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Abstract

Handwriting of Chinese has long been an important skill
in East Asia. However, automatic generation of handwritten
Chinese characters poses a great challenge due to the large
number of characters. Various machine learning techniques
have been used to recognize Chinese characters, but few
works have studied the handwritten Chinese character gen-
eration problem, especially with unpaired training data. In
this work, we formulate the Chinese handwritten character
generation as a problem that learns a mapping from an ex-
isting printed font to a personalized handwritten style. We
further propose DenseNet CycleGAN to generate Chinese
handwritten characters. Our method is applied not only
to commonly used Chinese characters but also to calligra-
phy work with aesthetic values. Furthermore, we propose
content accuracy and style discrepancy as the evaluation
metrics to assess the quality of the handwritten characters
generated. We then use our proposed metrics to evaluate
the generated characters from CASIA dataset as well as our
newly introduced Lanting calligraphy dataset.

1. Introduction

Chinese characters have been used continually over three
millennia by more than a quarter of the world’s population
[24]. The handwriting of Chinese character has long been
one of the most fundamental skills in education, employ-
ment, communication, and everyday life in East Asia. For
a long time, good handwriting or calligraphy has been con-
sidered not only as an artistic expression of language, but
also as the supreme visual art as a means of self-expression
and cultivation. As an example, Figure 1 shows some of
our generated calligraphic characters. These aesthetically
pleasing calligraphic works usually needs years of dedica-
tion and practice.

In contrast to phonological languages that have very lim-
ited number of letters such as English, Chinese has more
than 80, 000 logographic characters. Therefore, it is more

* Authors contributed equally.

Figure 1: Generated Chinese characters in Wang Xizhi’s
style. The characters (from top to bottom) in the first
column is the source SIMKAI font, the second and the
third columns are in the Wang Xizhi’s style with each col-
umn generated from DenseNet-5 and ResNet-6 CycleGAN.
These four characters are not in the Lanting calligraphy
dataset. The four characters stand for χ2 distribution in Chi-
nese.

challenging to design a personalized Chinese font than
phonological languages. For example, only 26 letters need
to be designed for a personalized English font while for Chi-
nese at least 3, 000 most commonly used characters need to
be designed. To meet the demands of designing personal-
ized Chinese font, methods that can automatically generate
characters with personalized handwritten style based on a
relatively small set of training characters are needed.

Although handwritten Chinese character generation is
not as widely studied as character recognition, there are
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still approaches proposed for handwritten Chinese charac-
ter generation. Most previous works rely on the hierarchi-
cal representation of simple strokes [27, 26, 17]. They de-
compose Chinese characters into strokes and then combine
strokes to mimic the personalized writing style. As a re-
sult, such methods only focus on local representations of the
characters rather than the overall style as a whole, and thus
need to adjust the shapes, sizes, and positions of the strokes
for every new character. In contrast, zi2zi [25] learns to
transform fonts using pix2pix [9] with paired character im-
ages as the training data. However, in the task of generat-
ing handwritten Chinese characters, it is difficult to obtain a
large set of paired training examples since it is infeasible to
ask the user to write a large number of characters. The hand-
writing samples are also often isolated from a user’s writing,
without knowing the true labels of the characters. Further,
even the same character written by a user varies every time,
which makes it more important to learn the overall style
instead of mimicking every single character. Therefore, it
is more appropriate to use unpaired Chinese characters in-
stead of paired data for the handwritten Chinese generation
problem. Figure 2 provides an example of paired and un-
paired training data. Paired training data contain images of
the same character in both fonts, while unpaired data do not
necessarily contain the same set of characters.

In this work, we formulate the Chinese handwritten char-
acter generation as a problem that learns a mapping from
an existing printed font to a personalized handwritten style.
We further propose a method based on unpaired image-to-
image translation to solve this problem. Our main contribu-
tions are:

• We propose to generate Chinese characters in a person-
alized handwritten style using DenseNet CycleGAN.

• We propose content accuracy and style discrepancy as
the evaluation metrics to assess the quality of the gen-
erated characters.

• We demonstrate the efficacy of our proposed method
on both CASIA dataset [16] and our newly introduced
Lanting calligraphy dataset.

