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Abstract

We present a method for the real-time estimation of the
full 3D pose of one or more human hands using a single
commodity RGB camera. Recent work in the area has dis-
played impressive progress using RGBD input. However,
since the introduction of RGBD sensors, there has been lit-
tle progress for the case of monocular color input. We cap-
italize on the latest advancements of deep learning, com-
bining them with the power of generative hand pose esti-
mation techniques to achieve real-time monocular 3D hand
pose estimation in unrestricted scenarios. More specifi-
cally, given an RGB image and the relevant camera cali-
bration information, we employ a state-of-the-art detector
to localize hands. Given a crop of a hand in the image, we
run the pretrained network of OpenPose for hands to es-
timate the 2D location of hand joints. Finally, non-linear
least-squares minimization fits a 3D model of the hand to
the estimated 2D joint positions, recovering the 3D hand
pose. Extensive experimental results provide comparison to
the state of the art as well as qualitative assessment of the
method in the wild.

1. Introduction

Hand pose estimation using markerless visual input is a
long-standing problem in the area of articulated object pose
estimation. The first efforts to tackle the problem date as
early as 1994 [39]. The popularity of the problem as well
as new insights and progress towards solving it are steadily
increasing in recent years. This interest can be attributed
to several factors. Firstly, the introduction of inexpensive
RGBD cameras has enabled easy access to relatively high
quality depth maps, facilitating the solution of an inherently
ill-posed problem. The advent of Augmented Reality and
Virtual Reality applications has served as a source of de-
mand for natural user interfaces, fueling the interest in so-
lutions to the problem of hand pose estimation. Finally, the
success of deep learning approaches has enabled new levels
of accuracy and robustness and lower execution times. Still,

Figure 1. We propose a method that, given a single RGB image
frame (top left), can estimate the 3D position and articulation of
the imaged hands (top right). The bottom image shows the output
of the proposed method superimposed on the input.

despite the significant progress that has been achieved, the
problem remains unsolved in its full generality.

This work tackles the problem of recovering, in real-
time, the full 3D state of one or more hands, observed from
a conventional RGB camera. Specifically, for each hand
observed by a calibrated monocular color camera, we seek
to estimate the 3D position of 21 pre-defined key points:
the base of the palm, the centers of the 15 finger joints
and the 5 fingertips. The goal is to estimate these points
in real-time or interactive frame rates, allowing the con-
tinuous re-estimation of these positions in a stream of im-
ages. When performing this task without explicit assump-



tions on the motion of the hands, the approach is commonly
referred to as tracking-by-detection [3]. The advantage of
such approaches is that they do not require initialization of
the tracking process. On the other hand, if the application
context permits valid assumptions on the type of motion
(e.g., temporal continuity, hands involved in specific activ-
ities and motions, etc), then the problem can be treated as
a tracking one, facilitating the search in the large space of
possible solutions.

There are several interacting factors that make this prob-
lem hard to solve [9]. The human hand is very dexterous,
and so the problem involves the estimation of more than
20 finger articulation parameters. If the hand moves fast,
purely tracking-based methods are prone to track loss. The
uniform/textureless appearance of a hand hinders the iden-
tification of different parts. Additionally, the hand appear-
ance can vary widely depending on the viewpoint of obser-
vation because of articulation, self occlusions, or occlusions
from other objects during manipulation.

To deal with these difficulties, different classes of ap-
proaches have been proposed. A common categorization
(adopted for example in [50]) of methods regards the type
of runtime computations: methods that try to fit observed
features to synthesized, hypothesized ones are called gener-
ative. Methods that pre-compute a mapping from the input
data directly to the pose space, typically in a large train-
ing step, are called discriminative. Finally, methods that in
some way incorporate characteristics of both of these ap-
proaches are called hybrid.

