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Abstract

Incorporating encoding-decoding nets with adversarial
nets has been widely adopted in image generation tasks.
We observe that the state-of-the-art achievements were ob-
tained by carefully balancing the reconstruction loss and
adversarial loss, and such balance shifts with different net-
work structures, datasets, and training strategies. Empiri-
cal studies have demonstrated that an inappropriate weight
between the two losses may cause instability, and it is tricky
to search for the optimal setting, especially when lacking
prior knowledge on the data and network. This paper gives
the first attempt to relax the need of manual balancing
by proposing the concept of decoupled learning, where a
novel network structure is designed that explicitly disentan-
gles the backpropagation paths of the two losses. In exist-
ing works, the encoding-decoding nets and GANs are in-
tegrated by sharing weights on the generator/decoder, thus
the two losses are backpropagated to the generator/decoder
simultaneously, where a weighting factor is needed to bal-
ance the interaction between the two losses. The decoupled
learning avoids the interaction and thus removes the re-
quirement of the weighting factor, essentially improving the
generalization capacity of the designed model to different
applications. The decoupled learning framework could be
easily adapted to most existing encoding-decoding-based
generative networks and achieve competitive performance
without the need of weight adjustment. Experimental results
demonstrate the effectiveness, robustness, and generality of
the proposed method. The other contribution of the paper is
the design of a new evaluation metric to measure the image
quality of generative models. We propose the so-called nor-
malized relative discriminative score (NRDS), which intro-
duces the idea of relative comparison, rather than providing
absolute estimates like existing metrics. The demo code is
available1.

1https://github.com/ZZUTK/
Decoupled-Learning-Conditional-GAN

1. Introduction

Generative adversarial networks (GANs) [3] is an adver-
sarial framework that generates images from noise while
preserving high fidelity. However, generating random im-
ages from noise doesn’t meet the requirements in many real
applications, e.g., image inpainting [16], image transforma-
tion [4, 21], image manipulation [23, 25], etc. To over-
come this problem, recent works like [19, 13] concatenate
additional features generated by an encoder or certain ex-
tractor to the random noise or directly replace the noise
by the features. In most recent practices, the encoding-
decoding networks (ED), e.g., VAE [5], AAE [10], Au-
toencoder [8], etc., have been the popular structure to be
incorporated with GANs [3] for image-conditional mod-
eling, where the encoder extracts features, which are then
fed to the decoder/generator to generate the target images.
The encoding-decoding network tends to yield blurry im-
ages. Incorporating a discriminator, as empirically demon-
strated in many works [6, 4, 7, 23, 9, 26, 24], effectively
increases the quality (i.e., reality and resolution) of gener-
ated images from the encoding-decoding networks. In re-
cent two years, the adversarial loss has become a common
regularizer for boosting image quality, especially in image
generation tasks.

In existing works that incorporate the encoding-decoding
networks (ED) with GANs, the decoder of ED and genera-
tor of GAN share the same network and parameters, thus the
reconstruction loss (from ED) and the adversarial loss (from
discriminator) are both imposed on the decoder/generator.
Although ED is known to be stable in training, and many
alternatives of GANs, e.g., DCGAN [17], WGAN [1], LS-
GAN [11], etc., have stabilized the training of GANs, cou-
pling the reconstruction loss and the adversarial loss by
making them interact with each other may yield unstable
results, e.g., introducing artifacts as shown in Fig. 1. We ob-
serve the increased details of generated images as compared
to the image generated from ED only (the top row in Fig. 1
where the weight of adversarial loss is 0). However, we
also observe the obvious artifacts introduced by adding the
adversarial loss (e.g., the 1st, 2nd faces with weights 0.01
and 0.1). A higher weight on the adversarial loss preserves
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Figure 1. Results generated from the coupled network of ED and
GAN. Please zoom in for more details. The weight of reconstruc-
tion loss is 1, and the weight of adversarial loss is on the left.

richer details in generated images but suffering higher risk
of introducing significant artifacts or even causing instabil-
ity, while a lower weight on the adversarial loss would not
effectively boost the image fidelity. Generally, the trade-off
between the two losses needs to be carefully tuned, other-
wise, the generated images may present significant artifacts,
e.g., stripe, spots, or anything visually unrealistic.

