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Abstract

Most person re-identification approaches and bench-
marks assume that pedestrians go across the surveillance
network without significant appearance changes in a brief
period, which explicitly restricts person re-identification to
a short-term event and incurs inter-sample similarity mea-
surement by appearance matching. However, pedestrians
are likely to reappear in the surveillance network after a
long-time interval (long-term) and change their wearing
in many real-world scenarios. These scenarios inevitably
cause appearances between subjects more ambiguous and
indistinguishable. In this paper we consider these scenar-
ios and propose a unified feature representation based on
true motion cues from videos named FIne moTion encoDing
(FITD). Our hypothesis is that people keep constant motion
patterns under non-distraction walking condition. There-
fore, the motion characteristics are more reliable than static
appearance feature to describe a walking person. Particu-
larly, we extract motion patterns hierarchically by encod-
ing trajectory-aligned descriptors with Fisher vectors in a
spatial-aligned pyramid. To verify benefits of the proposed
FITD, we collect a new dataset typically for the long-term
situations. Extensive experiments demonstrate the merits of
our FITD especially for the long-term scenarios.

1. Introduction
Locating and identifying a target pedestrian across a net-

work of surveillance cameras at a distinct time termed as
person re-identification (Re-ID) [1, 2, 5, 6, 14, 25, 27, 31],
is a critical task due to its applications such as inter-camera
retrieval and video monitoring. The current literature gen-
erally limit Re-ID to a short-term event by assuming that
the target subject passes the surveillance network in a short
period [2, 6, 14, 25, 27, 31]. However, the target of inter-
est may reappear in the network after a long-time gap, e.g.,
several days or even several months later, in many realis-
tic scenarios. A typical example is that pedestrians would
pass through the same or different gates in an office block
or subway station on various days. We term Re-ID in these

Figure 1. Illustration of long-term person Re-ID challenges. Each
line of images is collected from same camera, and each column of
images belongs to the same subject. Images from last two rows
are captured by a long-time interval with the top row.

scenarios as long-term person Re-ID. In this paper, we thus
focus on the long-term person Re-ID issue.

Currently, most of the state-of-the-art Re-ID works con-
centrate on the short-term Re-ID, which yields methods
building on the fact that the target in the query and its
corresponding gallery set are in the similar appearance,
e.g., clothing color and texture. This is reasonable be-
cause people rarely change their clothing within a short in-
terval. Regarding the fact, different appearance based fea-
tures have been exploited, e.g., color histograms [7, 26, 31],
local binary patterns (LBP) [20], ensemble of local fea-
tures (ELF) [5], local maximal occurrence (LOMO) [14],
spatial-temporal information such as STFV3D [15] and
HOG3D [25, 27], and some high-level features learned by
CNN models [8, 30]. These features achieve significant
performance along with the typical metric learning mod-
els [7, 14, 27, 26] on the existing benchmark datasets. Un-
der the long-term scenarios, however, intra-class appear-
ances suffer larger variations, and positive pairs are eas-
ier to be imposed by other subjects due to the dressing
change. Intra-class cluster based on appearance becomes
more dispersive while inter-class cluster based on appear-
ance is more ambiguity than the short-term Re-ID. Features



based on visual appearances, such as color and texture his-
tograms are at a disadvantage when matching the same sub-
ject with distinct clothes from not matter the same camera
or different cameras (see Figure 1 query subject bounded by
blue line at top row is in a dark T-shirt and light short pant,
but the positive matching in the gallery set at the rest rows
are in blue clothing which is easily imposed by subject #2
in the gallery causing a mismatch). It implies that different
feature descriptors using fewer appearance cues are essen-
tial for the Re-ID issue in long-term scenarios.

Inspired by the success of soft biometrics in gait and
activity recognition across views [9, 24], we formulate a
FIne moTion encoDing (FITD) model based on dynamic
cues. The proposed FITD is true motion information ex-
tracted from dense trajectories, which characters dynamic
motion patterns of the human body from raw footage with-
out any scalability normalization. Especially, we adopt a
patch-wise strategy [2, 13, 15, 18, 21] which divides hu-
man body into several fundamental body-action primitives.
Fisher vectors [22] are then utilized to respectively summa-
rize the trajectory-aligned descriptors, e.g. Histograms of
Optical Flow (HOF) [10] and Motion Boundary Histogram
(MBH) [23], within each body-action unit (comprised by
the fundamental body-action primitives) in the predefined
body-action pyramid model. By this, both local and global
motion statistics are computed. And, the final unified mo-
tion representation FITD is obtained by concatenating the
bag of visual descriptors from all the body-action units.