In this work we develop a hybrid approach. More specif-
ically, we advocate the use of discriminative, state-of-the-
art deep learning networks to solve the problems of 2D
hand detection and 2D hand joint localization. On top
of the results of these components, we employ generative
model fitting that is formulated as a non-linear least-squares
optimization problem and solved using the Levenberg-
Marquardt optimizer. This approach enables real-time and
robust tracking of the full 3D hand pose using conventional
RGB input. Experimental results on ground-truth-annotated
datasets as well as in youtube videos acquired in the wild
show that the proposed approach outperforms state of the
art solutions in accuracy and can be used for effective 3D
hand pose estimation in real world situations.

2. Related work

The problem of hand pose estimation using visual mark-
erless input is a long standing one in the relevant literature,
exhibiting both theoretical interest and important applica-
tions. Early works [39] required specialized hardware to
achieve real-time performance. Since then, both the avail-
able computational power as well as the input modalities
have significantly evolved. The first important change hap-
pened in 2010 with the introduction of commodity RGBD

sensors. The computer vision community has heavily capi-
talized upon this relatively inexpensive and reliable source
of information to improve the accuracy and performance of
several problems including body pose and hand pose esti-
mation [33,45,60]. Almost simultaneously with the advent
of depth cameras, modern commodity hardware such as
GPUs have enabled the practical use of deep learning, yield-
ing a spectacular increase in the accuracy of tasks such as
image classification [47]. Thus, extensive efforts have been
devoted to the problem of estimating the 3D pose of a single
hand observed using a depth sensor, possibly with the aid of
a similar-viewpoint color image [0, | |-13,16-20,23,24,26,

,30,31,33,35,36,41,44,48-50,55,57-63,67,69,71]. The
same trend is also witnessed for the related problem of body
pose estimation [14,45,54,56]. However, research on hu-
man body pose estimation has been continuously producing
approaches that rely only on regular RGB [3, 10,27,64,65].

The problem of 3D hand pose estimation and tracking
based solely on color input has been studied for at least two
decades [4,7,8,32,34,42,43,51-53,72] but has not seen
an advancement that is comparable to that of human body
pose estimation. Earlier works on monocular RGB suffered
from large runtime and low accuracy. The work of Rehg
and Kanade [39] required specialized hardware to achieve
interactive performance at 10H z using stereo RGB input.
Furthermore, the adopted tracking method did not support
hand self-occlusions, limiting considerably the range of
manageable hand motions. The work in [8] achieved accu-
rate monocular RGB 3D hand tracking by modeling the ob-
served scene using explicit parametric models for the hand,
the lighting, and the background. A sophisticated optimiza-
tion approach was developed to optimize the parameters,
recovering the 3D hand pose. This explicit modeling and
optimization however resulted in a computational cost that
is prohibitive for real-time applications, even with the evo-
lution of hardware since the introduction of the method in
2011.

In our work, we capitalize upon the robust perfor-
mance of state-of-the-art deep learning techniques and the
power, versatility and effectiveness of generative methods
to achieve real-time 3D hand pose estimation that is robust
enough to support real-world applications. A similar ap-
proach has been followed by [25] but for the problem of 3D
pose estimation of the human body. We adopt a three-step
pipeline, namely hand detection, 2D key-point localization,
and 3D pose estimation. For hand detection, we retrain a
state-of-the-art detector [38] to reliably detect hands in in-
teractive frame rates. For the second step, we use the state-
of-the-art 2D key-point localization approach from [46]. Fi-
nally, for the 3D pose estimation step, we opt for a gen-
erative approach, allowing us to explicitly exploit known
information such as personalized hand model metrics and
camera calibration information. Therefore, our method es-
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Figure 2. Graphical illustration of the key steps of the proposed method. The method operates on a single RGB view (a). The hand is
detected and a cropped image containing it (b) is provided to OpenPose that is responsible to estimate the 2D locations of hand joints (c).
A hand model (d) is then transformed so that the distances of the projections of its joints to their observation counterparts are minimized
(e). Figure (f) shows the final solution (e) superimposed to the input image (a).

timates valid configurations of a hand whose dimensions do
not vary over the frames of a sequence.

