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Abstract

A key step in understanding the spatial organization of cells and tissues is the ability to construct 

generative models that accurately reflect that organization. In this paper, we focus on building 

generative models of electron microscope (EM) images in which the positions of cell membranes 

and mitochondria have been densely annotated, and propose a two-stage procedure that produces 

realistic images using Generative Adversarial Networks (or GANs) in a supervised way. In the first 

stage, we synthesize a label “image” given a noise “image” as input, which then provides 

supervision for EM image synthesis in the second stage. The full model naturally generates label-

image pairs. We show that accurate synthetic EM images are produced using assessment via (1) 

shape features and global statistics, (2) segmentation accuracies, and (3) user studies. We also 

demonstrate further improvements by enforcing a reconstruction loss on intermediate synthetic 

labels and thus unifying the two stages into one single end-to-end framework.

1. Introduction

Much research in the life sciences is now driven by large amounts of biological data 

acquired through high-resolution imaging [7, 19]. Such data represents an important 

application domain for automated machine vision analysis. Most past work has been 

discriminative in nature, focusing on trying to determine whether imaged samples differ 

between different patients, tissues, cell types or treatments [3, 5]. A more recent focus has 

been on constructing generative models, especially of cells or tissues [31, 26]. Such 

generative approaches are required in order to be able to combine spatial information on 

different cell types or cell organelles learned from separate images (and potentially different 

imaging modalities) into a single model. This is needed because of the difficulty of 

visualizing all components in a single image. Images can be used to perform spatially-

accurate simulations of cell or tissue biochemistry [16], and synthetic images that combine 

many components can dramatically enhance the accuracy and usefulness of such 

simulations.
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Microscopy imaging—At the cellular scale, the dominant modes of imaging used are 

fluorescence microscopy (FM) and electron microscopy (EM). From the machine vision 

perspective, these methods differ dramatically in their resolution, noise, and the availability 

of labels for particular structures. FM works by tagging particular molecules or structures 

with fluorescence probes, adding a powerful form of sparse biological supervision to the 

captured images (which does not require human intervention). However, the spatial 

resolution of FM ranges from a limit of approximately 250 nm for traditional methods to 

20–50 nm for super-resolution methods. By contrast, EM allows for significantly higher 

resolution (0.1–1 nm per pixel), but ability to automatically produce labels is limited and 

manual annotation can be very time-consuming. Analysis of EM images is also challenging 

because they contain lower signal-to-noise ratios than FM.

Our goal—We wish to build holistic generative models of cellular structures visible in 

high-resolution microscopy images. In the following, we point out several unique aspects of 

our approach, compared to related work from both biology and machine learning.

Data—We focus on EM images that contain enough resolution to view structures of 

interest. This in turns means that supervised labels (e.g., organelle segmentation masks) will 

be difficult to acquire. Indeed, it is quite common for standard EM benchmark datasets to 

contain only tens of images, illustrating the difficulty of acquiring human-annotated labels 

[1]. Most work has focused on segmentation of individual cells or organelles within such 

images [13]. In contrast, we wish to build models of multiple cells and their internal 

organelles, which is particular challenging for brain tissue due to the overlapping meshwork 

of neuronal cells.

Generative models—Past work on EM image analysis has focused on discriminative 

membrane detection [8, 15]. Here we seek a high-resolution generative model of cells and 

the spatial organization of their component structures. Generative models of cell 

organization have been a long sought-after goal [31, 27], because at some level, such models 

are a required component of any behavioral cell model that depends on constituent proteins 

within organelles.

GANs—First and foremost, we show that generative adversarial networks (GANs) [11] can 

be applied to build remarkably-accurate generative models of multiple cells and their 

structures, significantly outperforming prior models designed for FM images. To do so, we 

add three innovations to GANs: First, in order to synthesize large high-resolution images 

(similar to actual recorded EM images), we introduce fully-convolutional variants of GANs 

that exploit the spatial stationarity of cellular images. Note that such stationarity may not 

present in typical natural imagery (which might contain, for example, a characteristic 

horizon line that breaks translation invariance). Secondly, in order to synthesize natural 

geometric structures across a variety of scales, we add multi-scale discriminators to guide 

the generator to produce images with realistic multi-scale statistics. Thirdly, and most 

crucially, we make use of supervision to guide the generative process to produce semantic 

structures (such as cell organelles) with realistic spatial layouts. Much of the recent interest 

in generative models (at least with respect to GANs) has focused on unsupervised learning. 
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But in some respect, synthesis and supervision are orthogonal issues. We find that standard 

GANs do quite a good job of generating texture, but sometimes fail to capture global 

geometric structures. We demonstrate that by adding supervised structural labels into the 

generative process, one can synthesize considerably more accurate images than an 

unsupervised GAN.

