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Abstract

We present a generative framework for zero-shot action
recognition where some of the possible action classes do
not occur in the training data. Our approach is based on
modeling each action class using a probability distribution
whose parameters are functions of the attribute vector rep-
resenting that action class. In particular, we assume that
the distribution parameters for any action class in the vi-
sual space can be expressed as a linear combination of a set
of basis vectors where the combination weights are given
by the attributes of the action class. These basis vectors
can be learned solely using labeled data from the known
(i.e., previously seen) action classes, and can then be used
to predict the parameters of the probability distributions of
unseen action classes. We consider two settings: (1) Induc-
tive setting, where we use only the labeled examples of the
seen action classes to predict the unseen action class pa-
rameters; and (2) Transductive setting which further lever-
ages unlabeled data from the unseen action classes. Our
framework also naturally extends to few-shot action recog-
nition where a few labelled examples from unseen classes
are available. Our experiments on benchmark datasets
(UCF101, HMDB51 and Olympic) show significant perfor-
mance improvements as compared to various baselines, in
both standard zero-shot (disjoint seen and unseen classes)
and generalized zero-shot learning settings.

1. Introduction

Action Recognition is an important problem in Com-
puter Vision in which knowledge about a sequence of ac-
tions is learned from a large collection of video clips. It is
a challenging task due to the inherent variability in actions,
non-deterministic occlusion patterns, abrupt changes in illu-
mination, cluttered dynamic background, and noisy videos.
Knowledge about an action is inferred usually by learning
from the labelled data in a supervised manner. Even as
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more complex models are being built, it is a common obser-
vation that the number of categories of actions is progres-
sively increasing (for example, one of the earliest bench-
mark datasets KTH has 6 categories while Olympic, HMDB
and UCF datasets have 16, 51, and 101 categories, respec-
tively). Consequently, annotating videos of this growing
number of categories can be a very cumbersome task and
consequently restricts the scalability of a fully supervised
action recognition for a large number of categories.

To circumvent this problem, Zero-Shot Learning (ZSL)
of actions has been actively pursued [35, 34, 21]. In the con-
ventional Action Recognition framework, only the classes
present in the training data can be recognized by the model
during the test phase. In Zero-Shot Learning, however, the
model is expected to recognize and categorize action classes
that did not appear in the training phase at all. The informa-
tion about the unseen classes is provided via other modal-
ities such as language in the form of textual descriptions,
word2vec [19] or human annotated attributes. Essentially,
the model has to learn to recognize the unseen action classes
based on the knowledge acquired from the data instances of
the seen action classes. Zero-shot learning is typically de-
fined in two settings: (1) the conventional setting, in which
set of classes for the training and test instances are disjoint
(Ytr ∩ Tte = ∅); and (2) the generalized zero-shot (GZSL)
setting, in which the set of classes for the training and test
instances may have an overlap [16, 20]. The generalized
zero-shot setting is considered much harder than standard
setting (disjoint setting) since the learned models tend to be
biased towards predicting seen classes at training time (as
they are learned solely from the unseen class training data).
While much of the prior work in ZSL has focused on the
conventional setting, the focus has recently shifted to the
more realistic GZSL setting.

In this work, we present a simple generative approach for
zero shot action recognition, which works in both standard
as well as generalized ZSL setting. Our approach models
each action class as a probability distribution in the visual
space where the parameters of this distribution are assumed
to be a linear combination of a set of “basis” parameters,
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Figure 1. Proposed Model: Each class attribute is projected to the visual space, In the visual space each class is represented by a Gaussian
distribution. To avoid information loss, a reconstruction regularizer is added.

where the combination weights are given by the (known)
attribute vector of that class. This is akin to assuming that
each action class can be represented as a combination of a
set of “prototype” action classes. The complete architecture
of our model is shown in Fig. 1.

