as one ME as seen in Fig. 4b)
depending on the case. One advantage of this approach is
that, if an eye movement happens during the onset phase or
the offset phase, our method might discard only one peak
and the ME would still be spotted.



Algorithm 1: FusePeak: Peak fusion algorithm

Input : A set of input peak matrices {P1,...,P,,}
Output: Fused peak matrix P,
1 Concatenate the elements of the input matrices:

Py
Py = [ : ] where k¢ = number of rows in Py
P,

2 Sort Pyusingng;, i =1,...,kf

3s=landPy s = [Ty, Nus) =Pr1 = [p1,001]
4 fori < 2to ks do

5 ifn, , = ny; then

6 ifr, < xy; then

7 Ly,s = Tfi

8 end

9 else

10 s=s+1

11 Pu,s = [xu,s;nu,s] = Pf,z = [xf,ianf,i}
12 end
13 end

Algorithm 2: ME spotting
Input : Peak matrices Pg, Pr
Output: ME peak matrix P,

1 kr =number of rows in Pr;

2 kg = number of rows in Pg;

3 s=1;

4 fori < 1to kr do

5 flag =20

6 for j + 1to kg do

7 ifnp’i =NEgj AND TF; < TE.j then
8 | flag=1

9 end

10 end
11 if flag = 0 then

12 Pm,s = [xm,sanm,,s] = PF,'L’ = [xF,ianF,i]
13 s=s+1

14 end
15 end

4. Experimental Results and Discussions

In this section, we describe the experimental procedures.
Firstly, we briefly introduce the selected datasets that we
use to test our methodology. Secondly, we talk about the pa-
rameters selection and evaluation scheme for our proposed
method. Thirdly, we present our results and compare them
with the state of the art. Fourthly, we study the impact of
the different parameters on our system. Finally, we discuss
the relevance of our results and what challenges we faced in
the implementation of our method.

4.1. Datasets

For our experimentation, we selected two spontaneoulsy
elicited ME databases. The first one, the Spontaneous
Micro-Expression Database (SMIC) [6] consists of 164
spontaneous facial MEs image sequences from 16 sub-
jects. The full version of SMIC contains three datasets:
the SMIC-HS dataset recorded by a high speed camera at
100 fps; the SMIC-VIS dataset recorded by a color cam-
era at 25 fps; and the SMIC-NIR dataset recorded by a near
infrared camera at 25 fps (all with a spatial resolution of
640 x 480 pixels). Ground truth annotation provides the
frame numbers indicating the onset and offset frames (the
moment when a ME starts and ends respectively). The MEs
are labeled into three emotion classes: positive, surprise and
negative emotions. For our experimentation we decided to
use only the SMIC-HS dataset.

The second database, the improved Chinese Academy of
Sciences Micro-expression (CASME II) [20] database, con-
sists of 247 spontaneous facial MEs image sequences from
26 subjects. They were recorded using a high speed cam-
era at 200 fps and spatial resolution of 640 x 480 pixels.
Ground truth annotations not only provides the frame num-
bers indicating the onset and offset but also the apex frames
(the moment when the ME change is at its highest intensity).
The MEs are labeled into five emotion classes: happiness,
surprise, disgust, repression and others.

4.2. Evaluation Procedure

For both datasets, we can calculate up to 4 levels of the
Riesz pyramid. The first two levels (which have the infor-
mation of the high frequency subbands) seem to carry an
important amount of undesired noise and the third level of
the pyramid seems more sensible to detect MEs compared
to the fourth level (See Sec. 4.4). Thus, we choose to use
only the third level of the pyramid.

Based on [22], we know that the duration of MEs is in
the order of 100 ms. Thus, we design a FIR non-causal low-
pass temporal filter with cutoff frequency of 10 Hz, corre-
sponding to a filter of order 18 for the SMIC-HS database
and 36 for the CASME II database. We used a Gaussian
Kernel K, with standard deviation p = 2 for spatial filter-
ing for both cases. One thing to consider in the parameter
selection is the impact of the duration of MEs in the spotting
process. Since MEs can last from 170 to 500 ms [22], we se-
lected a conservative lower bound for the peak-to-peak min-
imal separation v by taking half of the minimal expected
duration (that would be 85 milliseconds which will corre-
spond to 9 frames for SMIC-HS and 18 frames for CASME
ID). For the 8 parameter, we perform a leave-one-subject-
out cross validation which shows that the best values for 3
are close to 0.1 for the SMIC-HS dataset and between 0.2
and 0.22 for the CASME II dataset. We report the aggregate
results of the evaluation measure presented in Sec. 4.3.