Evaluation—A well-known difficulty of GANs is their evaluation. By far, the most 

common approach is qualitative evaluation of the generated images. Quantitative evaluation 

based on perplexity (the log likelihood of a validation set under the generative distribution) 

is notoriously difficult for GANs, since it requires approximate optimization techniques that 

are sensitive to regularization hyper-parameters [20]. Other work has proposed statistical 

classifier tests that are sensitive to the choice of classifier [17]. In our work, we use our 

supervised GANs to generate image-labels pairs that can be used to train discriminative 

classifiers, yielding quantitative improvements in prediction accuracy. Moreover, we 

consider the literature on generative cell models and use previously proposed metrics for 

evaluating generative models, including the consistency of various shape feature statistics 

across real vs generated images, as well as the stability of discriminative classifiers (for 

semantic labeling) across real vs generated data [31]. We also perform user studies to 

measure a user’s ability to distinguish real versus generated images. Crucially, we compare 

to strong baselines for generative models, including established parametric shape-based 

models as well as non-parametric generative models that memorize the data.

2. Related Work

There is a large body of work on GANs. We review the most relevant work here.

GANs—Our network architecture is based on DCGAN [23], which introduces 

convolutional network connections. We make several modifications suited for processing 

biological data, which tends to be high-resolution and encode spatial structures at multiple 

scales. As originally defined, the first layer is not convolutional since it processes an input 

noise “vector”. We show that by making all network connections convolutional (by 

converting the noise vector to a noise “image”), the entire generative model is convolutional. 

This in turns allows for efficient training (through learning on small convolutional crops) 

and high-quality image synthesis (through generation of larger noise images). We find that 

multi-scale modeling is crucial to synthesizing accurate spatial structures across varying 

scales. While past work has incorporated multi-scale cues into the generative process [9], we 

show that multiscale discriminators help further produce images with realistic multi-scale 

statistics.

Supervision—Most GANs work with unsupervised data, but there are variants that 

employ some form of auxiliary labels. Conditional GANs make use of labels to learn a GAN 

that synthesizes pixels conditioned on an label image [12] or image class label [21], but we 

use supervision to learn an end-to-end generative model that synthesizes pixels given a noise 

sample. Similarly, methods for semi-supervised learning with GANs [30] tend to factorize 

generative process into disentangled factors similar to our labels. However, such factors tend 
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to be global (such as an image class label), which are easier to synthesize than spatially-

structured labels. From this perspective, our approach is similar to [28], who factorizes 

image synthesis into separate geometry and style stages. In our case, we make use of 

semantic labels rather than metric geometry as supervision. Finally, most related to us is 

[22], who uses GANs to synthesize fluorescent images using implicit supervision from 

cellular staining. Our work focuses on EM images, which are high resolution (and so allows 

for modeling of more detailed substructure), and crucially makes use of semantic 

supervision to help guide the generative process.

3. Supervised GANs

A standard GAN, originally proposed for unsupervised learning, can be formulated with a 

minimax value function V (G,D):

min
G

max
D

V(G, D) where
V(G, D) = 𝔼x px

[ log (D(x))] + 𝔼z pz
[ log (1 − D(G(z)))]

[UnsupervisedGAN]

(1)

and x denotes image and z denotes a latent noise vector. As defined, the minimax function 

can be optimized with samples from the marginal data distribution px and thus no 

supervision is needed. As shown in Fig. 1, this tends to accurately generate low-level 

textures but sometimes fails to capture global image structures. Assume now that we have 

access to image labels y that specify spatial structures of interest. Can we use these labels to 

train a better generator? Presumably the simplest approach is to define a “classic” GAN over 

a joint variable x′ = (x, y):

V(G, D) = 𝔼x, y pxy
[ log (D(x, y))] + 𝔼z pz

[ log (1 − D(G(z)))]
[JointGAN]

(2)

Factorization—Rather than learning a generative model for the joint distribution over x, y, 

we can factorize it into p(x, y) = p(y)p(x|y) and learn generative models for each factor. This 

factorization makes intuitive sense since it implicitly imposes a causal relation [14]: first 

geometric labels are generated with Gy : z ↦ y, and then image pixels are generated 

conditioned on the generated labels, Gx : y ↦ x. We refer to this approach as SGAN 
(supervised GANs), as illustrated in Fig. 2-b,c:

V(G, D) = Vy(Gy, Dy) + V x(Gx, Dx) where
Vy(Gy, Dy) = 𝔼y py

[ log (Dy(y))] + 𝔼z pz
[ log (1 − Dy(Gy(z)))] and

V x(Gx, Dx) = 𝔼x, y pxy
[ log (Dx(x, y))] + 𝔼y py

[ log (1 − Dx(Gx(y), y))] .
[SGAN]

(3)
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In theory, one could also factorize the joint into p(x, y) = p(x)p(y|x), which is equivalent to 

training a standard unsupervised GAN for x and a conditional model for generating labels 

from x. The latter can be thought of as a semantic segmentation network. We compare to 

such an alternative factorization in our experiments, and show that conditioning on labels 

first produces significantly more accurate samples of p(x, y).