Once the basis vectors are learned using the training in-
stances from seen action classes, the parameters of an un-
seen action class distribution can be easily computed via
a weighted combination of the learned basis vectors, with
weights being the attributes of the respective unseen class.
The loss function (More details in Methodology section) is
formulated in such a way that, for each seen action class,
the weighted combination of the basis vectors is close to the
maximum likelihood estimate (MLE) of the class distribu-
tion’s parameters. The MLE estimate can also be replaced
by maximum-a-posteriori (MAP) estimate. Our approach
is akin to the one proposed recently in [29] for zero-shot
learning, though our focus an application is specifically the
zero-shot action recognition problem. In addition, we add
an additional “reverse direction” regularizer to encourage
reconstruction ability of the class attribute vectors from the
parameters of the seen class distributions so as to minimize
the information loss. Note that this is akin to an autoencoder
(cf, Fig. 1). One of the appealing aspects of our model is
that it admits a simple closed-form solution.

Our main contributions can be summarized as follows

• We provide a probabilistic generative approach for
zero-shot learning (ZSL) where each action class is
represented by a Gaussian distribution (although the
Gaussian can be replaced by other distributions with-
out changing the rest of our model).

• We show that our approach, although simple, general-
izes well to the unseen classes in the inductive setting
and improves over the state-of-the-art.

• We show that our approach can be easily generalized
to the transductive setting where unlabeled data from
unseen classes are available at training time.

• Our model also naturally extends to be “few-shot
learning” setting where a few examples of each un-
seen class are available as well. In particular, the pa-
rameters of the class distribution can be updated eas-
ily given a few additional labeled examples from that
class. Through extensive experimentation on three
benchmark datasets, we show that our simple approach
gives significant performance gains in all three settings
over the state-of-the-art methods.

• Finally, since our approach is generative, we can also
synthesize novel examples for any unseen class by
sampling from the respective class distribution. Since
we can now have labeled data from seen as well as
unseen classes, it is possible to train a classifier in
the generalized zero-shot setting which is much harder
than the standard (disjoint) setting.

2. Methodology
For the zero-shot action recognition setting, we denote

the total number of seen action classes by S and the total
number of unseen action classes by U . We take a genera-
tive classification based approach to the action recognition
problem where we assume that the data instances of each
action class (seen/unseen) c are generated by a distribution



p(x|θc). Without loss of generality, and for simplicity of
exposition, we will assume these distributions to be Gaus-
sians (note that our approach can be used with other distri-
butions as well). In the Gaussian case, the parameters θc
consist of the mean vector µc ∈ RD and a diagonal covari-
ance matrix Σc = diag(σ2

c ), where σ2
c ∈ RD+ . We assume

a diagonal covariance matrix to reduce the total number of
parameter estimated and prevent overfitting especially when
the number of examples from each class is small. However,
other forms for the covariance matrix can also be used.

Given labeled data from the seen classes, it is straight-
forward to estimate the parameters µc,σc using Max-
imum Likelihood Estimation (MLE) or Maximum-a-
Posteriori (MAP) estimation. For example, using MLE,
the mean is estimated as µc = 1

Nc

∑Nc
i=1 xi and σ2

c =

diag( 1
Nc

∑Nc
i=1(xi − µc)(xi − µc)

>) whereNc denotes the
number of labeled examples from class c.

However, this approach cannot be used to estimate the
parameters θc (c = S + 1, ..., S + U) of unseen classes
due to unavailability of labeled data corresponding to un-
seen classes. To resolve this problem, we model the param-
eters θc = (µc,σ

2
c ) of each seen/unseen clas as a function

of the respective class attribute vector ac, i.e., θc = f(ac).
In the zero-shot learning setting, the class attribute vector
ac ∈ RK is either provided by a human expert or as the
WORD2VEC embedding of the name of the action.

The function f can be linear or nonlinear and can be
learned using the labeled data instances of seen classes in
visual feature space. Once learned, the function f can be
used to predict θc for all the unseen class actions c =
S + 1, . . . , S + U using their respective class attributes.

A simple choice of f is a linear model that maps the
class attributes ac to the class parameters θc. In the Gaus-
sian class distribution case, for the mean µc, such a linear
function f can be defined as

µc = fµ(ac) = Wµac (1)

Note that the above linear model represents the mean µc ∈
RD as a weighted linear combination of K basis vectors
Wµ = [wµ1 ,wµ2 , ..,wµK

] ∈ RD×K is a set of learned
basis vectors in the visual space.