The closest to our approach is the one by Zimmermann
and Brox [72] who also propose a method to estimate the
3D pose of a hand using as input a single color image. They
also adopt a three-step pipeline as we do, but propose dif-
ferent solutions for each of these tasks. A striking differ-
ence between [72] and our method, is that [72] does not
estimate the absolute 3D position of the hand, but rather
a scale-normalized pose that is anchored on the palm cen-
ter. Thus, its applicability in real world scenarios is limited.
Other advantages of our approach include its higher accu-
racy and its faster execution time. The first and last step are
faster than the respective ones proposed by Zimmermann
and Brox, while still allowing us to exploit the exceptional
performance of the “heavyweight” architecture that Open-
Pose [46] uses for our middle step.

Overall, to the best of our knowledge, the method pro-
posed in this paper in the only one that tackles the problem
of monocular, real-time 3D hand pose estimation robustly
enough for real-world applications.

3. 3D hand pose from a single RGB frame

The pipeline of the proposed method is illustrated in Fig-
ure 2. Starting from a color image as input, we first detect
all hands in it. For this task we employ a CNN-based object
detector trained to identify hands in the RGB input. The ar-
chitecture and training method of the network is described
in Section 3.1. For each hand in the input image, the de-
tector produces a likelihood estimate and the coordinates of
the hand’s bounding box. We proceed to identify 2D joint
positions on the detected hand(s) by passing each cropped
hand image through a feed forward CNN. This produces
heatmaps for the 2D joint locations of the hand which we
convert to estimations of the 2D joint locations as described

in Section 3.2. The final step (Section 3.3) lifts the 2D joints
to 3D. We do so in a generative manner, employing a hand
kinematics model and minimizing the distance of each pro-
jected model point from the corresponding 2D target point.

3.1. Hand detector

In the recent years, the state of the art in the task of
object detection has progressed significantly with the use
of convolutional neural networks. Many different archi-
tectures [22, 38, 40] have been proposed. These methods
achieve impressive results in well-known benchmarks for
hundreds or even thousands of object classes. They can also
generalize well enough to perform “in the wild”.

For the scope of this work, we are interested in just a
limited number of classes and therefore, regarding specif-
ically this aspect, most state-of-the-art methods are ade-
quate. However, it is important to keep runtime low while
also achieving a high quality detection rate with an as low
as possible number of false positives. To this end we chose
to follow the architecture of YOLO v2 [38]. YOLO is a
state of the art object detector that has been demonstrated
to outperform in detection accuracy more complex network
architectures. At the same time, its runtime is low enough
to enable its incorporation into realtime pipelines.

The YOLO V2 detector is an evolution of the older ver-
sion presented in [37]. The changes include the employ-
ment of the Darknet-19 architecture which resembles the
VGG network architecture [47]. It is a fully convolutional
architecture all the way to the last layer. It comprises a total
of 19 convolutional layers that along with the max pooling
operations reduce the 288 x 288 input image to a score map
of size 7 x 7. Additional important changes include the use
of batch normalization to speed-up and stabilize the training
process, and a careful strategy to select anchor boxes.

A shortcoming of the selection of YOLO V2 in our ap-



plication is the fact that the detection is performed in a
local manner, not taking into account contextual informa-
tion. This hinders the task of differentiating between left
and right hands since the network has to decide the “hand-
edness” of a region using the local image information, only.
It is conceivable that this task would be improved if the de-
tector took into account the image context.

Our hand detector was adapted from YOLO to have
two classes: “head” and “hand”. Having extra information
about the location of body parts apart from the hands can
be beneficial as an easy way to differentiate between left
and right hand and to give clues regarding the tasks that the
observed hands are engaged in. We used the pre-trained
weights for the convolutional layers from darknet19' as ini-
tialization for the retargeting process described below.

