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Abstract

Food diary applications represent a tantalizing mar-
ket. Such applications, based on image food recognition,
opened to new challenges for computer vision and pattern
recognition algorithms. Recent works in the field are fo-
cusing either on hand-crafted representations or on learn-
ing these by exploiting deep neural networks. Despite the
success of such a last family of works, these generally ex-
ploit off-the shelf deep architectures to classify food dishes.
Thus, the architectures are not cast to the specific problem.
We believe that better results can be obtained if the deep
architecture is defined with respect to an analysis of the
food composition. Following such an intuition, this work in-
troduces a new deep scheme that is designed to handle the
food structure. Specifically, inspired by the recent success
of residual deep network, we exploit such a learning scheme
and introduce a slice convolution block to capture the ver-
tical food layers. Outputs of the deep residual blocks are
combined with the sliced convolution to produce the classi-
fication score for specific food categories. To evaluate our
proposed architecture we have conducted experimental re-
sults on three benchmark datasets. Results demonstrate that
our solution shows better performance with respect to ex-
isting approaches (e.g., a top–1 accuracy of 90.27% on the
Food-101 challenging dataset).

1. Introduction
The recent advent of deep learning technologies has

achieved successes in many visual perception tasks such as
object and action recognition, image segmentation, visual
question answering etc. [35, 37, 11, 7, 4, 41, 43, 13, 15].
Yet the status quo of computer vision and pattern recogni-
tion is still far from matching human capabilities, especially
when it comes to classifying an image whose intra-category
appearance might present more differences than its inter-
category counterparts. This is the case of food recognition
where a particular food dish may be prepared in thousands
of different ways, yet it is essentially the same food. Reach-
ing the final objective of food diary applications by solv-

Figure 1: The food recognition problem is characterized by
large intra class variations. However, some dishes present a
spatial structure which has been not considered so far.

ing the food recognition and calories estimation problems
would be highly beneficial to tackle the rapid increase of
diseases related to excessive or wrong food intake [28].

Even if we relax the objective and focus only on the
food recognition task, we still have to address a tough prob-
lem with many specific challenges. Intra-class variation is
a strong source of uncertainty, since the recipe for the same
food can vary depending on the location, the available in-
gredients and, last but not least, the personal taste of the
cook. On the other hand, different foods may look very
similar (e.g., soups where the main ingredients are hidden
below the liquid level), thus inter-class confusion is a source
of potential problems too. Despite such issues, a quick,
partial view, of a food image is often sufficient for a hu-
man to recognize the food dish. This remarkable ability
inevitably tells us that food images have distinctive proper-
ties that made task tractable, regardless the non-trivial chal-
lenges.

Methods tackling the food recognition task largely ex-
plored hand-crafted image representations based on a pri-
ori knowledge of the problem (e.g., [26, 6, 29]). Such a
knowledge yields to encouraging results (e.g., [6, 2, 25] ob-
tained considering combinations of different features (e.g.,
color, shape, spatial relationships, etc.). Recently, by rid-
ing the deep learning wave of enthusiasm, works investi-
gated the possibility of learning specific food image rep-
resentation [19, 24, 9, 3, 27]. Such approaches generally
obtained better performance thanks to a mere application
of off-the-shelf architectures to the problem. Thus, exist-
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ing approaches neglected the design of a proper architecture
which considers the specific problem challenges. This moti-
vates the development of a novel architecture that is defined
following an analysis of the food composition.

The proposed WIde-Slice Residual Network (WISeR)
solution builds upon such an idea by proposing a deep learn-
ing architecture which aims to capture the food structure.
Our key intuition is that, regardless the exploited ingre-
dients and the final presentation, many dishes are largely
characterized by vertical food layers (see Figure 1 for same
examples). Thus we propose to leverage such a vertical
structure to introduce the slice convolution layer. However,
since not all the food dishes present such a structure, we
also exploit a large residual learning architecture to obtain
a generic food representation. This, together with represen-
tation obtained from the slice convolution, is enclosed in
single architecture to emit the food classification.

Contributions: Concretely, our contributions are:
(i) We propose a novel convolutional layer that captures the
vertical structure of food dishes; (ii) By combining the fea-
tures detected through such layer with a stack of residual
learning blocks we obtain a good representation for food
dishes which do not show a specific structure; (iii) Signifi-
cantly enlarge the number of feature maps per convolution
layer to tackle the diminishing feature reuse issue in deep
residual networks [36], thus to improve the representational
power of the learned feature detectors.