The basis vectors Wµ can be learned using the seen class
training data. In particular, given the empirical estimates
µ̂c, c = 1, . . . , S of means of the seen class distributions,
we can use (ac, µ̂c) as “training data” to learn the regres-
sion model Wµ that maps ac to µ̂c.

While the above model can be seen as mapping the class
attribute vector ac to the class mean µc, we further impose
the condition that the class means can also be used to recon-
struct the class attribute vector via a “reverse map” akin to
an autoencoder, i.e., ac = WT

µµc, which leads to

µc = Wµac = WµW>
µµc (2)

A similar procedure can be employed for learning the
mapping from the class attributes ac to the variance param-
eters σ2

c of the distribution of class c via another set of basis
vectors Wσ2 . Sections 2.1 and 2.2 provide more details.

Once the basis vectors Wµ,Wσ2 (which define the
functions fµ and fσ) are learned, we can use them to es-
timate the parameters (e.g., µc,σ2

c ) of the distribution of
each unseen class. For example, given the class attribute
vector ac of an unseen class c = S + 1, . . . , S +U , we can
estimate µc simply as µc = Wµac.

The mapping f (which is essentially a regression model)
from the class attribute vector to the parameters of the class
distribution can be linear or nonlinear. We describe both
these cases in the next two sections.

2.1. Linear Regression

Given the labeled data from seen classes c = 1, ..., S, we
can estimate their class distribution parameters using MLE.
We can then learn the functions fµ and fσ2 using training
data of the form (ac,µc)

S
c=1 and (ac,σ

2
c )
S
c=1. In the lin-

ear regression approach µc = fµ(ac) and σ2
c = fσ(ac),

we assume the functions fµ and fσ to be linear projections
with weight matrices, Wµ and Wσ , making this problem
equivalent to the following regression problem:

µc = Wµac s.t. ac = WT
µµc

ρc = logσ2
c = Wσ2ac s.t. ac = WT

σ2σ2
c

The projection matrices Wµ and Wσ2 can be easily
learned using a multi-output ridge regression problem with
training data (ac,µc)

S
c=1 and (ac,σ

2
c )
S
c=1. These problems

have simple closed form solution and we omit the equations
here for brevity. We give details equations for the nonlinear
case, as shown below.

2.2. Nonlinear Regression

For the non-linear regression, we first map the attributes
{ac}Sc=1 to the kernel space using the kernel function k
which is defined as a nonlinear mapping φ. Using the Rep-
resenter theorem [24], we can re-formulate the regression
problem in kernel space as given in Eq. 3. Note that in-
stead of computing the φ(ac) explicitly, we have to com-
pute only the dot product φ(ac)Tφ(ac′) = k(ac,ac′) for
the non-linear mapping of the two class c and c′. Let K be
the kernel matrix of size S×S containing pairwise similar-
ities of the attributes of the seen classes, M be the D × S
matrix containing the means of the distributions of all the
seen classes, then the attribute to mean nonlinear mapping
can be learned by solving the following problem

min
Wµ

||M−WµK||2F + λµ||Wµ||22

s.t. K = W∗
µM

(3)



Eq 3 shows our main objective function. Here the first
term can be interpreted as learning an optimal weight matrix
that projects the attribute space to the visual space using
the kernel regression. The second term ensures that we can
reconstruct the attribute vector from the visual space and
acts as a regularization term. Akin to an autoencoder [9],
we assume the two mappings to be reverse of each other

W∗
µ = WT

µ

Therefore the complete objective can be written as:

W∗
µ = argmin

Wµ

||M−WµK||2F + λµ||Wµ||22

+λ1||K−WT
µM||2F

(4)

The next section provides details of the optimization proce-
dure used for solving Eq. 4

2.2.1 Optimization

Noting Tr(K) = Tr(KT ) and Tr(WT
µM) =

Tr(MTWµ), Eq. 4 can be written as:

W∗
µ = argmin

Wµ

||M−WµK||2F + λµ||Wµ||22

+λ1||KT −MTWµ||2F
(5)

Taking the derivative of Eq. 5 and equating to zero we have.