Existing works generally arrive at an appropriate weight
between the two losses by conducting extensive empirical
study; and yet this weight may vary with different network
structures or different datasets used.

In this paper, we give the first attempt to relax the man-
ual balancing between the two losses by proposing a novel
decoupled learning structure. Moving away from the tradi-
tional routine of incorporating the ED and GAN, decoupled
learning explicitly disentangles the two networks, avoid-
ing interaction between them. To make the presentation
easy to follow, we denote the coupled structure used in ex-
isting works as ED+GAN2, and the proposed method as
ED//GAN3. The contributions of this paper could be sum-
marized from the following three aspects:

• We propose the decoupled learning (ED//GAN) to
tackle the ubiquitous but often neglected problem in
the widely adopted ED+GAN structure that removes
the need for manual balancing between the reconstruc-
tion loss and adversarial loss. To the best of our knowl-
edge, this is the first attempt to deal with this issue.

• Based on the proposed decoupled learning
(ED//GAN), we further observe its merit in visu-
alizing the boosting effect of adversarial learning.
Although many empirical studies demonstrated the
effect of GAN in the visual perspective, few of them
could demonstrate how GAN sharpens the blurry
output from ED, e.g., what kinds of edges and textures
could be captured by GAN but missed by ED.

2The coupled structures used in existing works are denoted as ED+GAN because they add the effects of ED and
GAN together during training.

3The proposed decoupled learning is denoted as ED//GAN, indicating that the effect from ED and GAN are
learned/propagated separately through the two networks.

• Moving away from providing absolute performance
metrics like existing works, we design the normalized
relative discriminative score (NRDS) that provides rel-
ative estimates of the models in comparison. After all,
the purpose of model evaluation is mostly to rank their
performance; therefore, many times, absolute mea-
surements are unnecessary. In essence, NRDS aims
to illustrate whether one model is better or worse than
another, which is more practical to arrive at a reliable
estimate.

2. Decoupled Learning
In the widely used network structure ED+GAN, ED ap-

pears to generate smooth and blurry results due to mini-
mization of pixel-wise average of possible solutions in the
pixel space, while GAN drives results towards the natu-
ral image manifold producing perceptually more convinc-
ing solutions. Incorporating the two parts as in existing
works causes competition between the two networks, and
when the balance point is not appropriately chosen, bad so-
lutions might result causing artifacts in the generated im-
ages. Many empirical studies have demonstrated that it does
not necessarily boost the image quality by topping a GAN
to ED. We aim to avoid such competition by training ED
and GAN in a relatively independent manner – we preserve
the structures of ED and GAN without sharing parameters,
as compared to existing works where the parameters of de-
coder in ED and generator in GAN are shared. The inde-
pendent network design explicitly decouples the interaction
between ED and GAN, but still follows the classic objective
functions — the reconstruction loss and minimax game for
ED and GAN, respectively. Thus, any existing work based
on ED+GAN can be easily adapted to the proposed structure
without significantly changing their objectives, meanwhile
gaining the benefit of not having to find a balance between
ED and GAN.

2.1. Difference between ED+GAN and ED//GAN

Compared to ED+GAN, the uniqueness of the pro-
posed ED//GAN lies in the two decoupled backpropaga-
tion paths where the reconstruction and adversarial losses
are backpropagated to separate networks, instead of impos-
ing both losses to generator/decoder as done in ED+GAN.
Fig. 2 illustrates the major difference between ED+GAN
and ED//GAN.