Results on three benchmark datasets show that, by com-
bining such three ingredients together, our approach per-
forms better than existing works in the field.

2. Related Work
The food recognition problem is a recent field of research

in computer vision and pattern recognition. In the follow-
ing, we review the most relevant work to our approach.
Food Recognition. During the last few years, the topic of
food recognition for health-oriented applications has gained
increasing popularity. One of the earliest work in the field
appeared in [39], where authors proposed to study the spa-
tial relationships between different food ingredients. A Se-
mantic Texton Forest was exploited to segment each im-
age into eight different types of ingredient, then pairwise
statistics were exploited to compute a multi-dimensional
histogram, later classified with an SVM. Starting from such
a work, plenty of research has been carried out to find the
optimal hand-crafted representation for food recognition.
In [5], the Maximum Response Filter Bank (MR) was used
in a Bag of Textons (BoT) scheme. Such a representation,
combined with color descriptors in a nearest neighbor ap-
proach [5] demonstrated that both such clues are relevant
for the task. The idea of exploiting multiple features was
recently brought to the limit by considering as many fea-
tures as possible and limiting their importance through an

ensemble fusion scheme [25].
On Mobile Devices. Other works were specifically tuned to
work on smartphones or other devices with limited capabili-
ties. DietCam [22] assesses daily food intakes by fusing the
classification of a SIFT-based Bag of Visual Words (BoW)
and a nearest-neighbour-based best match search. Similarly,
in [17], a BoW-based scheme was applied to obtain an en-
coding of visual features extracted from segmented food
items. A segmentation scheme was also explored by the
FoodCam app [21]. It performs HoG and color patch fea-
ture encoding via Fisher Vector (FV) [32] and classify those
with a one-vs-rest linear SVM. Context information regard-
ing the location from where the food picture was taken, to-
gether with additional information about the restaurant, had
been exploited in [1]. Such information, coupled with a
multiple kernel learning scheme applied on different visual
features yield to the food image classification.
Calories Estimation. The idea of exploiting restaurant in-
formation was also explored in [27]. This, fused with the
result of food detectors and volume estimation was used to
directly tackle the calories estimation problem. The same
issue was also explored in [42], which required manually-
driven image segmentation and camera calibration. Fi-
nally, by viewing the problem from a different perspective,
in [26], authors proposed to recognizing multiple food items
appearing in the same picture. Outputs of different region
detectors were fused to identify different foods, which were
later classified using texture features and an SVM. Pairwise
co-occurrence statistics [29] were also exploited to improve
performance.

While being able to reach good recognition performance
(e.g., [29, 1, 25]) such works rely on the available a priori
knowledge of the problem. Thus, they do not consider that
the exploited hand-crafted feature representation may not
be the optimal one for the classification objective. Differ-
ently from all such schemes our approach does not hinge on
the manual selection of such features. It addresses the prob-
lem by learning and exploiting only the optimal features for
classification.
Deep Learning for Food Recognition. A small num-
ber of studies have explored the applicability of deep neu-
ral networks to food recognition. Specifically, in [19] the
output of an AlexNet-style architecture pretrained on Ima-
geNet plus additional 1000 disjoint food-related categories
was combined with traditional hand-crafted features em-
bedded through FV. Deeper architectures following the In-
ception [37] structure were exploited in [24, 9]. In details,
in [24], the Inception module is modified by introducing
1 × 1 convolutional layers to reduce the input dimension
to the next layers. Similarity, in [9], the convolutional lay-
ers of the Inception v3 network were specifically modified
to improve the computational efficiency. Finally, a modi-
fied VGG-16 net [35] together with a multi-task loss was



exploited in [3] to tackle the problems of food and ingre-
dient recognition. A Conditional Random Field was then
employed to tune the probability distribution of ingredients.
Due to the scarcity of food images, all such works exploited
networks which were pretrained on ImageNet, then fine-
tuned to classify food categories.

Our work has several key differences with the afore-
mentioned works: First and foremost, we have designed
a specific convolutional layer that handles the structural
peculiarities of some food dishes. Second, the methods
above [19, 24, 9, 3] consider classic off-the-shelf deep
learning architectures. Our work is the first work exploit-
ing residual learning [11] for food recognition. Moreover,
our model uses a significantly large number of feature maps
per convolution layer to tackle the diminishing feature reuse
issue in deep residual networks [36].