MMTWµ+Wµλ1KKT +λµWµ = (1+λ1)MKT (6)

MMTWµ + Wµ(λ1KKT + λµ) = (1 + λ1)MKT (7)

The above equation has the form

AW + WB = C (8)

This is a well-known Sylvester equation which can be
solved using the Bartels-Stewart algorithm [5] efficiently,
and several off-the-shelf solvers exist (we used a MATLAB
implementation for the same). The various quantities in the
above equation are defined as

A = MMT (9)

B = λ1KKT + λµ (10)

C = (1 + λ1)MKT (11)

Likewise, the nonlinear model fσ2
i

can be learned by solv-
ing:

W∗
σ2 = argmin

Wσ2

||R−Wσ2K||2F + λσ2 ||Wσ2 ||22

+λ2||K−WT
σ2R||2F

(12)

Again, taking derivatives and setting to zero gives

RRTWσ2 +Wσ2(λ2KKT +λσ2) = (1+λ2)RKT (13)

The above equation is also in the form of AW + WB = C

A = RRT (14)

B = λ2KKT + λσ2 (15)

C = (1 + λ2)RKT (16)

Given the learned parameters Wµc and Wσ2
c
, the param-

eters of data distribution for unseen classes c = S +
1, . . . , S + U are estimated as:

µc = Wµkc, & σ2
c = exp(ρc) = exp(Wσ2kc) (17)

Where kc = [k(ac,a1), ...,k(ac,aS)] denotes an S × 1
vector of kernel-based similarities of the class attribute vec-
tors of the unseen class c with the class attribute vectors of
all the seen classes.

In the aforementioned procedure for estimation of the
unseen class distribution parameters uses only seen class
labelled data. In this setting, the unseen classes unlabeled
data have not been used. This setting is called as an induc-
tive setting. If we have access to the unseen classes test
instances at the training time, we can use these to improve
the estimation of distribution parameters of unseen classes.
This is the transductive setting which we describe next.

2.3. Transductive setting

One of the unique advantages of the proposed generative
approach is that unlabeled data from unseen classes can be
leveraged to improve the parameter estimates (µc and σc).
In zero-shot learning, training and test data could possibly
come from different domains. Therefore, it is very likely
that parameters learned in the training, will not work well
for the test data. This phenomenon is called domain shift.
An illustrative view of the domain shift can be seen in Fig. 2.
One way to overcome this issue is to use unlabeled data to
further fine-tune the parameters learned by the inductive ap-
proach which only uses the labeled data from the seen ac-
tion classes. In the transductive setting [34], we assume that
the test data is also available at the training time. This data
can help mitigate the bias towards the seen classes. In this
work, we handle the domain shift problem by initializing
the parameters µc,σc using the learned basis vectors from
the inductive learning phase, which are then fine-tuned us-
ing the unlabeled test data from the unseen classes using the
an Expectation-Maximization (EM) algorithm.

Since each class distribution is assumed to be a Gaussian,
this EM based procedure is equivalent to a Gaussian mixture
model (GMM) on the unlabeled test data (xn)Nun=1 from un-
seen classes. This GMM has U mixture components, with
each corresponding to an unseen class and is initialized by



Figure 2. Domain Adaptation illustrative example: Each class
attribute is projected to the visual space, In the visual space each
class are represented by a distribution. Because the seen and un-
seen class are disjoint, there is a problem of domain shift.

the estimated parameters of unseen classes (µc,σ
2
c )S+Uc=S+1

in the inductive setting. The procedure for transductive set-
ting can be briefly summarized as follows

1. Initialize: Let the initial estimate of the unseen class
parameters be Θ = (µc,σ

2
c )S+Uc=S+1 where µc =

Wµac, σ2
c = exp (Wσ2ac). Here Wµ and Wσ2

are estimated from seen class data using equations 4,
12 (assuming we have used the nonlinear regression
model in the inductive phase).