After the peak detection step, all the spotted peak frames
are compared with ground truth labels to tell whether they
are true or false positive spots. With a certain threshold
level, if one spotted peak is located within the frame range
(between the onset and offset) of a labeled ME video, the
spotted sequence will be considered as one true positive
ME. Otherwise, we will count a penalty equal to the du-
ration of the labeled ME (offset—onset+1 frames) as false
positive. We define the true positive rate (TPR) as the per-
centage of frames of correctly spotted MEs divided by the
total number of ground truth ME frames in the database.
The false positive rate (FPR) is calculated as the percentage
of incorrectly spotted frames divided by the total number of
non-ME frames from all the image sequences. We evaluate
the performance of our ME spotting method using receiver
operating characteristics (ROC) curves with TPR as the y
axis and FPR as the z axis.

4.3. Results

We performed the spotting experiment on CASME 11
and the high speed camera dataset SMIC-HS. The spot-
ting results on each dataset are presented in Fig. 5. The
ROC curve is drawn by varying the parameter « in Eq. 17
(from O to 1 with a step size of 0.05). We evaluate the
accuracy of our method by calculating the area under the
ROC curve (AUC) for each dataset. The AUC percentage
for the SMIC-HS database is 88.61%, and for CASME 11
it is 90.93%. However, most of the operating points in the
ROC curve are not reasonable due to high number of false
positives. Instead, some examples can be given with a rea-
sonable ratio between true and false positives. For SMIC-
HS dataset a spotting accuracy of 75.20% was achieved
with only 10.89% FPR using @« = 0.4, and for CASME
IT dataset a spotting accuracy of 83.16% was achieved with
only 10.52% of FPR using o = 0.15.

We wanted to compare our results with the work made
by [5] since we use a similar method of evaluation (ROC
curves). However, this might become challenging since
their method and parameters are different from ours. In or-
der to compare results we changed some parameters that
we used in Sec. 4.2. Specifically, the spotting range was
changed to [ONSET — (L — 1) /4, OFFSET + (L — 1) /4] and
the false positive penalty was changed to L frames, being
L a time window of about 0.32 seconds according to their
work (L = 33 for SMIC-HS and L = 65 for CASME 1I).
As it can be observed in table 1, the results of our method
outperforms the results reported in [5].

4.4. Parameter Analysis

To evaluate the impact of the different parameters on our
system, we test our proposed framework while varying its
parameter values. The parameters we decided to evaluate
are: the pyramid level (from 1 to 4), amplitude masking

SN1IIC-HS dataset ROC curve CASME Il dataset ROC curve
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Figure 5: ROC curves for ME spotting on SMIC-HS and
CASME II datasets

[ Database | SMIC-HS | CASMETI |

LBP [5] 83.32% 92.98%
HOOF [5] | 69.41% 64.99%
Ours 89.80% 95.13%

Table 1: AUC values of the ME spotting experiments us-
ing different methods on SMIC-HS and CASME II datasets
using the measure metrics from [5].

threshold 8 (from O to 0.9) and minimal peak-to-peak sepa-
ration 1 (from 5 to 25 frames for the SMIC-HS dataset and
from 5 to 40 frames in the CASME II dataset). We perform
our spotting experiments similarly as in Sec. 4.2 for both
datasets and for each set of parameters we obtain the AUC.
We decided to represent the result for each dataset as four
result surfaces (one for each Riesz pyramid level) depicting
the AUC as a function of ¥ and 3 (As seen in Fig. 6b and
6d). Exhaustive results for all the levels of the pyramid, are
provided in the supplementary materials.