2. Related work

2.1. Chinese character handwriting generation

Chinese character generation has been studied since
the beginning of the digital age [20]. In the literature,
Chinese character generation is mainly formulated as ei-
ther an artistic calligraphy, typography generation prob-
lem [27, 25, 28, 14], or a personal handwriting genera-
tion problem [26, 15, 22]. Most previous works rely on
the hierarchical representation of simple strokes [27, 26]

xi yi{ }
{ }
{ }
{ }

...

X Y ...



 ...


(a) Paired (b) Unpaired

Figure 2: Paired and unpaired training data. (a) Paired
training data consists of training examples {xi, yi}Ni=1,
where there exists correspondence between xi and yi. (b)
We consider unpaired training data, where a source set X
and a target set Y exist, with no matching information for
xi and yi.

as the basis to represent Chinese characters. For exam-
ple, StrokeBank [32] decomposes Chinese characters into a
tree of components. FlexiFont [19] scans and processes the
camera-captured handwritten character images, and then
formats these characters as a personalized TrueType font
file. Automatic shape morphing [14] first generates the
shape template for every character, then decomposes two
given Chinese characters into strokes to establish an accu-
rate correspondence between strokes to achieve non-rigid
point set registration. More recently, awesome typogra-
phy [28] explores the problem of generating special-effects
for the typography, and exploits the statistics on the high
regularity of the spatial distribution for text effects to guide
the synthesis process. Zi2zi [25] considers each Chinese
character as a whole and learns to transform between fonts
with paired training data. However, in the task of generat-
ing personalized Chinese handwriting font, it is difficult to
obtain a large set of paired training examples.

2.2. Image style transfer

Current image style transfer methods can be divided into
two categories, namely descriptive neural methods based
on image iteration and generative neural methods based on
model iteration [10]. Descriptive neural methods transfer
the style by directly computing the gradient with respect
to the source image and updating pixels in the image it-
eratively, while generative neural methods first optimize a
generative model and produces the styled image through a
single forward pass.

Neural style [2] is one of the most widely used descrip-
tive neural methods for reproducing the content of an image



with the style of another. It formulates style transfer as an
optimization problem that combines texture synthesis with
content reconstruction. Patch-based loss is added on top of
content and style losses in [13, 1].

The drawback of descriptive neural methods is that the
iterative updating algorithm only works for a single image,
which makes it rather time-consuming if one would like to
transfer the styles of many images. In contrast, generative
neural methods are faster but usually generates poorer style
transfer results.

Nonetheless, our problem of generating handwritten
Chinese characters does not exactly fall into the neural style
transfer domain. In particular, it is difficult to define the
content loss between characters in different styles since the
strokes can be very different in positions and angles. For ex-
ample, although xi and yi in Figure 2(a) represent the same
characters, the corresponding images differ drastically.

2.3. Generative adversarial networks

GANs. General adversarial networks (GANs) [4] are
powerful generative models which have achieved impres-
sive results in many computer vision tasks such as image
inpainting [7] and image-to-image translation [31], as well
as natural language processing tasks such as speech synthe-
sis [18] and cross-language learning [11]. GANs formulate
generative modeling as a game between two competing net-
works: a generator network produces synthetic data given
some input noise and a discriminator network distinguishes
between the generator’s output and true data. Formally, the
game between the generator G and the discriminator D has
the minimax objective:

min
G

max
D

Ex∼Pr
[logD(x)] + Ez∼Pg

[log(1−D(G(z))],

(1)
where x ∼ Pr are samples from the input data and z ∼ Pg

are the random noise samples, G(z) are the generated im-
ages using the neural network generator G, and D(·) gives
the probability of an input being real.

cGANs and pix2pix. Unlike GANs which learn a map-
ping from a random noise vector to an output image, con-
ditional GANs (cGANs) learn a mapping from a random
noise vector to an output image conditioning on additional
information. cGANs are capable of image-to-image trans-
lation since they can condition on an input image and gen-
erate a corresponding output image. Pix2pix[9] is a generic
image-to-image translation algorithm using cGANs. It can
produce reasonable results on a wide variety of problems.
Given a training set which contains pairs of related images,
pix2pix learns how to convert an image of one type into an
image of another type, or vice versa.