To evaluate merits of the proposed FITD descriptors,
we constructed a novel long-term Re-ID dataset named
Motion-ReID. As we know, this is the first dataset available
for the typical long-term Re-ID task. Different from the
previous benchmark Re-ID datasets, the dataset is collected
using real surveillance cameras in a building block rather
than self-deployed cameras and contains pairwise samples
of the same subject recorded with a long timespan, e.g., one
week or more. Thus, most of the samples are with various
clothes and carrying conditions, which are typically realis-
tic scenarios of long-term Re-ID.

To summarize, the main contributions of this paper are
(1) This paper addresses Re-ID of long-term case (i.e., re-
identifying a person after a long time intereval) which is
seldom discussed in the area. (2) We develop a novel FITD
model characterizing motion patterns pyramidally from
both global and local body action units, which achieves sig-
nificant performance for the long-term Re-ID task and aids
for the classical short-term Re-ID problem. (3) We propose
a novel dataset for the general long-term Re-ID problem,
and this is the only available one so far. Besides, a com-
prehensive evaluation of the performance of popular feature
representations is conducted on both short-term and long-
term Re-ID tasks.

2. Related Work
Typically, most pipelines for person Re-ID include two

major components: feature representation [5, 14, 15, 4] and
metric learning [14, 26, 27]. We refer to [1, 29] for detailed
reviews about classical works on this topic. Here we only
concentrate on literature that is most related to our work.

In the previous works, significant efforts have been made
to develop or learn better features that are at least partially
robust to illumination changing, viewpoint variation, pose
indeterminacy, etc. These features are roughly divided into
two categories: image-based features and video-based fea-
tures. Image-based features which are usually generated
from one or multiple discontinuous frames, e.g., Xiong et
al. [26] utilized fusion features of RGB, YUV, HSV color-
based histograms and LBP to evaluate the effect of different
kernels embedded in metric learning algorithms for Re-ID.
To overcome illumination and background variations, Ma et
al. [16] proposed a feature representation that characterized
texture information using covariance descriptors.

On the other hand, video-based features [25, 27, 15]
are usually extracted from consecutive walking sequences,
e.g., both Wang et al. [25] and You et al. [27] applied
HOG3D to extract spatial-temporal information from walk-
ing pedestrians. After combining them with color or tex-
ture histograms, they improved the performance with a
large margin. Considering space-time alignment problem,
Liu et al. [15] proposed a spatial-temporal appearance rep-
resentation named STFV3D which encodes local descrip-
tors by Fisher Vector with respect to a body-action unit
model. The STFV3D exactly solves body misalignment
caused by viewpoint change to some content. However, it
is worth pointing out that both above-mentioned features in
current works are closely relevant to people’s appearance,
which will be unreliable once one’s appearance is drasti-
cally changed such as matching the same individual with
different clothing or carrying conditions.

Our proposed FITD belongs to the video-based feature,
which is inspired by the success of dense trajectory on activ-
ity recognition [24]. Dense trajectories depict displacement
information of space-time interest points which has demon-
strated momentous success on action description combining
with encoding descriptors such as HOG, HOF and MBH. In
person Re-ID, Gou et al. [4] extracted soft biometrics from
motion by encoding short trajectories with Hankel matrix,
which has shown advantage against appearance impaired
case. However, their trajectories extracted from normalized
bounding areas only indicate pixel displacement between
normalized areas of interest, which are not real motions.

In contrast to aforementioned methods, our FITD lever-
ages trajectory-based true motion patterns from raw video
volumes, and trajectory-aligned descriptors are embedded
before Fisher encoding to get more robust motion informa-
tion. Besides, a body-action pyramid model is considered



Figure 2. Framework of the proposed FITD model.

to obtain both global and local motion information to boost
feature discriminability for Re-ID tasks.

3. Fine Motion Encoding

In this section, we present a novel spatio-temporal mo-
tion representation for person Re-ID specific in long-term
scenarios. As depicted in Figure 2, the proposed framework
includes two phases at which model-training learns a fea-
ture codebook consisting of discriminative motion primi-
tives and feature-extraction encodes motion vocabularies to
generate unified feature vectors. Particularly, each stage is
performed on the basis of trajectory-aligned motion statis-
tics with respect to body-action units corresponding to var-
ious levels of motion primitives in the predefined body-
action pyramid (see section 3.1).