We show the impact of the Riesz pyramid level by cal-
culating the mean AUC as a function of 8 (The results are
shown in Fig. 6a and 6¢). We observe that we obtain the
best performance values using the third level of the pyra-
mid for the SMIC-HS dataset and the third and fourth levels
for the CASME II dataset. However, a further inspection
of the result surfaces in CASME II show that the results in
the third level of the pyramid are slightly better. We further
inspect the result surface of the third pyramid level for both
datasets (Fig. 6b and 6d). We obtain stable results when
[ ranges between 0.05 and 0.25 in the SMIC-HS dataset
and between 0.05 to 0.3 in the CASME 1I dataset. An even
closer inspection shows that we obtain the best results when
[ varies between 0.07 and 0.13 and ) varies between 5 to
15 frames (at a 100 fps it corresponds to 50 to 150 millisec-
onds) for the SMIC-HS dataset (Fig. 6b) and when [ varies
between 0.12 and 0.15 and between 0.18 and 0.22 and )
is bigger than 10 frames (at a 200 fps it corresponds to 50
milliseconds) for CASME II dataset (Fig. 6d).

One thing to take in consideration is that, by further aug-
menting the value of ¢, we might unknowingly discard MEs
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Figure 6: Parameter Evaluation results in SMIC-HS and CASME II datasets

that occur within a small window of time. Considering that
some videos in the SMIC-HS dataset contain multiple MEs
but all videos in the CASME II dataset contain only one
ME, it would explain why augmenting the value of 1 affects
the results for SMIC-HS but not the results for CASME II.

After analyzing our results, we estimate that, since both
of the evaluated datasets have the same spatial resolution
(640 x 480 pixels), we could use the same level of the pyra-
mid for both and we could fairly establish a robust value
range for S (between 0.05 and 0.25). Furthermore, this
range value for § is coherent with our values obtained by
our cross validation scheme. We can also estimate that a
robust value for ) for both datasets should correspond to at
least 50 milliseconds. Moreover, we can conclude that the
level of the pyramid and f3 are the parameters which have
more impact in the performance of our system.

4.5. Discussion

Although both databases are similar, the SMIC-HS con-
tain longer video-clips making the spotting task more diffi-
cult and more prone to false positive. We suspect this might
be the reason why a higher AUC is achieved on CASME
II database. Furthermore, the subjects in the CASME 11
dataset were at a closer distance to the camera during video
recording, thus the captured faces had a bigger resolution
which result in a shift of the ME motion to low frequencies.
This might explain why we could obtain good results us-
ing the fourth level of the Riesz pyramid in the CASME 11
dataset but not in the SMIC-HS dataset. A scale normaliza-
tion of the captured faces could allow us to fix the pyramid
level selection, regardless of the database.

Upon detailed examination of the spotting results, we
found that a large portion of false negatives were caused
by our algorithm dismissing true MEs as eye movements.
This might happened because our system does not differ-
entiate eye blinks from eye-gaze changes, thus discarding
ME:s that happen simultaneously with eye-gaze changes.

One of the main challenges of comparing our ME spot-
ting method with the state of the art comes from the fact
that there is not a single standard performance metric. For

example, [7] evaluate their work using mean absolute error
and standard error. [1] also uses ROC curves to evaluate
their work but fails to disclose how they compute their false
positives. Although our evaluation method is very similar
from the one by [5], the false positive penalties were dif-
ferent. That is the reason why the initial AUCs obtained
in the beginning of Sec. 4.3 are different from the ones in
our comparative Table 1, because the first tests had higher
false positive penalties. This happens because these penal-
ties were based on an assumed duration of MEs. However,
since micro expressions have different duration times (as
discussed in Sec. 3.4), a different approach should be con-
sidered for computing false positives.

5. Conclusions

We presented a facial micro-expression spotting method
based on the Riesz pyramid. Our method adapts the quater-
nionic representation of the Riesz monogenic signal by
proposing a new filtering scheme. We are also able to
mask regions of interest where subtle motion might take
place in order to reduce the effect of noise using facial land-
marks and the image amplitude. Additionally, we propose
a methodology that separates real micro-expressions from
subtle eye movements decreasing the quantity of possible
false positives. Experiments on two different databases
show that our method surpasses other methods from the
state of the art. Moreover, the results of our parameter anal-
ysis suggest that the method is robust to changes in parame-
ters. Furthermore, the quaternionic representation of phase
and orientation from the Riesz monogenic signal could po-
tentially be exploited in the future for a more general sub-
tle motion detection scheme and for facial micro-expression
recognition.
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