Zi2zi. Zi2zi [25] uses GAN to transform Chinese char-
acters between fonts in an end-to-end fashion, assuming no
stroke label or any other auxiliary information which is usu-

ally difficult to obtain. The network structure of zi2zi is
based on pix2pix with the addition of category embedding
for multiple fonts. This enables zi2zi to transform char-
acters into several different fonts with one trained model.
Zi2zi uses paired Chinese characters of the source font and
the target font as the training data. However, since it is im-
practical to obtain a large set of paired training examples
for personalized handwritten Chinese character generation,
zi2zi is not applicable to our problem.

CycleGAN. Cycle-consistent GANs (CycleGANs) learn
the image translation without paired examples [31]. Instead,
it trains two generative models cycle-wise between the in-
put and output images. In addition to the adversarial losses,
cycle consistency loss is used to prevent the two generative
models from contradicting each other. The default genera-
tor architecture of CycleGAN is ResNet [5], while the de-
fault discriminator architecture is a PatchGAN classifier [9].

3. Our method

Our task is to generate handwritten Chinese characters
using unpaired source and target fonts. It can be formulated
as learning a mappingG from the source fontX to the target
font Y given training samples {xi}Ni=1 where xi ∈ X and
{yj}Mj=1 where yj ∈ Y . An example of the unpaired train-
ing examples can be found in Figure 2(b). Our objective
is consistent with that of CycleGAN [31], which is to learn
image/font transformations across domains without paired
training examples.

The mapping G : X → Y can be seen as the genera-
tors in the GANs except that the input of the generator is an
image from the source domain rather than a random noise.
An example of the architecture of generator G is shown in
Figure 3. The mapping for learning the styles works as fol-
lows: the information in the image from domain X is first
encoded to a lower dimension via the encoder given in Ta-
ble 1. Then the extracted features from the source domain
go through a transfer module. The outputs of the transfer
module can be considered as the extracted features from the
target domain. Finally, the output of the transfer module is
decoded via the decoder as shown in Table 1.

An adversarial discriminator DG, which is a 70×70
PatchGAN [9], is used to assess the qualify of the gen-
erated images in the target domain. The second mapping
F : Y → X and the corresponding discriminator DF can
be defined similarly. The objective of the discriminator is
to distinguish between true images from the target domain
and fake images produced by the generator based on images
from the source domain.

The loss function of CycleGAN contains two parts: ad-
versarial losses and cycle consistency losses. On one hand,
the adversarial losses aim to match the distribution of gen-
erated images to the data distribution in the target domain.



Figure 3: The architecture of the generator in DenseNet-5 CycleGAN. The information in the image in source style is
first encoded to a lower dimensional space via the encoder E. Then the extracted features go through a transfer module, the
outputs of which can be considered as the extracted features in the target style. Finally, the output of the transfer module is
decoded via the decoder D.

Module Specifications

Encoder
7× 7 Conv-Norm-ReLU, 64 filters, stride 1
3× 3 Conv-Norm-ReLU, 128 filters, stride 2
3× 3 Conv-Norm-ReLU, 256 filters, stride 2

Transfer

Dense block, growth rate 256
Dense block, growth rate 256
Dense block, growth rate 256
Dense block, growth rate 256
Dense block, growth rate 256

Decoder
3× 3 Deconv-Norm-ReLU, 128 filters, stride 1/2
3× 3 Deconv-Norm-ReLU, 64 filters, stride 1/2

7× 7 Deconv-Norm-ReLU, 3 filters, stride 1

Table 1: The architecture and layer specifications of the
encoder, transfer, and decoder modules of the gener-
ator in DenseNet CycleGAN. Conv-Norm-ReLU repre-
sents a Convolution-InstanceNorm-ReLU layer. Deconv-
Norm-ReLU represents a Fractional-strided-convolution-
InstanceNorm-ReLU layer.