In order to train our detector we created a dataset, with
a total of 13k RGB frames captured in VGA resolution.
The dataset contains 12 subjects in different indoor environ-
ments. The subjects perform tasks such as typing on a com-
puter, gesturing, and engaging in conversations. The frames
were automatically annotated using OpenPose [5]. Before
training the network, the dataset was split into a training set
of about 12k and a validation set of about 1k frames. The
network was trained for 20k iterations. The retrained net-
work achieved a 92.8% detection rate and 1.7% false posi-
tive rate on the validation set. Given an input image, the re-
sulting detector can detect the two specified classes as well
as their bounding boxes in constant time.

3.2. 2D joints estimation

In the last few years a lot of research has been devoted to
methods that employ CNN based architectures to perform
human body 2D joint estimation in RGB images. These
methods capitalized on the emergence of large datasets with
annotated human body parts and poses such as the MS
COCO [21] and the MPII [2]. As a result, the state of the
art on this task has moved forward significantly. Neverthe-
less, mainly due to the lack of annotated datasets, the body-
keypoint architectures could not be applied for hand joint
estimation. Only recently, the work of Simon et al [46]
used multiview bootstrapping in order to iteratively create
a large real world dataset of hands annotated with 2D joint
positions. The multiview dataset enables the annotation of
all joints on each frame, even if they are occluded. This, in
turn, enables to train a network with an architecture similar
to Wei’s et al. [68] that learns to estimate visible as well as
occluded joints. OpenPose achieves state of the art results in
difficult datasets and is shown to perform in the wild. This
ability to generalize and produce good 2D keypoint detec-
tions from arbitrary hand images is key to the goals of this
work.

Ihttps://pjreddie.com/media/files/darknet19_
448.conv.23

We incorporated the work of [46] into our pipeline in or-
der to detect the 2D positions of hand joints. More specifi-
cally, we crop the image according to the detected bounding
box (see Section 3.1) and feed it to the 2D keypoint detec-
tor. Since the keypoint detector is only trained on left hands,
we handle right hands by first mirroring the image along the
Y axis. The output of the detector is 21 heatmaps that cor-
respond to estimates for the 20 hand keypoints (four per
finger) and one wrist point.

3.3. From 2D joints to 3D pose

The task of computing the 3D hand pose using 2D joint
estimations from a single view is formulated as an inverse
kinematics (IK) problem.

The information about the scale of the observed object
is lost during the projection transformation. To account for
that, we use a 3D hand model that is close in scale to the
observed hand. Apart from the scale, the 3D hand model
constrains the solution space to only plausible hand articu-
lations by explicitly encoding joint limits.

3.3.1 Hand model

The hand model has 26 degrees of freedom represented by
27 parameters, similar to [33] and others. The global trans-
lation and rotation of the hand requires 6 degrees of freedom
(DoFs), encoded by 7 values since we adopt the represen-
tation of quaternions for 3D rotations. The joint at the base
of each finger is modeled using two DoFs and the rest of
the finger joints require one DoF each. The finger joints are
bound by the joint limits that apply to a real hand. We iden-
tify keypoints on the model skeleton that correspond to the
locations of the joints that the 2D joint detector estimates.

3.3.2 Single camera view

Given a hand pose P defined by the 27 parameters and
the forward kinematics function for the hand model F,
we compute the 3D positions of the joint keypoints using
KT = F(P) in the world coordinate frame.

By applying the camera view matrix C), and the camera
projection matrix C),, we first transform the points to the
coordinate frame of the camera and then project them on
the camera plane:

M =c,-c, K7, (D)

where M} is the projection (z;,y;) of the joint i on the
image plane. In the case a single view/camera is used, we
can always choose to keep the model in the camera frame.
In this case C), is the identity matrix.

Let J; = (ug,v5,p;), @ € [1,21], represent the 21 de-
tected 2D hand joints (see Section 3.2). (u;, v;) are the 2D
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Figure 3. [llustration of the residuals between the observed hand
joints (green) and the model keypoints (red) described in Eq.(3).

coordinates of the joint on the input image and p; is the net-
work’s confidence for the joint 4, (p; € [0, 1]). In order to
avoid using false detections in the IK step we do not con-
sider joints .J; with confidence p; below an experimentally
identified value p" = 0.1.