3. Wide-Slice Residual Networks

Our goal is to take a single-shot of a food dish and output
the corresponding food category. The proposed model aims
to achieve such an objective by discovering the structural
peculiarities of the image by combining a slice convolution
layer with residual learning.

3.1. Architecture

As shown in Figure 2, the model consists of a single
deep network with two main branches: a residual network
branch (Sec. 3.2), and a slice network branch with a slice
convolutional layer (Sec. 3.3). The residual network en-
codes generic visual representations of food images. The
slice network specifically captures the vertical food layers.
Features extracted from the two branches are then concate-
nated and fed to the fully connected layers that emit a clas-
sification prediction. We now describe each of these two
branches in more details.

3.2. Residual Network Branch

3.2.1 Residual Learning

Since the breakthrough paper on extremely deep neural net-
works first appeared in [10] and later published in [11] –
which won the ILSVRC and MSCOCO 2015 competitions,
a surge of effort has been dedicated on exploring residual
learning in such architectures. The idea behind residual
learning is very simple yet has been shown to be extremely
effective [11] in solving optimization issues that affects the
process of learning the parameters of very deep neural net-
works (e.g., with more than 20 layers).

Everything starts from the assumption that given an in-
put x, a shallow network with few stacked non-linear layers
can approximate a mapping function M(x). On the basis
of such an assumption, it is reasonable to hypothesize that a
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Figure 2: Proposed WISeR architecture consisting of two
branches: a residual network branch (Sec.3.2), and a slice
branch network with slice convolutional layers (Sec.3.3).
The output of the two branches in fused via concatenation,
then fed to the two fully connected layers to emit the food
classification prediction.
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Figure 3: Graphical representation of (a) Basic Residual
Blocks and (b) Wide Residual Blocks. By expanding the
number of convolution kernels (i.e., widening), the num-
ber of parameters to learn increases, hence the networks has
more capacity.

network with the same structure can approximate the resid-
ual function F(x) = M(x) − x (given that the input and
output have the same dimensionality). While, either learn-
ing an approximation of the mapping functionM(x) or the
residual functionF(x) is feasible, the ease of such a process
is significantly different. Indeed, as demonstrated in [11],
deep networks trained to approximate the mapping function
M(x) suffer from a degradation that does not appear in net-
works trained on approximating the residual functionF(x).
This opens to the success of residual learning for very deep
networks.

3.2.2 Wide Residual Blocks

Following the methodology in [11], we exploit residual
learning every few stacked layers. Formally, we let a resid-
ual block with identity mapping [12] be represented as

xl+1 = xl + F(xl,Wl) (1)

where xl, xl+1 andWl = {Wl,k|k = 1, . . . ,K} represent
the input, the output and the set of parameters associated
with the l-th residual block, respectively. K denotes the
number of layers in a residual block (K = 2, in our case).
The residual learning objective is to find the parametersWl

that best approximate the function F(xl,Wl).
Before going further it is important to emphasize a few

relevant ingredients regarding eq.(1):
i) neither extra parameter nor computation complexity

is introduced (except for the negligible addition per-
formed on feature maps, channel by channel);

ii) the function F(xl,Wl) is very flexible and can repre-
sent both fully connected and convolutional layers;

iii) if the dimensionalities of xl and F(xl,Wl) are differ-
ent (e.g., when varying the number of feature maps),

STANDARD SQUARED KERNEL 
CONVOLUTION

(a)

SLICE
CONVOLUTION

(b)

Figure 4: (a) Standard squared convolutional kernel com-
monly used in deep learning architectures for food recogni-
tion. (b) Proposed slice convolutional kernel aiming to cap-
ture the vertical layer structure of some food dishes.

a linear projection P can be exploited by the shortcut
connections to match the dimensions (i.e., eq.(1) be-
comes xl+1 = Pxl + F(xl,Wl)).

Armed with eq.(1), as shown in Figure 3, we followed
the recommendations in [12] and adopted the batch normal-
ization (BN) and ReLU (ReLU) layers as “pre-activations”
for the convolutional layers (Conv). Then, to increase the
representational power of a residual block we shared the
same idea as [40] and widen the convolutional layers by
significantly increasing the number of feature maps. This
has been shown to be able to tackle the diminishing fea-
ture reuse problem [36] and improve performance of resid-
ual networks compared to increasing their depth.