In ED+GAN, both reconstruction loss and adversarial
loss are backpropagated to Dec, and the general objective
could be written as

min
Enc,Dec,D

Lconst + λLadv, (1)

where Lconst and Ladv denote the reconstruction and ad-
versarial losses, respectively. The parameter λ is the weight
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Figure 2. Comparison between ED+GAN and ED//GAN. Left: the
existing ED+GAN. Right: the proposed ED//GAN, i.e., decoupled
learning. Enc and Dec are the encoder and decoder networks, and
G and D are the generator and discriminator, respectively. Solid
black arrows denote the feedforward path, and dashed arrows in
red and blue indicate backpropagation of the reconstruction loss
and the adversarial loss, respectively.

to balance the two losses.
In ED//GAN, we are no longer in need of the weight λ

because the backpropagation from two losses are along dif-
ferent paths without interaction. Then, the general objective
for ED//GAN becomes

min
Enc,Dec,G,D

Lconst + Ladv (2)

= min
Enc,Dec

Lconst +min
G,D
Ladv. (3)

2.2. The General Framework

The general framework of the proposed decoupled learn-
ing (ED//GAN) is detailed in Fig. 3, incorporating the
encoding-decoding network (ED) with GAN (i.e., D and
G) in a decoupled manner, i.e., G and Dec are trained
separately corresponding to the adversarial loss and re-
construction loss, respectively. Assuming the input image
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Figure 3. The flow of proposed decoupled learning, i.e., ED//GAN.
L1 indicates the pixel-level `1-norm. Solid black arrows denote
the feedforward path, and dashed arrows in red and blue indicate
the backpropagation from reconstruction loss (L1) and adversar-
ial loss (from D), respectively. The reconstructed image IED is
generated from the decoder (Dec), and the residual IG is gener-
ated from the generator (G). G and Dec share the latent variable z
derived from the encoder (Enc). The final output image Î is ob-
tained through pixel-wised adding the two generated images IG
and IED , as indicated by the

⊕
marker.

I ∈ RH×W×C , where H , W , and C denote the height,
width, and the number of channels, respectively. ED (i.e.,
Enc and Dec) is trained independently from GAN (i.e., G
and D), and the reconstructed image from ED is IED, which
is a blurred version of the input image I . The genera-
tor G, together with the discriminator D, learns IG which
is added to IED to yield the final output image Î . Since

I ≈ Î = IED+IG, the generated images from G is actually
the residual map between IED and Î . Assuming Î is close
to the real image I , then IG would illustrate how adversar-
ial learning increases the resolution and photo-realism of
a blurry image. Generally, IG contains details, e.g., edges
and texture, and specifically, wrinkles and edges of the eyes
and mouth in face images. Therefore, a byproduct of the
decoupled learning is that it provides a direct mechanism to
conveniently illustrate how the adversarial learning boosts
the performance of ED.

In the proposed ED//GAN framework, the gradient de-
rived from the reconstruction loss and adversarial loss are
directed in separated paths without any interaction, avoid-
ing the competition between reconstruction and adversarial
effects which may cause instability as discussed in the in-
troduction. G serves as the subsequent processing block of
ED, recovering details missed by the output from ED. The G
and Dec share the latent variable because of the correspon-
dence between the blurry image IEG and the corresponding
recoverable details IG.

2.3. Training of the ED//GAN

The proposed decoupled learning can be divided into two
parts: 1) reconstruction learning of Enc and Dec and 2)
adversarial learning of G and D. Enc and Dec (i.e., ED)
are trained independently of G and D (i.e., GAN), updated
through the `1−norm in pixel level as shown by the red
dashed arrow in Fig. 3. G and D are trained by the original
objective of GAN, and G is only updated by the adversarial
loss as indicated by the blue dashed arrow. The final output
image is obtained by pixel-wise summation of the outputs
from G and Dec.

2.3.1 Reconstruction Learning

The encoding-decoding network (ED) aims to minimize
the pixel-level error between the input image I and recon-
structed image IED. The training of ED is well known to be
stable, and ED could be any structures specifically designed
for any applications, e.g., U-Net [4] or conditional net-
work [23] with/without batch normalization. Most works
that adopted batch normalization to enhance stability of the
ED+GAN structure may bring a few unfortunate side ef-
fects [2] and hurt the diversity [23] of generated images.
With the proposed ED//GAN, however, batch normalization
becomes unnecessary because the training of ED is isolated
from that of GAN, and ED itself could be stable without
batch normalization. The reconstruction loss of the ED part
can be expressed by

Lconst(Enc,Dec) =‖I −Dec(Enc(I))‖1 (4)
=‖I −Dec(z)‖1 (5)
=‖I − IED‖1, (6)



where Enc and Dec indicate the functions of encoder and
decoder, respectively. The latent variable derived from Enc
is denoted by z. ‖ · ‖1 indicates `1-norm in pixel level.
More general, the latent variable z could be constrained
to certain prior distribution (e.g., Gaussian distribution or
uniform distribution) to achieve generative ability like in
VAE [5] and AAE [10].