3.1. Body-action Pyramid Model

The human body is a non-rigid object which generates
complex movement traces with respect to its flexible joints
while walking. This causes movement of the human body
varies from part to part as in Figure 3, which would suffer
great losses of local information if we only consider mo-
tions of human body from a global view. Due to this, our
body-action pyramid model (BPM) takes motion patterns of
body-action units from various levels into account.

Inspired by successes of some body-part based mod-
els [15, 18, 13], we define a BPM which divides human
body from coarse to fine sub-regions with respect to some
prior knowledge of geometry structure and kinematical
characteristics of the human body. In specific, we depict the
entire human body in three levels, each of which includes a
unique number of patches corresponding to various combi-
nations of the neighbored action primitives, i.e. head (20%),
upper torso (20%), lower torso (15%), upper leg (15%) and
lower leg (30%). The action primitive template is empiri-
cally derived on the basis of the spatial structure of walk-
ing pedestrians from multiple benchmarks and fine-tuned in
terms of motion characteristics. As shown in Figure 3, the

top level depicts the entire body, which is divided into two
horizontal strips locating upper body (55%) and leg (45%)
respectively due to the motion characteristics. Further, the
upper body is subdivided into three sections corresponding
to the first three action primitives whilst the leg section is
subdivided into two parts corresponding to the last two ac-
tion primitives, so as to characterize the motion patterns in
a finer way. The total eight parts from three levels compro-
mise our BPM.

From above segmentation of the input video sequence,
the patches corresponding to pyramids of body parts are
subsequently divided into eight body-action units, as shown
in Figure 3,

Pm = {(xt, yt)|(xt, yt) ∈ Pm,t},
m = 1, 2, · · · , 8; t = 1, 2, · · · , N

(1)

where Pm,t denotes the m-th patch of the t-th frame,
(xt, yt) is the absolute position in the input video sequence.

In practice, the obtained patches are with irregular size
with respect to tracking and annotation results. And they
are just used for restricting regions and identifying whether
an untracked feature point in the region was appended to the
tracking process. Usage about the BPM will be introduced
in the next section.

3.2. Motion Trajectories for Re-ID

To capture motion patterns of a walking pedestrian, we
extract dense trajectories with respect to each body-action
unit separately. For ease of discussion, we take one single
unit as an example. Inspired by the framework of dense
trajectories [24], we tracked the sampled feature points
(xt, yt) ∈ Pm,t to the next frame t + 1 in a dense optical
flow field ω = (µt, νt).

(xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(x̄t,ȳt)

s.t.(xt+1, yt+1) ∈ padding(Pm,t+1)
(2)
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Figure 3. Top: our proposed body-action pyramid model consists
of eight body-action units, which is labelled from 1 to 8. Middle:
dense trajectories in each body-action unit. Bottom: Fisher vectors
correspond to the eight units. Best viewed in color.

where padding(Pm,t+1) denotes extending the patch
Pm,t+1 by padding pixels from the neighbored areas, here
we set to extend with extra horizonal strips of 10% of to-
tal body height, M is the filter kernel, and (x̄t, ȳt) is the
rounded position of (xt, yt).

It is worth noting that our feature point detection and
tracking process are restricted to different areas. By this,
feature points in the body-action units are not only com-
pletely tracked but also avoided to drifting too much. Since
the tracking process is only related to optical flow, static tra-
jectories related to homogeneous image areas (background)
are pruned. Moreover, we consider bounding area of in-
terest in our framework, which largely suppresses effects
of other moving objects and generates pure trajectories of
target pedestrian. As shown in Figure 3, dense trajectories
are mainly spanned on pre-defined body-action units of the
moving pedestrian. These motion trajectories model abun-
dant of soft-biometric characteristics which provide distinc-
tiveness of distinct human motion patterns such as walking
speed and stride.

3.3. Trajectory-aligned Motion Statistics

Local descriptors have been proved effectiveness to char-
acter motion information in dense trajectories for many ac-
tivity recognition approaches. To utilize motion informa-
tion in our trajectories, we consider both HOF and MBH,
which are popular to represent action characteristics. When
formulating the above descriptors, we follow the setting
in [24] to describe descriptors around the trajectories in a
space-time volume.