3.3. Slice Network Branch

3.3.1 Slice Convolution

Common deep learning architectures (e.g., [35, 37, 11, 12])
exploit squared kernels to detect and extract relevant image
features (see Figure 4(a)). Same occurs when such archi-
tectures are applied to the food recognition task (e.g., [19,
24, 9, 3]). By doing this, existing approaches do not di-
rectly consider the vertical traits of some food dishes. We
believe that, while such a vertical structure can be captured
via the deep hierarchy, a specific food layer detector can be
extremely useful when it comes to classify food dishes that
present such a peculiarity.

For such a purpose, we propose to exploit a slice con-
volution (see Figure 4(b)). It will learn the parameters of
a convolution kernel that has the same width as the input
image. In such a way, it will act as a vertical layer feature
detector.

3.3.2 Slice Pooling

For a specific vertically structured food category, it is not
guaranteed that the vertical layers appears in the same po-



(a) (b) (c)

Figure 5: Five different food dishes appearing in the (a) UECFood100, (b) UECFood256, and (c) Food-101 datasets. The
three rows highlight the strong intra-class variations for the same food dish. (Best viewed in color)

sition. Thus, the output of the slice convolution might be
different depending on the location of such vertical traits.
To tackle this issue we perform max pooling on vertically
elongated windows. As a result we expect that a specific
food layer is detected within a certain vertical location.

4. Experimental Results

First, we describe the selected datasets and the evaluation
protocol. This is followed by a discussion of experimental
and design selections. Then, we present the comparisons
with existing methods to demonstrate the superior perfor-
mance of WISeR, followed by concluding remarks.

4.1. Datasets

To validate the proposed WISeR approach, results on
three benchmark datasets for food recognition have been
computed. These have been selected on the basis of the
different challenges they carry.
UECFood1001. The UECFood100 dataset [26] contains
100 different food categories for a total of approximately
14’000 images. Images acquired by mobile cameras contain
the most popular Japanese food dishes. Since the dataset
has been conceived to address a real-world challenge, the
acquired pictures may contain more than a single food dish.
Therefore, this dataset is useful to understand if the ap-
proach is able perform food localization before classifica-
tion, hence if it focuses on the relevant image details.
UECFoo2562. The UEC-Food256 [18, 20] is a newly-
constructed food image dataset, which has been build on the
idea that number of food categories in existing datasets is
not enough for practical use. Authors exploited knowledge
on food of other countries and leveraged on existing cate-
gories to extend the UECFood100 dataset. The so obtained
dataset contains 256 different foods dishes which are rep-
resented in about 32’000 images. As for the UECFood100
dataset, multiple food dishes can appear in a same image.

1http://foodcam.mobi/dataset100
2http://foodcam.mobi/dataset256

With this dataset we aim to evaluate our approach on clas-
sifying a large number of challenging classes.
Food-1013. The food-101 dataset [2] consists of real-
pictures of the 101 most popular dishes that appeared on
foodspotting.com. On purpose, the images have not
been selected and checked by human operator, hence the
training set contains 75750 images with intense colors and
sometimes wrong labels. Additionally, 250 test images
have been collected for each class, and have been manu-
ally cleaned. The dataset has a total of 101’000 realworld
images, including very diverse but also visually and seman-
tically similar food classes. This allows us to validate our
approach on a large dataset build with weakly labeled data.

4.2. Evaluation Protocol

Evaluation of food recognition approaches (e.g., [26, 21,
6, 1]) is generally performed by showing the Top-1 recogni-
tion accuracy. In addition to that, we also report on the top-5
criterion as generally considered when providing the results
achieved by deep neural networks.

For the UECFood256 and Food-101 datasets, we used
the provided splits. Since the UECFood100 dataset does
not come with such a feature, we evaluated the performance
of our approach using the same protocol in [19, 9], hence
randomly partitioned the dataset into two subsets using 80%
of the images for training and the rest for testing.

Notice that, the performance achieved by the existing
methods have been taken from the corresponding works or
have been directly provided by the authors.

4.3. Experimental and Implementation Settings

Existing food recognition deep net-based approaches
tweaks the network hyperparameters to the specific dataset
(e.g., [19, 9]). In our evaluation, we have decided not to
specifically adjust them to provide a generic framework.