For a given pose P, we quantify the discrepancy
s(P, M;, J;) between the observed joint J; and the com-
puted one M; as:

s(P, M, J;) = (p2 - (2 —w))? + (02 - (yi —v3))%. (2)

Similarly, the total discrepancy S(P, M, J) between the ob-
served and model joints can be computed as:

21

i=0
The 3D hand pose P* that is most compatible with the avail-
able observations (observed 2D joints) can be estimated by
minimizing the objective function of Eq.(3):

P = argmin{S(P, M, J)}. S

This is achieved by using the Levenberg-Marquardt opti-
mizer that minimizes this objective function after the auto-
matic differentiation of the residuals.

Figure 3 illustrates graphically the employed objective
function. The hypothesized keypoints are shown in red, and
the target ones in green. The sum of squares of the arrow
lengths forms our objective function to be minimized, sub-
ject to the kinematic constraints of the hand.

3.3.3 Stereo or multicamera input

The presented pipeline can be extended to support multi-
ple input cameras (i.e, stereo) in a straightforward manner.

More specifically, after the 3D keypoint generation, Eq.(1)
is applied separately to each camera, using the correspond-
ing C, and Cj,. This yields a set of 2D keypoints per cam-
era, corresponding to the ones detected by OpenPose on the
respective camera image. We proceed to formulate our non-
linear least squares problem by defining and minimizing the
sum of 2D residuals across all views:

Sau(P) =Y S(Pe, Me, J), )

ceC

where C' is assumed to be the set of available cameras. Ex-
perimental results (see Section 4.3) show that the availabil-
ity of more views improves hand pose estimation accuracy
considerably as additional constraints are provided to the IK
problem.

3.4. Implementation details

The proposed method assumes that the intrinsic param-
eters of the camera (focal length, camera center, distortion)
are known. In our reference implementation we used three
different sets of left and right hand models. The first set was
created with the makehuman® 3D character creation tool.
The second was adapted from the libhand® project. The
libhand model is an anatomically accurate skinned hand
model with a skeleton that supports realistic articulations.
The third hand model is a scaled version of the makehuman
model used to compare our method with Zimmermann’s et
al. [72] on the Zhang et al. [70] dataset (see Section 4.1 and
Figure 4 (left)).

The proposed method operates on a single frame, with-
out requiring any form of initialization. However, when em-
ployed on a video where the assumption of temporal con-
tinuity holds between several frames, it is useful to start
the IK optimization step from the last known solution, i.e.,
use the method in a tracking mode. However, this does not
prevent the method to operate correctly even in the case of
abrupt hand motions, provided that OpenPose gives reliable
estimates of the 2D locations of joints.

In certain cases, when joints become invisible, OpenPose
reports 2D locations with very low confidence. In such situ-
ations, we consider the last known position of that joint and
transform it according to the rotation R and translation 7" of
the hand root pose.

In our implementation, optimization has been performed
by employing the Ceres Solver [1].

For the single handpose estimation scenario the proposed
method is able to perform in real-time. Tested on a worksta-
tion with an Intel i7 CPU and an NVIDIA GTX 1070 GPU,
our reference implementation achieves 18fps. In that setup,
the majority of the processing time, per frame, is consumed

2http://www.makehuman.org/
3https://github.com/libhand/libhand
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Figure 4. Percentage of frames (y axis) for which the average 3D joints estimation error is below a certain threshold (z axis). We plot and
compare the performance of the proposed method (blue curves) compared to the method of Zimmermann and Brox [72] (green curves) in
the SHD [70] (left), B2RGB [34] (middle) and HIC [66] (right) datasets.

by OpenPose with about 30ms, while the hand detection
step requires about 16ms.