Optimization—Because value function V (G,D) decouples, one can train {Dy,Gy} and 

{Dx,Gx} independently:

min
G

max
D

V(G, D) = min
Gy

max
Dy

Vy(Gy, Dy) + min
Gx

max
Dx

V x(Gx, Dx) (4)

Using arguments similar to those from [11], one can show that SGAN can recover true data 

distribution where the discriminator D and generators G are optimally trained:

Theorem 3.1: The global minimum of C(G) = maxD V (G,D) is achieved if and only if q(y) 

= p(y) and q(x|y) = p(x|y), where p’s are true data distributions and q’s are distributions 
induced by G.

Proof: Given in Supplementary A.

End-to-end learning—The above theorem demonstrates that SGANs will capture the true 

joint distribution over labels and data if trained optimally. However, when not optimally 

trained (because of optimization challenges or limited capacity in the networks), one may 

obtain better results through end-to-end training. Intuitively, end-to-end training optimizes 

Gx(y) on samples of labels ŷ produced by the initial generator Gy(z), rather than ground-

truth labels y. To formalize this, one can regard Gy and Gx as sub-networks of a single larger 

generator which is provided deep supervision at early layers:

V x(Gx, Dx) = 𝔼x, y pxy
[ log (Dx(x, y))] + 𝔼z pz

[ log (1 − Dx(Gx(Gy(z)), Gy(z)))] . (5)

However in practice, samples from an imperfect Gy makes it even harder to train Gx. Indeed, 

we observe that Gx produces poor results when synthetic training labels are introduced. One 

possible reason is that discriminator Dx will be focused on the differences between the real 

and predicted labels rather than correlations between labels and images. (Please refer to 

section 5 and Supplementary C for more analysis.) To avoid this, we force the generator to 

learn such correlations by also learning a reconstructor Fy(x) : x ↦ y that re-generates 

labels from images. We add a reconstruction loss ℒ (similar to a “cycle GAN” [33]) that 

ensures that Gx will produce an image from which an accurate label can be reconstructed. 

We refer to this approach as a DSGAN (Deeply Supervised GAN):
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min
G, F

max
D

Vy(Gy, Dy) + V x(Gx, Fy, Dx) where
V x(Gx, Fy, Dx) = 𝔼x pxy

[ log (Dx(x, y))] +
𝔼y py

[ log (1 − Dx(Gx(y), y))] +
λreg𝔼x, y pxy

[ℒ(y, Fy(x))] +
λcyc𝔼y py

[ℒ(y, Fy(Gx(y)))] +
λcyc𝔼z pz

[ℒ(Gy(z), Fy(Gx(Gy(z))))] .
[DSGAN]

(6)

The above training strategy is reminiscent of “teacher forcing” [29], a widely-used technique 

for learning recurrent networks whereby previous predictions of a network are replaced with 

their ground-truth values (in our case, replacing Gy(z) with y). The same optimality 

condition as in Theorem 3.1 also holds for DSGANs.

Label editing—Another advantage of SGAN or DSGAN is label editing, because editing 

in label space is much easier than in image space. This allows us to easily incorporate 

human priors into the generating process. For example, at test time, we can perform image 

processing on synthetic labels such as to remove discontinuous membranes or to remove 

mitochondria that are concave or replace with its convex hull.

Conditional label synthesis—We can further split labels into y = (y1, y2). This allows 

us to learn explicit conditionals that might be useful for simulation (e.g., synthesizing 

mitochondria given real cell membranes). This may be suggestive of interventions in a 

causal model (Causal-GAN [14]).

4. Network Architectures

In this section we outline our GAN network architectures, focusing on modifications that 

allow them to scale to high-resolution multi-scale biological images. Specifically, we first 

propose a fully-convolutional label generator which allows arbitrary output sizes; then we 

describe a novel multi-scale patch-discriminator to guide the generators to produce images 

with realistic multi-scale statistics. The fully-convolutional generator and multi-scale 

discriminators define a fully-convolutional GAN (FCGAN).