2. Expectation Step: Infer the probabilities for each
example xn belonging to each of the unseen classes
c = S + 1, ..., S + U as

p(yn = c|xn,θ) ∝ N (xn|µc,σ2
c )

where the class priors p(c) are assumed to be uniform.

3. Maximization Step: Use the inferred class labels to
re-estimate Θ = (µc,σ

2
c )S+Uc=S+1. These updates have

closed form solution as in the standard GMM.

4. Go to step 2 if not converged.

2.4. Few-shot Action Recognition

In few-shot action recognition, we have a small num-
ber of labeled examples for each of the unseen classes.
Since our method assumes a Gaussian distribution for each
class, we can easily extend our zero-shot action recognition
method to few-shot action recognition. To this end, we treat
the initial estimate obtained using the previous approach as
the prior. Due to the conjugate nature of the Gaussian, we
can update the estimates (µc, σ

2
c )S+Uc=S+1 obtained from zero-

shot action recognition method in a straightforward manner
when such labeled data for unseen classes is provided. In
particular, given a small number of labeled data (xn)Ncn=1

for unseen class c the parameters of this class can be di-
rectly updated as:

µFSc =
µ +

∑Nc
n=1 xn

1 +Nc
(18)

σ2(FS)
c = (

1

σ2
c

+
Nc
σ2∗ )−1 (19)

where σ2∗ = 1
Nc

∑Nc
n=1(xn −µc)

2 denotes empirical vari-
ance of Nc observations from the unseen class c.

2.5. Extension to Other Distributions

Finally, we would like to emphasize that although we
have consider Gaussians to model each class, our approach
applies to any parameteric distribution p(x|θc) as it essen-
tially boils down to learning a mapping from the class at-
tribute vectors ac to the distribution parameters θc. The
choice of a Gaussian or an exponential family distribu-
tion [29], due to conjugacy, makes our estimation procedure
particularly simple in the transductive and few-shot settings,
but our framework is not restricted to these. Other density
estimation methods such as deep generative models can also
be used [32].

3. Related Work
ZSL can be viewed as an interplay of three subprob-

lems: a visual representation of data instances (feature
representation), semantic representation of all classes such
as word2vec representation [19], and learning a function
which establishes the relationship between visual represen-
tations and semantic representations of each class[13, 14].

For visual (or feature) representation of class instance,
popular hand-crafted features such as HOG [3], HOF [2],
ITF [30] were designed. However, the proven utility of
deep features for many tasks such as Object Recognition
[10, 25, 27], Object Detection [4], etc., has made fea-
tures from well performing CNNs such as [15], Two-Stream
CNN[18], 3DCNN [6] ubiquitous for Action Recognition
tasks including the zero shot setting. By using 3DCNN fea-
tures in ZSL, a significant boost in accuracy has been ob-
served [31]. Semantic representation of a class provides ad-
ditional, complementary information to the visual features
of the classes. Typically, two types of semantic representa-
tions have been widely used in the ZSL literature: attribute
representations [12] and word vector representations [19].
Attribute representations are manually annotated vectors for
each class based on the gesture and motion appearance of
the objects in the video. Word Vector representations are
automatically learned from a large amount of textual data
(Wikipedia Corpus). Word2vec models have been used suc-
cessfully for extracting semantic word vectors from class
names [31, 7, 35]. The core step in ZSL is to find a func-
tion or projection matrix which can establish a relationship



between visual space and semantic space in such a way that
visual features of classes map close to their semantic fea-
tures and vice versa. For example, we would like to have
visual features of ‘running’ map close to semantic features
of ‘running’ and far away from an unrelated action such as
‘eating’.

Note that our framework is similar in spirit to such meth-
ods with a key difference: Instead of learning a mapping
between the semantic feature and visual features, we learn
a mapping from the semantic features and the parameters of
the distributions representing the classes.