4. Experiments

We evaluated experimentally our method both quantita-
tively and qualitatively and compared it to [72].

4.1. Selected datasets

Despite the importance of the 3D hand pose estima-
tion problem, there are surprisingly few datasets available
that can be used for benchmarking and comparing different
methods. This scarcity is mainly due to the difficulty of ac-
quiring accurate ground truth without the use of intrusive
methods like markers or sensor gloves. Since the advent
of the RGB-D sensors, most of the methods for 3D hand
pose estimation relied on depth data. There is a number of
datasets available which provide manual or semi-automatic
annotations on depth data. In recent years, the NYU hand
pose dataset [63] has become a standard dataset for depth-
based methods. The ground truth for this dataset is com-
puted using a generative method [33] instead of manual la-
beling. Unfortunately, the creators of this dataset provide
RGB images that are warped onto the depth map. As it is
also pointed out by Zimmermann and Brox [72], this makes
the dataset unusable by RGB-only methods. In the same
work, Zimmermann proposed a new synthetic dataset for
handpose estimation. Unfortunately they rendered the syn-
thetic poses in low resolution (320 x 320) which makes it
unusable by our method. The dexter1 [50] dataset would fit
our requirements but as it is pointed out by Simon et al [46]
it suffers from bad calibration and synchronization issues.
Finally the datasets by Gomes et al [15] and Oberweger et
al [29] do not have 3D ground truth available yet.

Thus, in our work we used three publicly available
datasets, the Stereo handpose dataset [70] (SHD), a syn-
thetic dataset presented in [34] (B2RGB) and the hands in
action RGB-D dataset [66] (HIC).

Stereo handpose dataset [70] (SHD): SHD is used for
training and quantitative evaluation in [72]. We choose to
include this dataset in our quantitative evaluation in order
to provide a direct comparison with [72], even though the
accuracy of the provided ground truth is limited.

Synthetic dataset [34] (B2RGB): This dataset contains
sequences of a realistic hand model from libhand. The se-
quences include articulations of a single hand, hand-object
interaction and two strongly interacting hands. The same
sequences are available rendered from a virtual stereo pair
as well as a virtual RGB-D sensor. Being synthetic, this
dataset is annotated with perfectly accurate ground-truth.

Hands in action RGB-D dataset [66] (HIC): HIC con-
sists of multiple RGB-D sequences of one or two hands per-
forming articulations. The authors of the dataset provide
manual 2D annotations of the sequences at intervals of 5
frames. Additionally, the dataset is accompanied with the
tracks of the hands, as those were estimated by [66].

4.2. SOTA comparison

Figure 4 shows the percentage of frames (y axis) for
which the average 3D joints estimation error is below a cer-
tain threshold (z axis). We plot and compare the perfor-
mance of the proposed method (blue curves) compared to
the method of Zimmermann and Brox [72] (green curves)
in the SHD [70] (left), B2RGB [34] (middle) and HIC [66]
(right) datasets. It should be stressed that the method of
Zimmermann does not estimate the 3D location of the hand
or the scale of the estimated hand. Therefore, in Figure 4
we report output that is processed similarly to the final 3D
output in [72] (labeled “proposed aligned”). For a fair com-
parison, the output of our method is also post-processed in
exactly the same way. As it can be observed, our method
outperforms largely the method of Zimmermann in the
B2RGB and the HIC datasets. In the SHD dataset, the



100

90

80

70

60

50

a0}

frames (%)

30

2014 bt - mean abs error X
— mean abs error Y
— mean abs error Z

10+

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
error threshold (mm)
Figure 5. Percentage of frames (y axis) for which the average
3D joints estimation error is below a certain threshold (x axis).
The plot shows the per axis, mean absolute error of the proposed
method for the B2RGB dataset. Due to the uncertainty of the
monocular view the error is mainly found along the Z axis.