For G and DG, the objective is

LGAN,G(G,DG) = Ex∼p(x) [log (1−DG (G(x)))]

+ Ey∼p(y) [logDG(y)] . (2)

The adversarial loss for F and DF can be defined similarly.
On the other hand, the cycle consistency losses ensure that
the cyclic transformation is able to bring the image back to
the original state. This is defined by

Lcycle(G,F ) = Ex∼p(x)[||F (G(x))− x||1]
+ Ey∼p(y)[||G(F (y))− y||1]. (3)

The cycle consistency loss can be seen as a regularization
and the strength of the regularization is controlled by λ. The
full objective of CycleGAN is the summation of the adver-
sarial losses for both mappings and the cycle consistency

losses:

Ltotal(G,DG, F,DF ) = LGAN,G(G,DG)

+ LGAN,F (F,DF )

+ λLcycle(G,F ). (4)

The choice of the architecture of the transfer module is
flexible. In the original CycleGAN [31], the transfer mod-
ule contains several Residual Network (ResNet) blocks [5]:

x` = H`(x`−1) + x`−1, (5)

where x`−1 and x` are the input and output of the `-the
ResNet block, and H` represents a composite function of
operations such as batch normalization (BN) [8], rectified
linear units (ReLU) [3] and convolution. The purpose of
using an identity skip-connection to bypass the non-linear
transformations is to facilitate gradient back-propagation.

Apart from the ResNet, the Dense Convolutional Net-
work (DenseNet) [6] is among the most recent develop-
ments in convolutional neural networks. It further improves
the information flow across blocks by connecting all the
blocks directly with each other. The `-th block receives the
feature maps of all preceding blocks, x0, . . . ,x`−1, as in-
put,

x` = H`([x0,x1, . . . ,x`−1]), (6)

where [x0,x1, . . . ,x`−1] refers to the concatenation of the
feature maps produced in blocks 0, . . . , ` − 1. DenseNets
achieve state-of-the-art classification accuracy across sev-
eral highly competitive datasets, using fewer parameters
and less computation than ResNets.

Inspired by the design of DenseNets, we incorporate
DenseNet blocks in the transfer module and propose a Cy-
cleGAN with DenseNet generator architecture (DenseNet
CycleGAN) to generate handwritten Chinese characters. As
shown in Table 1, the transfer module in our DenseNet
CycleGAN consists of DenseNet blocks instead of ResNet
blocks.



4. Experiments
In this section, we evaluate our proposed method on two

publicly available datasets. Furthermore, we propose con-
tent accuracy and style discrepancy as complementary eval-
uation metrics in addition to visual appearance. Main re-
sults are shown in this section.

4.1. Datasets

CASIA-HWDB dataset. The Chinese handwriting
database, CASIA-HWDB [16] is a widely used database for
Chinese handwritten character recognition [30, 29]. This
database contains samples of isolated characters and hand-
written texts that were produced by 1020 writers using An-
oto pen on papers.

In this study, we use the HWDB1.1 dataset from the
CASIA-HWDB. It contains 300 files (240 in HWDB1.1
training set and 60 in HWDB1.1 test set). Each file contains
about 3000 isolated gray-scale Chinese character images
written by one writer, as well as their corresponding labels.
The isolated character images are resized to 128× 128 pix-
els. Other than resizing, no other data preprocessing method
is performed.

For the task of generating handwritten characters, we use
the file HW252 (1252-c.gnt) in the HWDB1.1 dataset
as the target style, and SIMHEI font as the source style.
SIMHEI is a commonly used Chinese font. Figure 4 shows
the Chinese character “yong” in 5 different styles. The first
two are printed fonts, and the last three are handwritten.

(a) SIMHEI (b) SIMKAI (c) Lanting (d) HW252 (e) HW292

Figure 4: The character “yong” in 5 different fonts.
(a) SIMHEI; (b) SIMKAI; (c) character in Lanting cal-
ligraphy dataset; (d) handwritten character from HW252
(1252-c.gnt) in HWDB1.1; (e) handwritten character
from HW292 (1292-c.gnt) in HWDB1.1.

Lanting calligraphy dataset. Chinese calligraphy is
a form of aesthetically pleasing writing, which has been
widely practiced in China and has been generally highly es-
teemed in the Chinese cultural sphere. In this work, we use
the calligraphic work by Wang Xizhi as an example, who
is generally regarded as the greatest Chinese calligrapher
in history. Wang’s most famous work is the Lantingji Xu,
which consists of 324 characters written in the semi-cursive
style.