Most methods for zero-shot learning are evaluated on
image classification whereas only a few methods have been
proposed for zero-shot action recognition in the literature
[31, 35, 34, 21]. Such methods typically assume the induc-
tive or the transductive setting. The most popular approach
to ZSL is learning a linear compatibility between the visual
and semantic space [1]. [23, 9] provide novel regulariza-
tions while learning a linear compatibility function. ESZSL
[23] models the relationship between features and attributes
as a linear compatibility function while explicitly regulariz-
ing the objective. UDA [8] uses a domain adaptation tech-
nique by using unlabeled data of unseen classes for better
estimation of the parameters.

Our model is inspired by the recently proposed
model [29], which is a simple generative approach for zero-
shot learning. However, their model does not have the
reconstruction regularizer (autoencoder-style reverse map-
ping) from visual to attribute space and their focus is on
image classification whereas here we have focused on ac-
tion recognition. In another recent work, [9] proposed a
semantic auto-encoder for zero-shot learning which intro-
duced the reconstructability regularizer. This paper works
only in the inductive setting and their approach is not gener-
ative. Our generative approach can be seen as a combination
of the generative approach of [29] with auto-encoder style
regularizer proposed by [9].

Among prior works on zero-shot action recognition in
transductive setting, [35] proposed a transductive frame-
work for zero-shot action recognition, which uses unlabeled
unseen class data for training the model. In their work, they
introduced a manifold-regularized regression and a data
augmentation strategy to enhance the performance. They
have also introduced a multi-task visual-semantic mapping
for zero-shot action recognition. In addition, they used pri-
oritized auxiliary data augmentation for domain adaptation
and improved the mapping between visual and semantic
spaces.

Because of the generative nature of our proposed ap-
proach, we can synthesize the data from unseen class based
on attribute and train the classifier. This approach helps
to reduce the baisness in the case of Generalize Zero-Shot
Learning. The efficacy of the proposed approach for the

GZSL as well as ZSL can be seen from the experiment on
three standard datasets.

4. Experiments
Datasets and Settings: We evaluate our proposed

method in three of the most challenging video action recog-
nition datasets, UCF101 [26], HMDB51 [11] and Olympic
[17], widely used as benchmark datasets. We report mean
accuracy along with standard deviation on 30 independent
test runs with random train/test class splits.

• UCF101: [26] is human action recognition data set
with 101 different classes of actions and total of 13320
video clips. In our experiments, we split the classes
into 51 seen and 50 unseen class respectively. ‘

• HMDB51: [11] is the one of the most challenging
human action recognition dataset with 51 different
classes of human actions and total number of 6766
video clips. Each class has more than 100 video clips.
For the evaluation of our model, we perform a 26/25
split for seen and unseen classes respectively.

• Olympic: [17] This dataset has 783 videos from 16
different classes with seen/unseen class split being 8/8.

Dataset #videos #classes seen/unseen Attribute dim
UCF101 13320 101 51/50 115

HMDB51 6676 51 26/25 N/A
Olympic 783 16 8/8 40

Table 1. Dataset details and their train test split on all the three
dataset used in our experiment.

Visual features: The quality of visual features directly af-
fect the efficacy of the model. We use deep features as they
have been shown to be successful in many computer vision
tasks. In our experiments, we use the latest convolutional
3D(C3D) visual features provided by [28]. This model was
pre-trained on the sports-1M dataset. We extract the outputs
of fc6 layer for all segments similar to [28] and then aver-
aged over the segments to form a 4096-dimensional video
representation which is used as the input visual features.

Class attributes: Two types of class attribute vectors
(semantic representation of the classes) are widely used
in ZSL: human labeled attributes [12] and automatically
learned distributed semantic representations such as word
vectors [19]. Word vector representation is learned au-
tomatically by a skip-gram model trained on the google
news text corpus provided by Google. Each word is rep-
resented by a 300 dimensional vector. We experiment on
both attribute and word2vec representations. For HMDB51
dataset, to the best of our knowledge, there is no publicly
available attribute representations of the classes. Hence
only word2vec is used for HMDB51. However, for UCF101
and Olympic datasets, 115 and 40 dimensional attribute
vectors are available respectively [26, 17].