Following the common recipe adopted by existing ap-
proaches [19, 3, 1], we did not train our architecture from
scratch since it required more food images than all the ones

3http://www.vision.ee.ethz.ch/datasets/food-101/



Table 1: Top–1 and Top–5 performance on the UEC-
Food100 dataset. First 4 rows show the results achieved
by using methods adopting hand-crafted features. Next
11 rows show the performance obtained by deep learning-
based approaches on the ground-truth cropped images. Last
2 rows depict the results obtained considering images hav-
ing more than a single food class (i.e., no ground truth is
exploited). Best results is highlighted in boldface font.

Method Top-1 Top-5 Publication

MKL 51.6 76.8 COST2016 [24]
FC7 58.03 83.71 ACMMM2016 [3]
Extended HOG
Patch-FV+Color
Patch-FV(flip)

59.6 82.9 COST2016 [24]

SELC 84.3 95.2 CVIU2016 [25]

DeepFoodCam 72.26 92.00 UBICOMP2014 [19]
AlexNet 75.62 92.43 ACMMM2016 [3]
DeepFood 76.3 94.6 COST2016 [24]
FV+DeepFoodCam 77.35 94.85 UBICOMP2014 [19]
DCNN-FOOD 78.77 95.15 ICME2015 [38]
VGG 81.31 96.72 ACMMM2016 [3]
Inception V3 81.45 97.27 ECCVW2016 [9]
Arch-D 82.12 97.29 ACMMM2016 [3]
ResNet-200 86.25 98.91 CVPR2016 [11]
WRN 86.71 98.92 BMVC2016 [40]
WISeR 89.58 99.23 Proposed

DeepFood 57.0 83.4 COST2016 [24]
WISeR 79.46 97.46 Proposed

that are currently available in any dataset. We started from
a WRN architecture [40] pre-trained on the ImageNet 2012
(ILSVRC2012) classification dataset [31].Then, we added
the slice convolution branch and fine-tuned the whole ar-
chitecture on the selected food recognition datasets.

Data. During the fine-tuning process we augment the num-
ber of dataset samples by taking 224 × 224 random crops
from images resized such that the smaller dimension is
of 256 pixels. We also exploited horizontal flipping with
the scale and aspect ratio augmentation technique proposed
in [37]. In addition, we applied photometric distortions [14]
and the AlexNet-style color augmentation [11]. In testing,
we considered the standard 10-crop testing [23].

Optimization. Model training was performed via stochas-
tic gradient descent with mini-batches containing 24 sam-
ples. The initial learning rate has been set to 0.01, then up-
dated to 0.002 and 0.0004, after 50k and 90k iterations re-
spectively. Momentum has been set to 0.9 and a weight de-
cay penalty of 0.0005 had been applied to all layers. Train-
ing has been stopped after 100k iterations. All the experi-
ments have been ran using the Torch neural network frame-
work on a multi-GPU server.

Table 2: Top–1 and Top–5 performance on the UECFood
256 dataset. First 3 rows show the results obtained by us-
ing methods adopting hand-crafted features. Next 7 rows
show the performance obtained by deep learning-based ap-
proaches on the ground-truth cropped dataset images. Last
2 rows depict the results obtained considering input images
having more than a single food class (i.e., no ground truth
is exploited). Best result is highlighted in boldface font.

Method Top-1 Top-5 Publication

RootHOG-FV 36.46 58.83 UBICOMP2014 [19]
Color-FV 41.60 64.00 UBICOMP2014 [19]
Color-FV+HOG-FV 52.85 75.51 UBICOMP2014 [19]

DeepFoodCam 63.77 85.82 UBICOMP2014 [19]
DeepFood 63.8 87.2 COST2016 [24]
DCNN-FOOD 67.57 88.97 ICME2015 [38]
Inception V3 76.17 92.58 ECCVW2016 [9]
ResNet-200 79.12 93.00 CVPR2016 [11]
WRN 79.76 93.90 BMVC2016 [40]
WISeR 83.15 95.45 Proposed

DeepFood 54.7 81.5 COST2016 [24]
WISeR 72.71 93.78 Proposed

4.4. Performance Analysis

4.4.1 State-of-the-art Comparisons

In the following, the performances of our approach are com-
pared to the state-of-the-art ones on the three considered
benchmark datasets.
UECFood 100. Table 1 shows the results achieved by ex-
isting methods and compares our approach with the top per-
former [40] on the UECFood100 leaderboard. Considering
ground-truth cropped images, our architecture improves the
Top–1 performance of existing works specifically designed
for food recognition (i.e., [25, 3]) by more than 7%. Such
a gap reduces to about 2.5 percentage points if comparison
is given with respect to [40]. The WISeR architecture is
the only one that surpasses the 99% recognition accuracy at
Top–5.