In practice, HOF is applied to estimate local motion
information with 9 bins covering all the orientations. It
well describes the latent motion cues of people’s walking
styles, due to its properties that HOF is invariant to direc-
tions of motion and scalability. While HOF describes ab-
solute motion, MBH encodes the relative motion between

feature points. In particular, MBH descriptor treats hori-
zontal (MBHx) and vertical (MBHy) components of optical
flow separately, which yields motion information in both di-
rections. This implicitly reflects motion boundaries in both
directions differently, as we know, motions are drastic in
horizontal direction while subtle in the vertical direction. In
this paper, we equally quantize orientations into 8 bins for
each component, and totally two 96 dimensional descriptors
are obtained. MBH expresses human walking effectively
which yields excellent Re-ID performances, especially the
horizonal component as shown in section 5.

Other than the above two pure motion-based encoding
descriptors, HOG [3] is also considered due to its power-
ful gradient representation. However, HOG is commonly
considered as a type of appearance-based feature. Differ-
ent from the previous methods which apply HOG directly
to an image, we implement it to a space-time video volume
around dense trajectories embedding to our model. This is
implicitly related to human’s motion patterns.

3.4. Fisher Vector Encoding of Motions

The Fisher Vector [22] was first proposed to describe an
image for large-scale visual classification and has gained re-
markable success in many applications, e.g., activity recog-
nition, image retrieval and even person Re-ID. Given a
body-action unit Pm in the proposed BPM, we describe
the unit of a sample with N aforementioned descriptors,
denoting as X = {xn|xn ∈ RD, n = 1, . . . , N}. To
make the descriptors compact, we model the descriptors
with K probabilistic visual vocabularies (PVVs) which
make the body-action unit complying a distinct distribution
P (X|Θ), where Θ = (θ1, θ2, . . . , θK) is the parameters
for the K PVVs. In this paper, the K PVVs are learned
by a Gaussian Mixture Model (GMM) Ψ with parameters
θk = {µk, σ

2
k, ρk}, where µk, σk, ρk are respectively the

mean vector, standard deviation and mixture weight,

Ψ =

K∑
k=1

ρkψk, s.t.ρk ≥ 0,

K∑
k=1

ρk = 1 (3)

ψk(x;µk, σk) =
1

(2π)D/2|σk|
exp{−1

2
‖σ−1

k (x− µk)‖22}

(4)
where ψk is the k-th Gaussian component, σk is a diago-
nal matrix, and x is the feature descriptor mentioned above
such as HOF and MBH. Once the GMMs are obtained,
the Fisher vector of the sample in the body-action unit Pm

is a concatenation of the deviations αX
k , µX

k and εXk , i.e.,
f(X) = [αX

1 ;µX
1 ; εX1 ; . . . ;αX

K ;µX
K ; εXK ], where

αX
k =

1

N
√
ρk

N∑
n=1

(γnk − ρk) (5)



µX
k =

1

N
√
ρk

N∑
n=1

γnkρ
−1
k (xn − µk) (6)

εXk =
1

N
√

2ρk

N∑
n=1

γnk{σ−2
k (xn − µk)2 − e} (7)

here γnk is the posterior probability which determines
whether descriptor xn is generated by the k-th component
or not, e is a D dimensional vector whose elements are all
1. By concatenating Fisher vectors in of all the body-action
units, we obtained our final high-level feature which depicts
human’s motion characteristics in a fine-grained way.

3.5. Feature Fusion

Feature fusion plays a significant role when multiple fea-
tures are available. One strategy is concatenating our de-
scriptors in the feature level, which uses the mixed feature
to train the GMM model and generate our Fisher vectors.

Another fusion strategy is aggregating the similarity
metrics in the score-level, which refers to sum up the
weighted similarity scores from various descriptors,

sj =
∑
k

ωks
(k)
j ,∀k : ωk ≥ 0,

∑
k

ωk = 1 (8)

where s(k)
j is the similarity score between query sample and

the j-th gallery sample with the k-th descriptor, ωk weights
the contribution of the k-th descriptor. For the sake of ease,
we leverage Euclidean distance as our similarity score. Be-
fore fusion, the distances between samples with a certain
descriptor are first normalized to [0, 1] by a min-max man-
ner as in [4].