Each character in the Lantingji Xu is first scanned and
isolated from the manuscript. They are further binarized

and denoised using median filtering. Finally, the char-
acters are padded to square and resized to 128 × 128
pixels. The resulting dataset is referred to as the Lant-
ing calligraphy dataset. The characters in the first col-
umn in Figure 7 are examples from the Lanting callig-
raphy dataset. The source font used for this task is the
SIMKAI font, which is in the regular style. The dataset
can be found here: https://github.com/changebo/HCCG-
CycleGAN/blob/master/lanting.zip.

4.2. Performance metrics

Generative models usually lack objective evaluation cri-
teria, which makes it difficult to quantitatively assess the
quality of the images generated. To measure the perfor-
mance of our handwritten character generation method on
the CASIA-HWDB dataset, we propose two complemen-
tary evaluation metrics: the content accuracy and the style
discrepancy. Both evaluations are based on a pre-trained
network: the HCCR-GoogLeNet [30], which is a hand-
written Chinese character classification model based on
GoogLeNet [23].

Content accuracy. The HCCR-GoogLeNet model is
trained using the CASIA-HWDB handwritten character
database with 1, 020 writers in total, including HW252.
It achieved the state-of-the-art accuracy of Chinese char-
acter classification. Inspired by the idea of the Inception
score [21], the pre-trained HCCR-GoogLeNet model can
be used to evaluate the quality of the generated handwritten
characters. The intuition is that if the generated characters
are realistic, the pre-trained HCCR-GoogLeNet will also be
able to classify the generated characters correctly. In our
case, characters in the target style are generated from avail-
able images in the source style. Therefore, the true labels of
the generated characters are known. If the characters gen-
erated can be accurately classified by pre-trained character
recognition models, to some extent it indicates that the gen-
erative model is of high quality.

Table 2 shows the test accuracy of HCCR-GoogLeNet
on the HW252 handwritten characters and the SIMHEI
font characters as a baseline. The high recognition accu-
racy indicates that the HCCR-GoogLeNet accuracy is a reli-
able metric for quality measurement. However, the equally
good performance on HW252 and SIMHEI implies that this
metric measures the generation quality from a single per-
spective: it only assesses the content quality, not the style
quality. Therefore, the recognition accuracy of HCCR-
GoogLeNet on the generated handwritten characters is re-
ferred to as the content accuracy.

Style discrepancy. To measure the discrepancy in style
between the true characters in the target domain and the
generated characters, we borrow the style loss in neural
style transfer algorithm [2]. The idea is to use the corre-
lations between different filter activations at one layer as a



style representation. The feature correlations are given by
the Gram matrix G` ∈ RN`×N` , where N ` is the number of
filters in the `-th layer, andG`

ij is the inner product between
the vectorized feature map i and j in layer `:

G`
ij =

∑
k

F `
ikF

`
jk. (7)

The style discrepancy is thus defined as the root-mean-
square difference between the style representations of the
target characters and the generated characters. Lower dis-
crepancy corresponds to better style quality. In our ex-
periments, the input of Inception module 3 in HCCR-
GoogLeNet is used as layer ` to calculate the style discrep-
ancy.

We run two baseline experiments to get an approximate
of the range of the style discrepancy. (a) The style discrep-
ancy between two randomly and equally split subsets of the
HW252 handwritten dataset. Since these two subsets are
written by the same person and have the same style, the
result represents the lower bound of the style discrepancy.
The style discrepancy lower bound is 503.77. (b) The style
discrepancy between HW252 and SIMHEI. This is the style
difference between the source style and the target style. It
thus represents the most possible disagreement in style, and
it measures the style quality of a trivial identity style trans-
fer model. Therefore it can be regarded as an upper bound
of the style discrepancy. The style discrepancy upper bound
is 3006.03.

4.3. Implementation details

In the experiments, we consider two types of transfer
modules: ResNet with 6 blocks (ResNet-6) and DenseNet
with 5 blocks (DenseNet-5). The DenseNet-5 transfer mod-
ule has roughly the same number of parameters as the
ResNet-6 transfer module.