Notably, our solution shows a significant improvement
over [24] (i.e., about 20%) when the considered images are
not cropped to contain the ground truth only, but exhibit
more food dishes appearing at the same time.
UECFood 256. Table 2 lists the best existing results avail-
able for the UECFood256 dataset. The depicted results
show that our solution obtains the best performances by sur-
passing the 83% and 95% recognition accuracies at Top–1
and Top–5, respectively.

More interesting are the performances obtained when
no-ground truth is considered to locate the food dish within
the image. In such a case, we outperform the previous
best result and obtain the overall third best Top–5 recog-
nition accuracy, thus achieving better performance than re-



Table 3: Top–1 and Top–5 performance on the Food-101
dataset. First 12 rows show the results obtained by us-
ing methods adopting hand-crafted features. Last 6 rows
show the performance obtained by deep learning-based ap-
proaches. Best results is highlighted in boldface font.

Method Top-1 Top-5 Publication

HoG 8.85 - ECCV2014 [2]
SURF BoW-1024 33.47 - ECCV2014 [2]
SURF IFV-64 44.79 - ECCV2014 [2]
SURF IFV-64 +
Color Bow-64

49.40 - ECCV2014 [2]

BoW 28.51 - ECCV2014 [2]
IFV 38.88 - ECCV2014 [2]
RF 37.72 - ECCV2014 [2]
RCF 28.46 - ECCV2014 [2]
MLDS 42.63 - ECCV2014 [2]
RFDC 50.76 - ECCV2014 [2]
SELC 55.89 - CVIU2016 [25]

AlexNet-CNN 56.40 - ECCV2014 [2]
DCNN-FOOD 70.41 - ICME2015 [38]
DeepFood 77.4 93.7 COST2016 [24]
Inception V3 88.28 96.88 ECCVW2016 [9]
ResNet-200 88.38 97.85 CVPR2016 [11]
WRN 88.72 97.92 BMVC2016 [40]
WISeR 90.27 98.71 Proposed

cent methods which consider ground truth cropped images
(e.g., [9, 11]).

Such an outcome, together with the results shown in Ta-
ble 1, might indicate that our proposed solution is able to
focus only on the relevant portion of an image to perform
the classification task. As shown in Figure 6, visual in-
spection of the obtained performance substantiate this hy-
pothesis. It also demonstrate that the proposed solution has
gained an high-level knowledge of the food dishes by giv-
ing high scores to food plates that are very similar to each
other, or contain more than a single food class (e.g., 2nd to
5th sample). To obtain more detailed insights on such re-
sults, an analysis of the visual attention performed by the
architecture has been conducted (see Sec. 4.5).
Food-101. A comparison with existing methods on the
Food-101 dataset is shown in Table 3. Results demonstrates
that our solution outperforms the best results obtained by
considering hand-crafted features [25]. The proposed archi-
tecture performs better than all the existing deep learning-
based ones by achieving a Top-1 accuracy of more than
90%. Such a result show that our solution is able to learn
good representations even from weakly labeled data.

4.4.2 Ablation Analysis

To better understand the source of our performance, Table 4
shows results for ablation experiments analyzing the con-

Table 4: Top–1 and Top–5 performance achieved by sep-
arately exploiting the two proposed network branches on
the UECFood100, UECFood256 and Food-101 datasets.
Slice@WISeR shows the results obtained using only the
slice convolution branch. Residual@WISeR shows the per-
formance achieved via the residual learning branch.

Dataset Model Top-1 Top-5

UECFood100
slice@WISeR 41.72 66.15
residual@WISeR 86.71 98.92

UECFood256
slice@WISeR 30.56 57.65
residual@WISeR 79.76 93.90

Food-101
slice@WISeR 46.17 63.57
residual@WISeR 88.72 97.92

tributions of the two architecture branches. Specifically:
(i) slice@WISeR removes the residual network branch.
Classification is obtained by considering only the features
extracted from the slice convolution branch; (ii) resid-
ual@WISeR performs the opposite. Food recognition is
achieved through classification of residual features.