4. Dataset

As person Re-ID is firstly proposed to track people
among multiple non-overlap cameras, this implicitly re-
stricts Re-ID to the short-term scenarios and yields many
corresponding benchmarks, e.g., VIPeR [5], CUHK01-
03 [11, 12], PRID2011 [6], iLIDS-VID [25], MARS [28].
However, these benchmarks are insufficient to cover our
case re-identifying a subject with long-term intervals, which
explicitly increases the difficulties, e.g., more drastic illu-
mination variation and clothing changes. This invokes us
to construct a new dataset specific to the long-term Re-ID
problem. In this section, we first briefly review the existing
benchmarks, especially video-based PRID2011. Then, our
new long-term Re-ID dataset is introduced as well as the
evaluation protocols are defined.

4.1. Benchmark Datasets

By far, the Re-ID problem has experienced several mile-
stones and derived multiple directions such as single-shot
Re-ID [7, 17, 21], multi-shot Re-ID [2, 6, 30] and video-
based Re-ID [27, 15, 25]. According to the specific di-
rections, various kinds of datasets are constructed, which
greatly promotes the development of Re-ID research. We
refer readers to [29] for a comprehensive review.

Among the existing benchmarks, we take PRID2011 as
an example to evaluate our proposed FITD for classical
short-term Re-ID. This is because PRID2011 is the only
one releasing raw video and annotation information, which
is essential for our proposed FITD to extract true motion
trajectories. PRID2011 dataset is captured under two dis-
joint cameras, where 385 and 749 identities are recorded
for each camera respectively. Among them, only the first
200 subjects appear in both cameras. Since the dataset is
collected under outdoor environment, multiple factors are
included, e.g., viewpoint variance, lighting condition and
background difference. In this paper, we follow the proto-
col in [4, 25, 27], which only 178 of first 200 subjects with
more than 25 frames are used, due to the requirement for
extracting dense trajectories.

4.2. Motion-ReID Dataset

Since our proposed FITD is specific to solve Re-ID prob-
lem in long-term scenarios, we collect and annotate a new
dataset named Motion-ReID, some samples are shown in
Figure 1. It includes video sequences extracted from two
disjoint static surveillance cameras deployed in an office
building, which covers the field of two distinct entrance
gates respectively. We have collected total 240 video clips
from 30 persons, which half of them are captured by cam-
era #1 and the rests are captured by camera #2. In particular,
each subject is recorded twice under the same camera with
a long-time interval which is at least one week. For clarity,
we list the recording timeline of one subject as in Figure 4.
Opposite walking directions are separately recorded for one
recording such as entering and exiting a door (We use front
and back to represent the distinct directions in the follow-
ing sections). Each video sequence includes approximately
20 to 204 frames with an average 102 frames which cover
at least one walking cycle. Bounding boxes are manually
labeled in each frame with varying size, which makes the
dataset easy to evaluate Re-ID algorithms.

Short internal Long internal

Camera  #1

(1st Recording)

Camera  #2

(1st Recording)

Camera  #1

(2nd Recording)

Camera  #2

(2nd Recording)

Timeline

Figure 4. Video recording timeline of a subject.

Considering the specific task, we develop eight



challenging validation sets in terms of camera
C = {camera#1, camera#2}, walking direction
D = {back, front} and recording time R = {1st, 2nd}.
For all the sets, gallery and probe sets are with significantly
different recording time. In particular, the gallery and
probe sets in the first four validation sets are recorded
by same camera in same walking direction, i.e. S1−4 =
{(C1, D1, R1;C1, D1, R2), (C1, D2, R1;C1, D2, R2), (C2,
D1, R1;C2, D1, R2), (C2, D2, R1;C2, D2, R2)}, whist
the gallery and probe set in the rest sets are recorded by
different cameras in same walking direction, i.e., S5−8 =
{(C1, D1, R1;C2, D1, R2), (C1, D2, R1;C2, D2, R2), (C1,
D1, R2;C2, D1, R1), (C1, D2, R2;C2, D2, R1)}. The val-
idation setting covers all the long-term Re-ID situations
which is critical to evaluate algorithms specific for long-
term Re-ID. Here we do not consider walking directions
since entering and exiting a door are exactly opposite and
has slight influence to Re-ID algorithms.

Compared to current benchmarks, the dataset is more
challengeable, because (1) The dataset is collected by real
surveillance cameras rather than self-deployed ones, which
causes image quality and camera viewpoint more challenge-
able; (2) Our dataset is specially collected for long-term
Re-ID task, which brings out new challenges, e.g., wearing
(clothing style and color) and carrying condition changes.

5. Experiments
In this section, we evaluate our FITD on both benchmark

PRID2011 dataset and the proposed long-term Motion-
ReID dataset.