Method Embed Olympic UCF101 HMDB51
HAA [16] A 46.1 ± 12.4 14.9 ± .8 N/A
DAP [13] A 45.4 ± 12.8 14.3 ± 1.3 N/A
IAP [14] A 42.3±12.5 12.8 ± 2 N/A
ST [33] W N/A 13.0±2.7 10.9±1.5
SJE [1] W 28.6±4.9 9.9±1.4 13.3±2.4
SJE [1] A 47.0±14.8 12.0±1.2 N/A

ESZSL [23] W 39.6±9.6 15.0±1.3 18.5±2
UDA [8] A N/A 13.2±1.9 N/A

Bi-dir [31] A N/A 20.5±.5 N/A
Bi-dir [31] W N/A 18.9±.4 18.6±.7

Ours A 50.41±11.2 22.74±1.2 N/A
Ours W 34.12±10.1 17.33+1.1 19.28±2.1

Table 2. Results on inductive setting for standard zero shot learning setting(disjoint setting) for the action recognition. Here A represents
the human annotated attribute vectors and W represents the word2vec embedding.

Hyper-parameters: Our model consists of four hyper-
parameters: λµ, λ1 (Eq. 4) and λσ2 , λ2 (Eq. 12) for es-
timating the projection matrix for mean and variance. The
optimal values of hyper-parameters are chosen via cross
validation on the seen classes. For cross validation, we ran-
domly fix 1/4th of the seen classes as validation classes and
conduct five trials on 30 random splits (same as [31]). For
generalized ZSL setting, the number of synthesize exam-
ples for unseen classes is also hyper-parameter which we
find using cross-validation and observe best model perfor-
mance for 200 synthesized examples.

4.1. Inductive and Transductive ZSL

In our first set of experiments, we evaluate our model for
zero-shot action recognition with inductive and transduc-
tive setting and compare with a number of state-of-the-art
methods.

Evaluation Metric: We evaluate our model using 30
different splits into seen and unseen classes provided by
[31] for UCF101 (51/50), HMDB51 (26/25) datasets. For
Olympic dataset, we generate 30 random splits for seen
and unseen classes (8/8). We use the average accuracy for
all 30 splits as the evaluation metric. For fair comparison,
we run five such trials for 30 random splits and present the
final accuracy with average and standard deviation.
For generalized zero-shot setting we have evaluated for
30 different splits as above and calculated the average
accuracy for seen and unseen classes. The final evaluation
metric of our model is on the harmonic mean of the average
accuracy of seen and unseen classes, as used in [20, 16, 1].

Inductive setting: In this setting, it is assumed that
only the labeled data from the seen classes is available
during training. Table 2 shows the experimental results in
the inductive setting of the zero-shot action recognition
problem. We assume that the train and test classes are
disjoint. Note that this assumption is made for all the

evaluation settings in this work. In this setting, we obtain
an improvement of 3% over the state-of-the-art on the
Olympic dataset. On UCF-101, which is the most used
dataset for zero shot action recognition, the proposed
model outperforms state-of-the-art on attribute-based
semantic representations. For HMDB dataset, the attribute
vectors are not available. Hence, we present results only
on word2vec embeddings. Our model outperforms the
state-of-the-art for this dataset as well. We believe the
improvements can be attributed to its inherent nature of
sharing information across classes (by modeling each as
a basis combination of prototype classes) and its simple
estimation procedure.

Method Embed Olympic UCF101 HMDB51
PST [22] A 48.6±11 15.3 ±2.2 N/A
ST [33] W N/A 15.8±2.3 15.0±3

TZWE [34] A 53.5±11.9 20.2±2.2 N/A
TZWE [34] W 38.6±10.6 18.0±2.7 19.1 ±3.8
Bi-dir [31] A N/A 28.3±1.0 N/A
Bi-dir [31] W N/A 21.4±.8 18.9±1.1
UDA [8] A N/A 13.2±.6 N/A

Ours A 57.88±14.1 24.48±2.9 N/A
Ours W 41.27±11.4 20.25±1.9 20.67±3.1

Table 3. Results on transductive setting for the standard zero shot
action recognition. Here A represents the human annotated at-
tribute vectors and W represents the word2vec embedding.