Fully-convolutional generator—Since the shape of both membrane and mitochondria 

are invariant to spatial location, a fully convolutional network is desirable to model the 

generators. Generators in previous works such as DCGAN take a noise vector as input. As a 

result, the size of their output images is predefined by their network architecture, thus unable 

to produce arbitrarily sized images at test time. We therefore propose to feed a noise 

“image” instead of a vector into the generator. The noise “image” is essentially a 3D tensor 

with the first two dimensions corresponding to the spatial positions. As illustrated in Fig. 3, 

to synthesize arbitrarily large labels, we only need to modify the spatial size of the input 

noise. Fully-convolutional generator is an instantiation of the label generator in Fig. 1-a.
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Multi-scale discriminator—We initially experiment with the patch-based discriminator 

network as in [12], and find that the quality of synthesized labels relates to the patch size 

chosen for the discriminator. On the one hand, if we use a small patch size, the synthesized 

label has locally realistic patterns, but the global structure is wrong as it contains repetitive 

patterns (see Fig. 4 top-right). On the other hand, if we use a large patch-size, the output 

label image resembles a roughly plausible global structure, but lacks local details (see Fig. 4 

bottom-right).

To ensure the generators produce both globally and locally accurate labels and images, we 

propose a multi-scale discriminator architecture. As illustrated in Fig. 4, the input label (or 

image) is first down-sampled to different scales and then fed into individual discriminators. 

The final discriminator output is a weighted summation of the discriminators for each scales:

Vy(Gy, Dy) = 𝔼y py
[ ∑
i ∈ I

λi log (Dy
i (πi(y)))] + 𝔼z pz

[ ∑
i ∈ I

λi log (1 − Dy
i (πi(Gy(z))))] (7)

Here, i is the image pyramid level index, πi’s denote down-sample transformations and λi’s 

are predefined coefficients.

Conditional generator—Inspired by cascaded refinement networks (CRN) from [6], we 

design architecturally similar generators for both conditional image synthesis (y ↦ x) and 

conditional label synthesis (y1 ↦ y2). Compared to U-Net [24] which is originally adopted 

in pix2pix, CRN is less prone to mode collapse. Please see more discussions in 

Supplementary B.

5. Experiments

As illustrated in Fig. 1-a, the proposed generative process contains two parts: (1) noise ↦ 
label, (2) label ↦ image. Thus our generative models output both labels and images that are 

paired. In this paper, we also evaluate our methods on these two levels: (1) labels, and (2) 

images. Particularly, on the label level we locally compare the shape features of single cells 

with real ones, and globally we compute statistics of multiple cells. On labels, we also 

evaluate the model capacity. On the image level, we measure image qualities by 

segmentation accuracy. Also, user studies are conducted on both levels.

5.1. Metrics and Baselines

Shape features—Following past work [31], we evaluate the accuracy of synthetic images 

by (1) training a real/fake classifier, and (2) counting the portion of synthetic samples that 

fool the classifier. We train SVM classifiers on a set of 89 features [31] that have been 

demonstrated to very accurately distinguish cell patterns in FM images, and which are 

extracted from label images of single cells with mitochondria. Example statistics include 49 

Zernike moment features, 8 morphological features, 5 edge features, 3 convex hull features 

etc.
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Global statistics—Such shape-based features used above are typically defined for a single 

cell. We therefore also extracted global statistics across multiple cells, including 

distributions of cell size, mitochondria size and mitochondria roundness [32] etc.

User studies—We design an interface similar to that in [25], where generated images are 

presented with a prior of 50%. Intermediate labels are edited for better visual quality 

(samples shown in Fig. 6, cropped to 512 × 512).

Dataset—We used a publicly available VNC dataset [10] that contains a stack of 20 

annotated sections of the Drosophila melanogaster third instar larva ventral nerve cord 

(VNC) captured by serial section Transmission Electron Microscopy (ssTEM). The spatial 

resolution is 4.6 × 4.6×50 nm/pixel. It provides segmentation annotations for cell 

membranes, glia, mitochondria and synapse. Through out experiments, the first 10 sections 

are used for training and the remaining 10 sections are used for validation.

Parametric baseline—To construct baselines for our proposed methods, we compare to a 

well-established parametric model from [31] for synthesizing fluorescent images of single 

cells, which is trained by substituting nuclei with mitochondria. One noticeable disadvantage 

of this approach is that it lacks the capability to synthesize multiple cells. It also leverages 

supervision since the shape model is trained on labels.

Non-parametric baseline—We also consider a nonparametric baseline that generates 

samples by simple selecting a random image from the training set. We know that, by 

construction, such a “trivial” generative model will produce perfectly realistic samples, but 

importantly, those samples will not generalize beyond the training set. We demonstrate that 

such a generative model, while quite straightforward, presents a challenging baseline 

according to many evaluation measures.