5.1. Experiments Setting

To highlight the importance of true motion cues for Re-
ID, we conduct all experiments without using any super-
vised metric learning method as in [4]. For PRID2011,
we randomly split the dataset into two equal subsets and
compute the ranking scores for 10 trials. Average cumu-
lative matching characteristics (%) are reported for com-
parison [25]. We also conduct the evaluation for wearing
similar clothes named PRID BK as in [4], which picks 35
samples with dark clothing forming testing set and 89 from
the rest samples forming the training set. For Motion-ReID,
we evaluate our method on all the 8 subsets. Due to the
small size of the dataset, we utilize 5-fold cross-validation
method and repeat our experiments for 10 times. Average
rank-1 accuracies (%) are reported for all the validation sets.

Considering the periodicity of walking and tracking drift
problem, we set trajectory length L = 15 and L = 12 re-
spectively for PRID2011 and Motion-ReID which roughly
equal to half of a walking cycle. We find that the number
of GMM components has little impact on the performance,
thus we simply set to 32 in all our experiments. In practice,
only µX

k and εXk are reserved to construct Fisher vectors and

thus the length of Fisher vectors for DT, HOG, HOF, MBHx
and MBHy descriptors in one body-action unit are respec-
tively 2048, 6144, 6912, 6144 and 6144 dimensions. The fi-
nal FITD is the concatenation of all the body-action units in
a fixed order. During testing, we simply set even weights in
score-level fusion and leverage nearest neighbourhood clas-
sifier based on Euclidean distance to calculate the matching
scores for all the methods.

5.2. Effectiveness of FITD for Short-term Re-ID

In this section, we evaluate the proposed FITD on bench-
mark PRID2011 and the cropped PRID BK datasets. To
achieve stable performance, we use our body-action pyra-
mid model and concatenate Fisher vectors of all the units.
A comprehensive comparison of different types of features
for the short-term Re-ID case is conducted, and the results
are reported in Table 1.

In Table 1, the features are roughly divided into three cat-
egories. Rows 1-3: a single appearance-based component,
e.g., color or texture; rows 4-8: ensemble appearance-based
feature; rows 9-12: spatial-temporal feature. Noting that we
use different trajectory-aligned descriptors for PRID 2011
and PRID BK, i.e., FITD with HOG encoding descriptor
for PRID 2011 and FITD with HOGMBHx fused in score
level for the PRID BK dataset, this is determined by differ-
ent properties of the two datasets (see supplementary).

Single Appearance-based Components: Among the
three single appearance-based feature component, using
color (Row 1) achieves better performance than that using
histogram of color (Row 2) and LBP (Row 3) on both the
PRID 2011 and PRID BK datasets.

Ensemble Appearance-based Features: Rows 4-8 are
state-of-the-art appearance-based features used in short-
term person Re-ID. Among them, LOMO achieves the best
performance. The conclusion can be interpreted in two-
fold. First, LOMO leverages Retinex images, which weak-
ens illumination and color gaps across cameras. This makes
LOMO can extract refined color features than extracting
from raw images; and second, LOMO also extracts tex-
ture features using Scale Invariant Local Ternary Pattern
(SILTP) which are more robust to noises than LBP. As ex-
pected, when taking the smaller testing set into account,
the performances of appearance-based features which uti-
lize color cues drop notably, e.g. ColorHist, Color & LBP,
ColorHist & LBP and ELF.

Spatial-temporal Features: All of the four spatial-
temporal features are developed to extracting information
from videos. Notably, performances of all the spatial-
temporal features do not decline when applying to the im-
paired PRID BK dataset. Both STFV3D and DynFV uti-
lize Fisher vectors to describe features of a human, how-
ever, STFV3D represents more appearance-based feature,
e.g. pixel value and gradient, while DynFV focuses more