Transductive setting: In the transductive setting, it is
assumed that the unlabeled data of the unseen classes is
also available at train time. Table 3 shows the performance
of our model in the transductive setting. The unlabeled
data from unseen classes helps us mitigate the bias towards
the seen classes. In this setting, our model outperforms
the state-of-the-art in the Olympic and HMDB datasets.
The performance on the UCF-101 dataset is slightly worse,
where [31] has the best performance. However, note that
we outperform [31] in the inductive setting.



Method Embed Olympic UCF101 HMDB51
HAA [16] A 49.4 ± 10.8 18.7 ± 2.4 N/A

SJE [1] W 32.5±6.7 8.9±2.2 10.5±2.4
ConSE [20] W 37.6 ± 9.9 12.7 ± 2.2 15.4± 2.8

Ours A 52.41±12.2 23.74±1.2 N/A
Ours W 42.23±10.2 17.45±2.2 20.10±2.1

Table 4. Results on the transductive setting for generalized zero-
shot learning setting for the action recognition. Here A repre-
sents the human annotated attribute vectors and W represents the
word2vec embedding.

4.2. Generalized ZSL

In this setting, the test data may come from both seen
and unseen classes. In this setting, from the seen classes,
we separate 20% of the data for testing and remaining 80%
data is used as training data for calculating Wµ and Wσ2

which is used to predict the mean (µc) and variance (σ2
c )

for the unseen classes. One way to handle this setting is
to assign each test data-point to the class whose estimated
distribution gives the highest score. However, we notice
that such an approach is biased towards seen classes since
the model has not seen any unseen class examples. In our
approach, we propose the following solution to this issue:
we synthesize class instances of unseen classes using the
µc and σ2

c which are obtained from the transductive setting
approach; these class instances are called pseudo class in-
stances for unseen classes. Here we generate 200 instances
for each unseen classes. Since we now have labelled data
for seen classes and pseudo labelled data for unseen classes,
we train SVM classifier for labelled seen classes data and
pseudo labelled data for unseen classes. We then pass the
test data (unseen class data plus 20% seen class data) to the
trained SVM classifier for classification. Table 4 presents
the performance of our model in the generalized setting for
zero-shot action classification which clearly shows that it
significantly outperforms state-of-art on all the datasets.

4.3. Few-shot action recognition

Finally, we experiment with the few shot action recogni-
tion setting and present the results. Here only a small num-
ber of examples for each of the unseen classes are available
during training. Our generative model provides a simple
way to update the parameters of the class distribution using
equation 18, 19 . It is clear from the Table 5 that availabil-
ity of the few data points of the unseen classes significantly
improves the performance which is now comparable to that
of supervised learning. Note that we do not assume any un-
labeled data from the unseen classes in this setting. We test
our model with varying number of examples of each unseen
classes. The plot of accuracy with respect to the number of
samples per class is shown in Figure 3.

Dataset 2 samples 3 samples 4 samples 5 samples
UCF101 68.78±3.3 73.49±2.2 76.51±2.1 78.68±1.8

HMDB51 42.10±3.6 47.54±3.3 50.34±3.4 52.58±3.1
Olympic 73.20±7.4 75.35±7.3 80.21±7.24 83.81±7.11

Table 5. Inductive setting with few-shot action recognition

Figure 3. Accuracy vs number of data points for few-shot learning

5. Conclusion

We have presented a simple, probabilistic, generative
model based framework for zero-shot action recognition.
The proposed approach performs well in both the induc-
tive and transductive setting for the standard (disjoint) and
generalized zero-shot learning. The generative aspect of our
model unables synthesizing unseen class examples and can
effectively work in the generalized ZSL setting. In addi-
tion, the ability of leverage unlabeled data (transductive set-
ting) helps address the domain shift problem between seen
and unseen classes. A particularly appealing aspect of our
model is that it yields a closed form solution for the parame-
ters to make it fast and easy to implement. Experimental re-
sults are shown to achieve state-of-the-art performance. The
proposed method also generalizes to few-shot action recog-
nition setting, achieving comparable results to fully super-
vised learning using only a few synthesized examples from
each unseen class.
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