The only preprocessing procedure we used is to resize
the training images to 128 × 128 pixels; no other prepro-
cessing methods (e.g. crop and flip) are used. For all the
experiments, the regularization strength is set to λ = 10,
and the Adam optimizer [12] with a batch size of 1 is used.
The learning rate is set to 0.0002 for the first 100 epochs

Top-1 accuracy Top-5 accuracy
HW252 98.03% 99.84%
SIMHEI 94.22% 99.60%

Table 2: The top-1 and top-5 test accuracy of HCCR-
GoogLeNet on the HW252 handwritten characters and the
SIMHEI font characters. The equally good performance on
HW252 and SIMHEI implies that this metric only measures
the content quality.

and then linearly decays to 0 over the next 100 epochs. The
number of iterations in each epoch in the experiments is the
larger number of the training examples in the two styles.

4.4. Handwritten characters results

We use SIMHEI font as the source style and handwrit-
ten characters in HW252 as the target style. SIMHEI and
HW252 are both split to unpaired training and validation
sets. In real applications, we would like the users to only
write a few Chinese characters, based on which the remain-
ing handwritten characters can be generated with his/her
personal style using our proposed method. Therefore, the
goal of this experiment is to use small training sets to train
a CycleGAN model, and perform style transfer on the vali-
dation sets. Let rA be the split ratio of HW252, that is, rA of
the characters in HW252 are randomly assigned to the train-
ing set, and the remaining characters are in the validation
set. Similarly, rB denotes the split ratio of SIMHEI. Both
rA and rB take values in {5%, 10%, 15%, 30%}, which
gives 16 combinations. Table 3 and 4 show the top-5
content accuracy and style discrepancy for ResNet-6 and
DenseNet-5, respectively. The results indicate that both
content and style quality improves with the number of in-
creasing training data. In particular, when rA and rB are
greater than 10%, the content accuracy is always greater
than 80%. The performance of ResNet-6 and DenseNet-5
are comparable. Furthermore, since the style discrepancy
ranges between 503.77 and 3006.03, the style discrepancies
are on the low end of the spectrum.

Figure 5 shows the generated handwritten characters us-
ing DenseNet-5 and ResNet-6, as well as the source and
target styles. The background of the generated characters is
clear and the contents are perfectly recognizable. The style
of the strokes is noticeably different from that of the source
font. The composition of the radicals and the blurry bound-
aries of the strokes highly resemble the writer’s handwriting
style. Figure 6 shows a famous Chinese poem “On the Stork
Tower” composed of characters generated by ResNet-6 Cy-
cleGAN. All the characters are clearly recognizable with
personalized style.

4.5. Calligraphy results

We use SIMKAI as the source font for the calligra-
phy generation in Wang Xizhi’s style. Overall, DenseNet
marginally outperforms ResNet in style. Figure 7 shows
the ground truth as well as the generated calligraphy char-
acters of the first four characters in the Lanting calligraphy
dataset given unpaired training data. It can be seen that Cy-
cleGAN with both DenseNet and ResNet generator captures
the overall writing style of Wang Xizhi and generates rea-
sonable outputs. Compared with ResNet, DenseNet tends to
generate fewer cases of missing strokes (e.g., the dot in the
first character) or extra strokes (e.g., the extra throw-away



(a) SIMHEI (b) DenseNet-5 (c) ResNet-6 (d) HW252

Figure 5: The handwritten Chinese characters. (a) The
source characters in SIMHEI font; (b) the generated char-
acters in HW252’s style using ResNet-6; (c) the gener-
ated characters in HW252’s style using DenseNet-5; (d) the
ground truth characters in HW252’s style.

in the second character). Nevertheless, both DenseNet and
ResNet generators fail to learn certain features of Wang’s
semi-cursive style. For example, for the character “he” in
the second row, the strokes “throw-away” (falling leftwards)
and “press-down” (falling rightwards) are usually simpli-
fied to a single “break” (a change in direction) stroke in
semi-cursive script. This feature is not learned by the Cycle-
GAN model: both DenseNet and ResNet generate separate
“throw-away” and “press-down” strokes.