Dataset PRID2011 PRID BK
Rank R-1 R-5 R-10 R-20 R-1 R-5 R-10 R-20
Color [7] 9.33 29.78 39.21 60.00 12.86 31.43 41.43 70.00
ColorHist [19] 2.36 10.45 19.21 35.62 2.86 22.86 32.86 65.71
LBP [19] 3.03 14.49 21.91 35.62 7.14 25.71 32.86 68.57
Color & LBP [7] 10.22 27.19 38.65 60.79 7.14 25.71 41.43 65.71
ColorHist & LBP [26] 13.26 29.55 40.79 55.62 11.43 30.00 48.57 67.14
ELF [5] 2.36 11.01 21.80 33.93 1.43 14.29 32.86 62.86
LOMO [14] 22.81 61.46 77.19 88.31 40.00 67.14 82.86 94.29
LDFV [17] 14.27 34.16 46.97 60.45 14.29 32.86 47.14 65.71
HOG3D [25] 22.92 46.52 59.78 73.15 22.86 50.00 64.29 85.71
STFV3D [15] 42.10 71.90 84.40 91.60 40.00 68.57 82.86 91.43
DynFV [4] 17.63 47.54 65.00 83.85 40.57 79.57 90.57 99.86
FITD (Ours) 58.65 81.91 89.33 95.17 54.29 82.86 97.14 100

Table 1. A comparison of proposed FITD with other popular features on PRID2011 dataset and PRID BK dataset.

on motion patterns. Thus, DynFV is less discriminative
than STFV3D on PRID2011 whilst more powerful on PRID
BK. Compared to STFV3D, our FITD with HOG extracts
texture in space-time volume around dense trajectory, thus
leading to higher performances on PRID2011. Compared
to DynFV, our FITD with HOGMBHx extracts texture and
motion from true video volume rather than normalized im-
age sequences, and we use trajectory-aligned descriptors in-
stead of raw trajectories. This explains why our FITD out-
performs the DynFV by a large margin.

5.3. Effectiveness of FITD for Long-term Re-ID

In this section, we evaluate our FITD on the proposed
Motion-ReID dataset. Table 2-4 report our results on all
the eight subsets. To better prove benefits of our FITD, we
evaluate it from three aspects: trajectory-aligned methods,
fusion strategies and feature representations.

Trajectory-aligned Methods: Table 2 compares differ-
ent trajectory-aligned methods on all the eight subsets. Out
of these methods, FITD with motion descriptors achieves
better performances than HOG in the first four subsets while
FITD with HOG performs best in the last four subsets. This
is not surprising because 1) Motion patterns are more dis-
criminative in the first four subsets since video sequences
from both gallery and probe in the first four subsets are
captured from the same camera and clothing variation is
the leading influential factor. 2) For the last four subsets,
huge view difference between cameras affects motion seri-
ously and consequently causes motion-based features less
discriminative.

Fusion Strategies: Table 3 shows results of different
types of fusion methods, Typically, Row 1-5 are fusion at
the feature level, and Row 6-10 are fusion at the score level.
As see the table, fusions in the score level outperform fu-
sions in the feature level in most cases. Compared to the
performance of FITD using single descriptor, the fusion
methods are more stable and improve the overall perfor-

Si # 1 # 2 # 3 # 4 #5 #6 #7 #8
DT 55.5 60.0 40.3 42.0 20.7 19.3 19.0 22.3
HOG 56.7 55.0 57.7 48.3 27.3 27.3 24.3 18.3
HOF 52.0 58.7 54.7 49.0 28.0 20.7 19.0 22.7
MBHx 62.7 65.0 59.7 55.7 18.0 18.0 22.7 20.7
MBHy 65.0 60.7 58.3 50.7 16.7 14.7 17.7 24.0

Table 2. A comparison of proposed FITD with different trajectory-
aligned descriptors.

mance to some extent. Considering differences between
first four subsets and last four subsets, we extract features
by fusion representations HOGHOFMBH and HOGHOF in
score level respectively for the two scenarios.

Feature Representations: Table 4 compares our FITD
model with some state-of-the-art feature representations as
in the last section.

Single Appearance-based Components: Different from
results on PRID2011, LBP achieves the best performance
when gallery and probe samples are from the same camera,
while Color is more discriminative when gallery and probe
samples are from different cameras with huge viewpoint
difference. However, performances of the appearance-
based feature using no matter color or texture degrade sig-
nificantly with camera changing and view enlarging. This
is because camera changing and viewpoint variation impact
texture and color differently.

Ensemble Appearance-based Feature: Similar to single
appearance-based components, performances of the com-
monly used ensemble appearance-based features also de-
cline drastically. Out of these features, LDFV achieves the
best performance in the first four subsets as in [4] where
the gallery and query samples are obtained from the same
camera. However, the performance of LDFV drops more
sharply than other appearance features, which is the least
discriminative among these features.