5.2. Results

First, we present evaluation results on labels. For shape classifiers, example single cell labels 

are shown in Fig. 7 (more in Supplementary E). From Fig. 8-a, we conclude that SGAN/

DSGAN and JointGAN outperform the parametric and unsupervised baselines, which is 

confirmed by user studies shown in Fig. 9-a. A qualitative visualization of the shape features 

is shown in Fig 10-a. Moreover, SGAN and DSGAN can recover the global statistics of cells 

as well (Table 1). Not surprisingly, shape features and global statistics extracted from the 

trivial non-parametric baseline model look perfect, however, the total number of different 

images that can be generated (which is also referred to as the support size of the generated 

distribution) is largely confined by the size of the dataset.

Support size—To address this limitation, we estimate the support size of the generated 

distribution induced by our model by computing the number of samples that need to be 

generated before encountering duplicates (the “Birthday Paradox” test, as proposed in past 

work [2]). Our model is able to produce much more diverse samples (please see Supplement 

D for details).
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Network ablation study—As discussed, our proposed methods can produce accurate 

labels, which is achieved by two architectural modifications: (1) fully-convolutional 

generation, and (2) multi-scale discrimination. To verify their effectiveness, we conduct 

ablation studies, and particularly, compare FCGAN with three baselines: Non-FC, where Gy 

is not fully-convolutional; Non-MS, where Dy only contains a single discriminator; vanilla 

DCGAN, whose results are not shown because of poor qualities (cannot extract single cells 

from synthesized labels). Quantitatively, Fig. 8-b illustrates that FCGAN outperforms 

baselines by a large margin. A t-SNE visualization is shown in Fig. 10-b. Qualitatively, as 

shown in Fig. 11, Non-FC, Non-MS and DCGAN all suffer from mode collapse.

Segmentation accuracy—Following past work, we also evaluate realism of an image by 

the accuracy of an off-the-shelf segmentation network. We report mean IU and negative log 

likelihood (or NLL). Particularly, for SGAN and DSGAN, we take their image generators 

and use them to render images from a fixed set of pre-generated synthetic labels, which is 

used as “ground-truth” for evaluating segmentation accuracy. The reason is that eventually at 

test time, we follow the same process of rendering synthetic images from generated labels. 

As shown in Table 2, DSGAN has better segmentation accuracy than SGAN and Joint-GAN, 

which is confirmed by user studies in Fig. 9-b.

SGAN v.s. DSGAN—Perhaps it is not surprising that DSGAN performs better than 

SGAN, since it makes use of an additional reconstruction loss that ensures that generated 

images will produce segmentation labels that match (or reconstruct) those used to produce 

the generated images. In theory, one could add such a reconstruction loss to SGAN. 

However, Fig. 12 shows that SGAN+reconstructor actually has a lower mean IU (86.8%) 

than vanilla SGAN (87.2%). Interestingly, because SGAN explicitly factors synthesis into 

two distinct stages, one can evaluate the second stage module p(x|y) using synthetic labels ŷ. 

Under such an evaluation, a reconstruction loss helps (88.3%). In fact, we found one could 

“game” the segmentation metric by using a pre-trained reconstructor, producing a mean IU 

of 93.8%. We found these generated images to be less visually-pleasing, suggesting that the 

generator tends to overfits to some common patterns recognized by the reconstructor.

6. Discussion

In this work, we explore methods towards supervised GAN training, where the generative 

process is factorized and guided by structural labels. New modifications for both generators 

and discriminators are also proposed to alleviate mode collapse and allow fully-

convolutional generation. Finally, we demonstrate by extensive evaluation that our 

supervised GANs can synthesize considerably more accurate images than unsupervised 

baselines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Han et al. Page 9

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported in part by National Institutes of Health grant GM103712. We thank Peiyun Hu and Yang 
Zou for their helpful comments. We would like to specially thank Chaoyang Wang for insightful discussions.

References

1. Arganda-Carreras I, Turaga SC, Berger DR, Cireşan D, Giusti A, Gambardella LM, Schmidhuber J, 
Laptev D, Dwivedi S, Buhmann JM, et al. Crowdsourcing the creation of image segmentation 
algorithms for connectomics. Frontiers in neuroanatomy. 2015; 9

2. Arora S, Zhang Y. Do gans actually learn the distribution? an empirical study. 2017 arXiv preprint 
arXiv:1706.08224. 

3. Boland MV, Murphy RF. A neural network classifier capable of recognizing the patterns of all major 
subcellular structures in fluorescence microscope images of hela cells. Bioinformatics. 2001; 
17(12):1213–1223. [PubMed: 11751230] 

4. Cao C, Liu X, Yang Y, Yu Y, Wang J, Wang Z, Huang Y, Wang L, Huang C, Xu W. , et al. Look and 
think twice: Capturing top-down visual attention with feedback convolutional neural networks. 
Proceedings of the IEEE International Conference on Computer Vision; 2015. 2956–2964. 

5. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, 
Lindquist RA, Moffat J, et al. Cellprofiler: image analysis software for identifying and quantifying 
cell phenotypes. Genome biology. 2006; 7(10):R100. [PubMed: 17076895] 

6. Chen Q, Koltun V. Photographic image synthesis with cascaded refinement networks. 2017 arXiv 
preprint arXiv:1707.09405. 

7. Chessel A. An overview of data science uses in bioimage informatics. Methods. 2017

8. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J. Deep neural networks segment neuronal 
membranes in electron microscopy images. Advances in neural information processing systems. 
2012:2843–2851.

9. Denton EL, Chintala S, Fergus R, et al. Deep generative image models using a laplacian pyramid of 
adversarial networks. Advances in neural information processing systems. 2015:1486–1494.

10. Gerhard S, Funke J, Martel J, Cardona A, Fetter R. Segmented anisotropic ssTEM dataset of neural 
tissue. 2013 [accessed January 26, 2018]

11. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 
Generative adversarial nets. Advances in neural information processing systems. 2014:2672–2680.

12. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial 
networks. 2016 arXiv preprint arXiv:1611.07004. 

13. Jones C, Sayedhosseini M, Ellisman M, Tasdizen T. Neuron segmentation in electron microscopy 
images using partial differential equations. Biomedical Imaging (ISBI), 2013 IEEE 10th 
International Symposium on; IEEE; 2013. 1457–1460. 

14. Kocaoglu M, Snyder C, Dimakis AG, Vishwanath S. Causalgan: Learning causal implicit 
generative models with adversarial training. 2017 arXiv preprint arXiv:1709.02023. 

15. Lee K, Zlateski A, Ashwin V, Seung HS. Recursive training of 2d–3d convolutional networks for 
neuronal boundary prediction. Advances in Neural Information Processing Systems. 2015:3573–
3581.

16. Loew LM, Schaff JC. The virtual cell: a software environment for computational cell biology. 
TRENDS in Biotechnology. 2001; 19(10):401–406. [PubMed: 11587765] 

17. Lopez-Paz D, Oquab M. Revisiting classifier two-sample tests. 2016 arXiv preprint arXiv:
1610.06545. 

18. Maaten LvdHinton G. Visualizing data using t-sne. Journal of Machine Learning Research. Nov.
2008 9:2579–2605.

19. Meijering E, Carpenter AE, Peng H, Hamprecht FA, Olivo-Marin J-C. Imagining the future of 
bioimage analysis. Nature biotechnology. 2016; 34(12):1250–1255.

20. Metz L, Poole B, Pfau D, Sohl-Dickstein J. Unrolled generative adversarial networks. 2016 arXiv 
preprint arXiv:1611.02163. 

Han et al. Page 10

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans. 2016 arXiv 
preprint arXiv:1610.09585. 

22. Osokin A, Chessel A, Salas REC, Vaggi F. Gans for biological image synthesis. ICCV. 2017

23. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional 
generative adversarial networks. 2015 arXiv preprint arXiv:1511.06434. 

24. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 
segmentation. International Conference on Medical Image Computing and Computer-Assisted 
Intervention; Springer; 2015. 234–241. 

25. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for 
training gans. Advances in Neural Information Processing Systems. 2016:2234–2242.

26. Svoboda D, Homola O, Stejskal S. Generation of 3d digital phantoms of colon tissue. International 
Conference Image Analysis and Recognition; Springer; 2011. 31–39. 

27. Svoboda D, Kozubek M, Stejskal S. Generation of digital phantoms of cell nuclei and simulation of 
image formation in 3d image cytometry. Cytometry part A. 2009; 75(6):494–509.

28. Wang X, Gupta A. Generative image modeling using style and structure adversarial networks. 
European Conference on Computer Vision; Springer; 2016. 318–335. 

29. Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural 
networks. Neural computation. 1989; 1(2):270–280.

30. Zhang H, Deng Z, Liang X, Zhu J, Xing EP. Structured generative adversarial networks. Advances 
in Neural Information Processing Systems. 2017:3900–3910.

31. Zhao T, Murphy RF. Automated learning of generative models for subcellular location: building 
blocks for systems biology. Cytometry Part A. 2007; 71(12):978–990.

32. Zheng J, Hryciw R. Traditional soil particle sphericity, roundness and surface roughness by 
computational geometry. Géotechnique. 2015; 65(6):494–506.

33. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent 
adversarial networks. 2017 arXiv preprint arXiv:1703.10593. 

Han et al. Page 11

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Generative pipeline: Given noise “image” z sampled from a Gaussian distribution, our 

label generator Gy generates a label image, which is then translated into an EM image by 

Gx. (b) Ground-truth label-image pair. (c) Label and image pair generated by our supervised 

GANs (SGAN), that is capable of generating continuous membranes (red lines) and 

correctly positioned mitochondria (green blobs). (d) Image synthesized by unsupervised 

GANs, in which the label is generated by a pre-trained semantic segmentation network. 

Unsupervised GAN is able to produce pixel-level details locally but fails to capture 

structures globally.
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Figure 2. 
We compare different GAN architectures for injecting supervision (provided with labels y) 

into a generative model of x. (a) A standard unsupervised GAN for generating x. (b) A GAN 

defined over a joint variable x′ = (x, y). (c) SGAN, which is a supervised GAN that is 

composed of an initial GAN {Gy,Dy} that generates labels y followed by a conditional GAN 

{Gx,Dx} that generates images x from y. (d) A Deeply supervised GAN (DSGAN), 

equivalent to a single GAN that is provided deep supervision for generating labels at an 

intermediate stage. Performance is further improved by adding a reconstructor Fy that 

ensures that generated images can be used to predict labels with low reconstruction error 

(Eq. 6).
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Figure 3. 
A fully-convolutional generator Gy (FCGAN). Left: By changing the size of the input noise 

“image”, our FCGAN generator can synthesize arbitrarily large labels. Right: Architecture 

of the fully-convolutional generator.
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Figure 4. 
Multi-scale discriminators for Dy and Dx. Left: We construct an image pyramid from the 

generated label (or image), and feed patches from this pyramid to multiple patch-based 

discriminators. Right: Single-scale discriminators with small receptive fields (top) tend to 

produce accurate local structure, but inaccurate repetitive global structure. Similarly, single-

scale discriminators with large receptive fields produce accurate global structure, but fail to 

generate accurate local textures.

Han et al. Page 15

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Conditional image synthesis. Given true label y, we sample image Gx(y), compared to real 

image x.
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Figure 6. 
Samples of our full model. (a)We first sample synthetic label ŷ = Gy(z) from noise z, then 

generate image Gx(ŷ). We perform label editing (remove discontinuous membranes and 

concave mitochondria) on synthetic labels. (b) Label-image pairs directly synthesized by 

FCGAN. (c) Images are first generated by FCGAN then labels are inferred by an off-the-

shelf segmentation network. Some pixels are labeled in yellow because because we use two 

separate segmentation networks for membranes and mitochondria.
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Figure 7. 
Samples of single cell labels, from on which biological markers are extracted. More samples 

for other baselines are given in Supplementary E. Quantitative results can be found in Fig. 

8(a) (b).
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Figure 8. 
Evaluating realism with image classifiers. SVM classifiers are trained to distinguish real and 

synthetic single-cell labels based on shape features as described in section 5.1. Bar plot 

shows percentage of synthetic labels being classified as real ones, higher is better.
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Figure 9. 
Evaluating realism with user studies. Bar plot shows percentage of synthetic images being 

classified by users as real ones, higher is better. (a) Users are shown mixtures of real and 

synthetic labels of single cells. (b) Users are shown mixtures of real and synthetic full 

images.
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Figure 10. 
2-D t-SNE [18] visualization of the 89-dimensional shape features. (a) Features of DSGAN, 

SGAN and JointGAN well overlap with real ones (Non-Parametric baseline), while features 

of Unsupervised-GAN or parametric baseline are easily separable. (b) Non-FC and Non-MS 

only covers parts of the real (projected) feature distribution.
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Figure 11. 
Label synthesis, raw output without label editing. Non-FC, Non-MS and DCGAN all suffer 

from mode collapse: Non-FC, patterns at four sides are the same across samples, inner 

patterns are also repetitive; Non-MS, repetitive patterns show at different locations; 

DCGAN, samples are blurry and almost identical.
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Figure 12. 
Synthetic image samples and segmentation accuracies of different training approaches. We 

take Gx’s and evaluate segmentation accuracies on a same set of generated labels. Gx of 

DSGAN yields higher segmentation accuracy but does not show obvious advantage visually. 

DSGAN with a pre-trained reconstructor achieves the highest score but not in terms of 

visual inspection.
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Table 2

Segmentation accuracies for SGAN/DSGAN and baselines. The mean IU and NLL of SGAN/DSGAN both 

match those of real cell images. Non-FC and Non-MS have high segmentation accuracy due to mode collapse. 