2.3.2 Adversarial Learning

In the proposed ED//GAN, GAN works differently from the
vanilla GAN in two aspects: 1) The inputs of G are features
of the input image (sharing the latent variable z with Dec)
rather than the random noise. 2) The fake samples fed to
D are not directly generated by G. Instead, they are con-
ditioned on the output from Dec. Therefore, the losses of
GAN can be expressed as

Ladv(D) =E [log (1−D(I))] + E [logD (IED + IG))],
(7)

Ladv(G) =E [log (1−D (IED +G(Enc(I))))] , (8)

Finally, we obtain the objective of the proposed decoupled
learning (ED//GAN),

min
Enc,Dec

Lconst(Enc,Dec) + min
G
Ladv(G) + min

D
Ladv(D).

(9)

Note that there are no weighting parameters between the
losses in the objective function, which relaxes the man-
ual tuning that may require an expert with strong domain
knowledge and rich experience. During training, each com-
ponent could be updated alternatively and separately be-
cause the three components do not overlap in backpropa-
gation, i.e., the backpropagation paths are not intertwined.
In practice, however, ED could be trained first because it is
completely independent from GAN and GAN operates on
the output of ED.

2.4. Boosting Effect from Adversarial Learning

A side product of the proposed ED//GAN is that it helps
to investigate how the discriminator independently boosts
the quality of generated images. In ED+GAN, however,
the effect of discriminator is difficult to directly identify
because it is coupled with the effect of ED. The learned
residual in ED//GAN is considered the boosting factor from
the adversarial learning (discriminator). Generally, the im-
ages from ED tend to be blurry, while the residual from
GAN carries the details or important texture information
for photo-realistic image generation. Imposing the residual
onto the reconstructed images is supposed to yield higher-
fidelity images as compared to the reconstructed images.

In Fig. 4 (middle picture in each triple), we can observe
that the adversarial learning mainly enhances the edges at

eyebrow, eyes, mouth, and teeth for face images. For the
bird and flower images, the residues further enhance the
color. In some cases, the added details also create artifacts.
In general, adding the residual to the blurry images from
ED (Fig. 4 left), the output images present finer details.

Figure 4. Visualization of the boost from adversarial learning
trained on UTKFace [23], CUB-200 [22], and Oxford Flower [14]
datasets. From left to right in each triple: reconstruction, residual,
and output images from ED//GAN.

An argument on the visualization of adversarial effect
may be that subtracting the result of ED from that of
ED+GAN could also obtain the residual. Although this pro-
cess can roughly visualize the boost from GAN, we empha-
size that “ED+GAN” minus “ED” is not purely the effect
from GAN because the training of GAN is affected by ED in
ED+GAN and vice versa. In the proposed ED//GAN, how-
ever, ED is trained independently from GAN, thus GAN
only learns the residual between real images and those from
ED.

3. Normalized Relative Discriminative Score
In the evaluation of image quality (e.g., reality and reso-

lution), how to design a reliable metric for generative mod-
els has been an open issue. Existing metrics (e.g., inception
score [20] and related methods [15]), although successful in
certain cases, have been demonstrated to be problematic in
others [12]. If a perfect metric exists, the training of gen-
erative models would be much easier because we could use
such metric as loss directly without training a discrimina-
tor. The rationale behind our design is that if it is difficult
to obtain the absolute score (perfect metric) of a model, we
could at least compare which model generates better images
than others. From this perspective, we propose to perform
relative comparison rather than providing evaluation based
on absolute score like existing works. More specifically, we
train a single discriminator/classifier to separate real sam-
ples from generated samples, and those generated samples



closer to real ones will be more difficult to be separated. For
example, given two generative models G1 and G2, which
define the distributions of generated samples pg1 and pg2,
respectively. Suppose the distribution of real data is pdata,
if JSD(pg1|pdata) < JSD(pg2|pdata) where JSD de-
notes the Jensen-Shannon divergence and assume pg1 and
pg2 intersect with pdata, a discriminator/classifier D trained
to classify real samples as 1 and 0 otherwise would show
the following inequality,