Subset Si #1 # 2 #3 # 4 #5 # 6 #7 # 8

Feature
Fusion

HOGHOF 55.00 65.00 55.67 53.00 22.67 20.33 23.33 19.67
MBH 64.67 64.67 60.67 56.67 9.67 22.33 20.33 26.00

HOFMBH 56.33 63.33 59.00 53.67 22.00 19.33 21.33 25.67
HOGMBHx 59.00 60.67 58.00 54.67 21.33 24.33 24.33 23.33

HOGHOFMBH 59.00 65.00 59.33 55.00 18.67 18.67 27.33 24.67

Score
Fusion

HOGHOF 60.33 66.00 55.33 53.00 30.33 26.33 21.67 24.00
MBH 64.33 64.67 60.67 54.00 18.00 16.00 20.33 22.67

HOFMBH 61.33 66.00 60.33 55.67 21.67 15.00 18.33 24.67
HOGMBHx 62.00 66.67 59.00 56.67 22.00 22.33 23.33 21.67

HOGHOFMBH 65.67 66.67 60.67 55.33 24.00 18.00 21.33 24.00

Table 3. A comparison of proposed FITD with different fusion methods.

Subset Si #1 # 2 #3 # 4 #5 # 6 #7 # 8
Color [7] 33.00 35.67 33.33 29.33 26.00 25.00 26.33 23.33
ColorHist [19] 33.33 37.00 28.67 33.33 23.33 17.33 17.33 14.33
LBP [19] 51.67 39.33 34.33 27.67 19.00 19.67 18.00 20.33
Color & LBP [7] 38.67 38.67 35.67 30.67 18.67 24.67 26.67 23.00
ColorHist & LBP [26] 39.67 40.67 29.67 34.67 24.67 24.00 19.00 18.00
ELF [5] 31.67 36.00 33.00 32.67 22.67 22.00 20.33 16.67
LOMO [14] 27.67 35.00 23.22 27.33 20.00 18.00 14.33 17.33
LDFV [17] 49.33 41.67 34.00 35.33 18.67 19.33 15.33 16.33
HOG3D [25] 39.67 30.33 37.33 34.67 13.67 14.33 17.67 20.67
STFV3D [15] 39.00 44.33 31.67 39.33 15.67 26.00 17.00 20.33
DynFV [4] 48.33 45.00 46.67 37.67 22.00 18.00 21.00 20.00
FITD (Ours) 65.67 66.67 60.67 55.33 30.33 26.33 21.67 24.00

Table 4. A comparison of proposed FITD with other popular features on Motion-ReID dataset.

Spatial-temporal Features: Among the four spatial-
temporal features, motion-based features, e.g. DynFV and
our FITD, outperform appearance-based features by a large
margin in the first four subsets. The results prove the
effectiveness of motion-based feature for long-term Re-
ID. Since our FITD model extracts dense trajectory from
raw/true video sequence rather than the normalized bound-
ing area and encodes the trajectories with trajectory-aligned
descriptors, our FITD model achieves better performance
than DynFV. However, motion patterns are more easily af-
fected by camera view changing which causes performance
of motion-based features declining sharply. This is also one
of our future research points, which aims to solve view dif-
ference problem when using motion-based features. Noting
that appearance-based features also perform regularly in the
subsets, it is because several targets wear the same clothes
and some partially change their clothes in the dataset.

6. Conclusion

Up to now, most state-of-the-art Re-ID methods tried
to solve the Re-ID problem in the short-term scenarios.
These methods assumed the target subjects keep constant
wearing conditions across cameras and relied heavily on
appearance-based features extracted from one or several

frames. However, these appearance-based features are not
reliable to some appearance impaired scenarios, e.g., simi-
lar wearing between subjects and wearing changing of the
same subject. In this paper, we focused on the impaired sce-
narios especially the long-term Re-ID and introduced the
first available long-term Re-ID dataset. In specific, we pro-
posed to solve the Re-ID task using motion patterns from
true/raw video sequences named FITD. The proposed FITD
model characters motion patterns by the trajectory-aligned
descriptors in a three-level body-action pyramid and ben-
efits from the Fisher vector encoding. Comprehensive ex-
periments show that our FITD with appropriate trajectory-
aligned descriptors benefits for the person Re-ID, especially
the extremely wearing similar scenarios and long-term sce-
narios. This exactly fills the research blank in the field
of long-term Re-ID. However, motion-based features suf-
fer some new challenges, e.g., large walking view and cam-
era viewpoint differences, partial occlusion and background
movement. These problems will be our core research points
in the future.
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