100

90 |-

80 -t

70+

60t

50 f--0

40

frames (%)

30

20

= Proposed (monocular) | |
— Proposed (stereo)

10

00 5 lb 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0 5‘5 6‘0 6‘5 7‘0 7‘5 8‘0 8‘5 Qb 95
error threshold (mm)

Figure 6. Percentage of frames (y axis) for which the average 3D
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plot the performance of the proposed method applied to monocu-
lar input (Section 3.3.2) in comparison to the case where a stereo
input is used (Section 3.3.3) on the B2RGB dataset [34]. It can
be verified that the addition of a second camera increases consid-
erably the accuracy in 3D hand pose estimation.

method of Zimmermann performs better for error thresh-
olds less than 30mm. This is attributed to the fact that their
CNN-based approach is trained on this dataset. Addition-
ally, the low performance of our method below 30mm, is
attributed to the difference in hand dimensions between our
hand model and the human hand in SHD.

4.3. Error analysis

The per-axis error of the proposed method is shown in
Figure 5. It is evident that the main source of uncertainty is

the depth estimation (Z axis), while the accuracy for the
estimation on the X and Y is below 10mm for 90% of
the frames. This observation is further supported when we
compare with the accuracy achieved for the same dataset us-
ing stereo input. Figure 6 illustrates the performance of the
proposed method in case a single RGB view is used (Sec-
tion 3.3.2) in comparison to the case where stereo input is
used (Section 3.3.3) on the B2RGB dataset. It can be veri-
fied that the addition of a second camera increases consid-
erably the accuracy in 3D hand pose estimation.

4.4. Qualitative results

Figure 7 provides qualitative results from the application
of the proposed 3D hand pose estimation method to a vari-
ety of image frames. These frames belong to either standard
datasets or have been extracted from youtube videos. In the
case of dataset frames, the calibration provided by the au-
thors was used. In the case of youtube videos, a generic cal-
ibration adjusted for the resolution of the input was selected.
It can be verified that the estimated 3D hand models agree
with the visual data even when generic calibration parame-
ters were used. More indicative such results are included in
the supplementary material accompanying the paper.

The performed experiments (both the quantitative and
the qualitative ones) also demonstrate that the hand model
does not have to match exactly the observed one in order to
estimate a 3D pose of reasonable accuracy.

5. Summary

We presented the first method that is capable of estimat-
ing the 3D pose of hands observed from monocular RGB
input in the wild. The proposed hybrid approach consists of
a discriminative component (used to estimate the location
of 2D joints through a powerful CNN-based method) that
is appropriately combined with the power of a generative
approach (used to lift 2D joint estimations in 3D). We pre-
sented quantitative experimental evidence showing that our
method compares favorably to the state of the art. Further
qualitative experimental validation of the method was pre-
sented in challenging real-world situations. The presented
solution avoids a series of limitations that hinder the deploy-
ment of 3D hand pose estimation in real life applications.
Compared to tracking-based methods, initialization is not
required. RGBD-based methods perform fairly accurately,
nevertheless they have constraints regarding natural lighting
and outdoor environments, spatial and temporal resolution
and limitations on the effective range of observation. Stereo
camera configurations have also been employed, neverthe-
less, they are more expensive and sensitive to calibration
issues. On the contrary, RGB cameras are cheap and avail-
able everywhere. Thus, our approach can be useful in a
broad spectrum of applications that require knowledge of
the 3D pose of human hands.



Figure 7. Sample qualitative 3D hand pose estimation results. Rows one, two and three: Frames from youtube videos. Complex hand poses
with self-occlusions and object manipulation are showcased. Row four (left): Frames from an egocentric view. This sequence is also part
of the supplementary video. Row four (right): Frames from the HIC dataset. Row five: Frames from the SHD dataset. In all images, the

original hand(s) view is cropped and shown on the top corner.

Future directions of research include the automatic ad-
justment of the model metrics to the observed hand, the in-
corporation of color cues in the last step of our approach and
the investigation of approaches for automatic estimation of
the camera calibration.
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