Ex∼pdata
[D(x)] ≥ Ex∼pg1 [D(x)] ≥ Ex∼pg2 [D(x)]. (10)

The main idea is that if the generated samples are closer
to real ones, more epochs would be needed to distinguish
them from real samples. The discriminator is a binary clas-
sifier to separate the real samples from fake ones generated
by all the models in comparison. In each epoch, the discrim-
inator output of each sample is recorded. The average dis-
criminator output of real samples will increase with epoch
(approaching 1), while that of generated samples from each
model will decrease with epoch (approaching 0). However,
the decrement rate of each model varies based on how close
the generated samples to the real ones. Generally, the sam-
ples closer to real ones show slower decrement rate. There-
fore, we compare the “decrement rate” of each model to
relatively evaluate their generated images. The decrement
rate is proportional to the area under the curve of average
discriminator output versus epoch. Larger area indicates
slower decrement rate, implying that the generated samples
are closer to real ones. Fig. 5 illustrates the computation of
normalized relative discriminative score (NRDS).

G1 G2 Gn

D

Fake 1 Fake 2 Fake n

Random 
sampling

Real 
samples

Fake?Real?

D

0.1 0.5 0.2

Training TestingShare weight

Figure 5. Illustration of NRDS. Gn indicates the nth generative
model, and its corresponding fake samples are Fake n, which are
smapled randomly. The fake samples from n models, as well as
the real samples, are used to train the binary classifier D (bottom
left). Testing only uses fake samples and performs alternatively
with the traing process. The bottom right shows an example of
averaged output of D from fake samples of each model.

There are three steps to compute the proposed normal-
ized relative discriminative score (NRDS): 1) Obtain the
curve Ci (i = 1, 2, · · · , n) of discriminator output versus
epoch (or mini-batch) for each model (assuming n models

in comparison) during training; 2) Compute the area under
each curve A(Ci); and 3) Compute NRDS of the ith model
by

NRDSi =
A(Ci)∑n
j=1A(Cj)

. (11)

To illustrate the computation of NRDS, Fig. 6 shows a
toy example. Assume the samples named “fake-close” and
“fake-far” are generated from two different models to sim-
ulate the real samples. We train a discriminator on the real
and fake (i.e., fake-close and fake-far) samples. The struc-
ture of discriminator is a neural network with two hidden
layers, both of which have 32 nodes, and ReLU is adopted
as the activation function. After each epoch of training on
the real and fake samples, the discriminator is tested on the
same samples from real, fake-close, and fake-far, respec-
tively. For example, all the real samples are fed to the dis-
criminator, and then we compute the mean of the outputs
from the discriminator. By the same token, we can ob-
tain the average outputs of fake-close and fake-far, respec-
tively. With 300 epochs, we plot the curves shown in Fig. 6
(right). Intuitively, the curve of fake-close approaches zero
slower than that of fake-far because the samples in fake-
close are closer (similar) to the real samples. The area

Figure 6. A toy example of computing NRDS. Left: the real
and fake samples randomly sampled from 2-D normal distribu-
tions with different means but with the same (identity) covariance.
The real samples (blue circle) is with zero mean. The red “x”
and yellow “+” denote fake samples with the mean of [0.5, 0] and
[1.5, 0], respectively. The notation fake-close/far indicates that the
mean of correspondingly fake samples is close to or far from that
of the real samples. Right: the curves of epoch vs. averaged output
of discriminator on corresponding sets (colors) of samples.

under the curves of fake-close (C1) and fake-far (C2) are
A(C1) = 145.4955 and A(C2) = 71.1057, respectively.
From Eq. 11,

NRDS1 =
A(C1)∑2
i=1A(Ci)

= 0.6717 (12)

NRDS2 =
A(C2)∑2
i=1A(Ci)

= 0.3283. (13)

Therefore, we can claim that the model generating fake-
close is relatively better. Note that the actual value of
NRDS for certain single model is meaningless. We can
only conclude that the model with higher NRDS is better



than those with lower NRDS in the same comparison, but
a high NRDS does not necessarily indicate an absolutely
good model.