Unsupervised-GAN is not shown because it does not provide “ground-truth” label automatically

Dataset mean IU NLL

Non-Param 88.3% 0.112 ± 0.006

DSGAN 89.3% 0.108 ± 0.006

SGAN 87.2% 0.132 ± 0.006

Joint 81.8% 0.177 ± 0.013

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2018 September 01.


	Abstract
	1. Introduction
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	GANs—Our network architecture is based on DCGAN [23], which introduces convolutional network connections. We make several modifications suited for processing biological data, which tends to be high-resolution and encode spatial structures at multiple scales. As originally defined, the first layer is not convolutional since it processes an input noise “vector”. We show that by making all network connections convolutional (by converting the noise vector to a noise “image”), the entire generative model is convolutional. This in turns allows for efficient training (through learning on small convolutional crops) and high-quality image synthesis (through generation of larger noise images). We find that multi-scale modeling is crucial to synthesizing accurate spatial structures across varying scales. While past work has incorporated multi-scale cues into the generative process [9], we show that multiscale discriminators help further produce images with realistic multi-scale statistics.Supervision—Most GANs work with unsupervised data, but there are variants that employ some form of auxiliary labels. Conditional GANs make use of labels to learn a GAN that synthesizes pixels conditioned on an label image [12] or image class label [21], but we use supervision to learn an end-to-end generative model that synthesizes pixels given a noise sample. Similarly, methods for semi-supervised learning with GANs [30] tend to factorize generative process into disentangled factors similar to our labels. However, such factors tend to be global (such as an image class label), which are easier to synthesize than spatially-structured labels. From this perspective, our approach is similar to [28], who factorizes image synthesis into separate geometry and style stages. In our case, we make use of semantic labels rather than metric geometry as supervision. Finally, most related to us is [22], who uses GANs to synthesize fluorescent images using implicit supervision from cellular staining. Our work focuses on EM images, which are high resolution (and so allows for modeling of more detailed substructure), and crucially makes use of semantic supervision to help guide the generative process.
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	Factorization—Rather than learning a generative model for the joint distribution over x, y, we can factorize it into p(x, y) = p(y)p(x|y) and learn generative models for each factor. This factorization makes intuitive sense since it implicitly imposes a causal relation [14]: first geometric labels are generated with Gy : z ↦ y, and then image pixels are generated conditioned on the generated labels, Gx : y ↦ x. We refer to this approach as SGAN (supervised GANs), as illustrated in Fig. 2-b,c:(3)In theory, one could also factorize the joint into p(x, y) = p(x)p(y|x), which is equivalent to training a standard unsupervised GAN for x and a conditional model for generating labels from x. The latter can be thought of as a semantic segmentation network. We compare to such an alternative factorization in our experiments, and show that conditioning on labels first produces significantly more accurate samples of p(x, y).Optimization—Because value function V (G,D) decouples, one can train {Dy,Gy} and {Dx,Gx} independently:(4)Using arguments similar to those from [11], one can show that SGAN can recover true data distribution where the discriminator D and generators G are optimally trained:Theorem 3.1: The global minimum of C(G) = maxD V (G,D) is achieved if and only if q(y) = p(y) and q(x|y) = p(x|y), where p’s are true data distributions and q’s are distributions induced by G.Proof: Given in Supplementary A.End-to-end learning—The above theorem demonstrates that SGANs will capture the true joint distribution over labels and data if trained optimally. However, when not optimally trained (because of optimization challenges or limited capacity in the networks), one may obtain better results through end-to-end training. Intuitively, end-to-end training optimizes Gx(y) on samples of labels ŷ produced by the initial generator Gy(z), rather than ground-truth labels y. To formalize this, one can regard Gy and Gx as sub-networks of a single larger generator which is provided deep supervision at early layers: 
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(6)The above training strategy is reminiscent of “teacher forcing” [29], a widely-used technique for learning recurrent networks whereby previous predictions of a network are replaced with their ground-truth values (in our case, replacing Gy(z) with y). The same optimality condition as in Theorem 3.1 also holds for DSGANs.Label editing—Another advantage of SGAN or DSGAN is label editing, because editing in label space is much easier than in image space. This allows us to easily incorporate human priors into the generating process. For example, at test time, we can perform image processing on synthetic labels such as to remove discontinuous membranes or to remove mitochondria that are concave or replace with its convex hull.Conditional label synthesis—We can further split labels into y = (y1, y2). This allows us to learn explicit conditionals that might be useful for simulation (e.g., synthesizing mitochondria given real cell membranes). This may be suggestive of interventions in a causal model (Causal-GAN [14]).
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