The last two columns in Figure 1 are also examples of
the generated Chinese calligraphy in Wang Xizhi’s style.
These characters are not in the original Lanting calligraphy
dataset and the generated characters show satisfactory per-
formance.

ResNet-6 rA
5% 10% 15% 30%

rB

5% 83.85% 72.83% 56.32% 49.31%
742.93 786.83 970.98 1225.86

10% 77.92% 87.30% 86.98% 80.88%
836.46 758.73 697.79 702.45

15% 78.31% 81.17% 89.41% 86.59%
811.75 700.12 709.78 530.31

30% 82.08% 86.34% 89.19% 86.49%
885.91 752.86 761.41 613.44

Table 3: ResNet-6 results. Top-5 content accuracy and
style discrepancy on HW252 and SIMHEI font. rA and
rB represent the split ratio of HW252 and SIMHEI respec-
tively.

Generated Truth Generated Truth
(a) (b) HW252 (c) HW292

Figure 6: A famous Chinese poem entitled “On the Stork
Tower” generated by our proposed method. (a) SIMHEI
is the source style; (b) and (c) are two handwritten styles.
The generated characters are clearly recognizable with per-
sonalized style.

4.6. Comparison with neural style transfer

We compare our method with neural style transfer [2]
by using VGG-19 as the pre-trained network. We use layer
relu4 2 of VGG-19 for content loss, and layer relu1 1,
relu2 1, relu3 1, relu4 1, and relu5 1 for style
loss. Two characters in SIMHEI font are used as the content
images, and 30% of the characters are randomly selected
from the HW252 dataset as style images. This is the same



DenseNet-5 rA
5% 10% 15% 30%

rB

5% 76.67% 58.90% 60.75% 15.78%
839.22 1075.58 1326.33 2016.11

10% 84.02% 83.01% 82.39% 84.46%
840.00 761.60 844.01 576.14

15% 84.21% 82.33% 90.47% 82.14%
792.23 725.15 723.82 700.19

30% 81.43% 90.03% 89.04% 88.55%
792.89 703.96 759.20 594.876

Table 4: DenseNet-5 results. Top-5 content accuracy and
style discrepancy on HW252 and SIMHEI font. rA and
rB represent the split ratio of HW252 and SIMHEI respec-
tively.

(a) Lanting (b) DenseNet-5 (c) ResNet-6

Figure 7: The Chinese calligraphy characters in Lant-
ing calligraphy dataset. (a) The ground truth characters;
(b) the generated characters in Wang Xizhi’s style using
DenseNet-5; (c) the generated characters in Wang Xizhi’s
style using ResNet-6. Note that for the character “he” in the
second row, the strokes “throw-away” and “press-down” in
the red circle are simplified to a single “break” stroke ihe
ground truth characters, but they are generated as separate
strokes by DenseNet and ResNet CycleGAN.

as the setting of rA = 30%. The generated results by neural
style transfer are shown in Figure 8. It can be seen the style

of the generated images is almost identical to the source
font, implying that the learned transform is trivial. Further-
more, the background of the generated images is blurry. The
overall visual quality is worse than those generated by our
method.

(a) SIMHEI (b) Neural style (c) HW252

Figure 8: The results of neural style transfer. (a) The
source characters in SIMHEI font; (b) characters generated
by neural style transfer; (c) the ground truth characters in
HW252’s style. The style of the generated images is almost
identical to the source font and the background is blurry.

5. Conclusion

In this work, we formulate the Chinese handwritten char-
acter generation problem as learning a mapping from an ex-
isting printed font to a personalized handwritten style. We
present DenseNet CycleGAN to solve this problem, and our
method uses DenseNet as part of the CycleGAN generator
to improve the generation quality. The proposed method is
compared with the original CycleGAN with ResNet blocks
and Neural style transfer. We evaluate the proposed method
on the CASIA dataset and the newly introduced Lanting cal-
ligraphy dataset. Furthermore, we propose two novel Chi-
nese character generation performance evaluation metrics
content accuracy and style discrepancy for quantitatively as-
sessing the quality of generated Chinese handwritten char-
acter. Extensive experimental results demonstrate the ef-
ficacy of our method, showing superior or on-par perfor-
mance.
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