Results show that for all the three datasets, the resid-
ual learning branch (i.e., resisual@WISeR) largely outper-
forms the slice one. We hypothesize that the reason be-
hind such a result is due to the following facts: (i) The
residual learning branch has been pre-trained considering a
very large set of natural images (i.e., ImageNet), while the
weights of the slice branch are learned from scratch. Fea-
tures extracted from a network trained on ImageNet –with-
out fine-tuning– have shown to be highly discriminative per
se for many visual recognition tasks [34, 16] (food recog-
nition included [25]). Thus, it is reasonable to believe that
such a pre-training introduces significant priors for the net-
work weights. This is confirmed by the fact that training the
whole WISeR architecture from scratch results in a recog-
nition rate of 78.12%, 68.37%, and 79.45% on the three
considered datasets, respectively. (ii) Capturing only verti-
cal layer features excludes learning of other distinctive traits
that are not specific of vertically structured food dishes.

4.5. Visual Attention

Results on the UECFood100 and UECFoo256 datasets
show that our approach can extract the useful information
for classification from the relevant image regions only. To
have a richer grasp on this outcome, we have conducted an
analysis of the visual attention performed by the architec-
ture. Towards this end, we have exploited the recent Grad-
CAM approach [33]. It allows to obtain a coarse local-
ization map regarding the important regions in the image
which are considered for classification.

As show in 7, when more than a single food dish is
present in the image, the WISeR architecture is able to fo-



Figure 6: Top–5 predictions of our WISeR architecture on 5 image samples from the UECFood256 dataset (with no cropped
ground-truths). Test image are shown at the top. In the bar plots, predictions are ranked from top (most likely class) to bottom
(less likely class). The true match class is represented by a green bar. False matches are shown with red bars. (Best viewed in
color)

Figure 7: Analysis of the visual attention obtained through
our architecture on two randomly selected images from the
UECFood100 dataset. First column is the input image, sec-
ond column shows the visual attention with a color-coded
plot (blue means lower attention, red higher). Last column
depicts the gradient computed with respect to the input im-
age, showing that features are extracted only from the rele-
vant image region. Results obtained through Guided Grad-
CAM visual explanation [33]. (Best viewed in color)

cus only on the image portion that contains the object of
interest. This is substantiated by the fact that features are
not extracted from other non-relevant food/non-food objects
(e.g., the plate containing green leaves, the spoon, the paper
glass, etc.).

4.6. Discussion

Outcomes. Results obtained for the three datasets demon-
strate that: (i) our solution shows better performance with
respect to existing approaches either based on hand-crafted
features or on deep learning schemes; (ii) while the residual
learning branch brings most of the classification power, by
combining the so extracted features with the vertical layer
traits discovered through the slice convolution branch the
best achievements are attained; (iii) the proposed WISeR

architecture is able to self-discover the image portion that
should be considered to extract the features, hence to emit
the classification.

This shows that our approach is able to well address the
many non-trivial challenges in food recognition and is not
designed to tackle the specific problems brought in by a sin-
gle dataset.

Limitations. It is a matter of fact that nowadays food recog-
nition algorithms are very attractive for mobile platforms.
Our solution require substantial memory loads as well as
significant computational efforts to process a single datum,
thus denying a possible deployment of our approach on
these devices. A possible solution to such a problem would
be to compress the network to obtain a shallower architec-
ture [8] or to exploit binary weights [30]. We demand this
study to future works.

5. Conclusion

In this paper, a system for automatic food recognition
based on a deep learning solution specifically designed for
the considered task has been proposed. The WISeR archi-
tecture combines features extracted from two main network
branches. The residual learning branch provides a deep hi-
erarchy which is able to capture the food traits of the ma-
jority of the existing food categories. The slice convolution
branch captures the vertical layers of the food dishes which
present such a peculiarity. The features extracted from these
branches are fused then exploited to emit the classification.

To demonstrate the benefits of the proposed solution,
evaluations on three benchmark datasets have been con-
ducted. Comparisons with existing methods have shown
that by exploiting both the architecture branches together
better performance than state-of-the-art approaches are
achieved regardless the considered dataset. The visual at-
tention analysis has shown that the network is able to self-
identify the relevant portions of the image that should be
considered for classification.
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