4. Experimental Evaluation
We evaluate the proposed decoupled learning mainly

from 1) its ability in relaxing the weight setting and 2) its
generality in adapting to existing works. First, we com-
pare the proposed ED//GAN to the traditional ED+GAN
based on the UTKFace dataset [23] using a general (not
fine-tuned) network structure. Then, two existing works,
i.e., Pix2Pix [4] and CAAE [23], are adopted for adaptation,
where the corresponding datasets are use, i.e. UTKFace and
CMP Facade databases [18], respectively.

The UTKFace dataset consists of about 20,000 aligned
and cropped faces with large diversity in age and race. The
decoupled learning applied on the UTKFace dataset aims to
demonstrate the performance on image manipulation tasks.
The CMP Facade dataset is utilized to illustrate the perfor-
mance of the decoupled learning on image transformation
tasks. without parameter tuning on any datasets.

4.1. Comparison between ED//GAN and ED+GAN

For fair comparison, we compare ED//GAN and
ED+GAN on the same network and dataset. This network is
neither specifically designed for any applications nor del-
icately fine-tuned to achieve the best result. The goal is
to illustrate the advantages of ED//GAN as compared to
ED+GAN. Table 1 details the network structure used in this
experiment.

Table 1. The network structure shown in Fig. 3. The size of each
layer is denoted by h×w× c, corresponding to height, width, and
number of channels, respectively.

Enc / D Size
Input 128× 128× 3
Conv, BN, ReLU 64× 64× 64
Conv, BN, ReLU 32× 32× 128
Conv, BN, ReLU 16× 16× 256
Conv, BN, ReLU 8× 8× 512
Conv, BN, ReLU 4× 4× 1024
Reshape, FC, tanh 50 / 1
Dec / G Size
Input 50
FC, ReLU, BN, Reshape 4× 4× 1024
Deconv, BN, ReLU 8× 8× 512
Deconv, BN, ReLU 16× 16× 256
Deconv, BN, ReLU 32× 32× 128
Deconv, BN, ReLU 64× 64× 64
Deconv, tanh 128× 128× 3

To demonstrate the effectiveness of ED//GAN on re-
laxing the weight setting, we compare it to ED+GAN by

changing the weight between the reconstruction loss and
adversarial loss. In the objective function of ED//GAN
(Eq. 9), no weight is required. For comparison purpose,
we intentionally add a weighting parameter λ to the adver-
sarial loss like the objective of GAN (Eq. 1). Iterating λ
from 0.001 to 1 with the step of 10x, we obtain the results
as shown in Fig. 7 after 200 epochs with the batch size of
25. The output images from ED//GAN are relatively higher-

Figure 7. Comparison of ED//GAN (top) and ED+GAN (bottom)
on the UTKFace dataset. From left to right, the weights on the
adversarial loss are 0.001, 0.01, 0.1, and 1, respectively. Please
zoom in for better view.

fidelity and maintain almost the same quality regardless of
the weight change. However, the outputs of ED+GAN sig-
nificantly vary with the weight. In addition, ED+GAN gen-
erates unstable results, e.g., model collapsing and signifi-
cant artifacts. The corresponding NRDS is calculated in Ta-
ble 2, where the number of models in comparison is i = 8
(Eq. 11). The discriminator adopted in NRDS is the same
as D in Table 1.

Table 2. NRDS for different weight settings (Fig. 7).
0.001 0.01 0.1 1 std

ED+GAN .1066 .1143 .1268 .1267 .0099
ED//GAN .1320 .1300 .1300 .1336 .0017

Now, we remove the batch normalization in Enc and Dec
to see whether ED//GAN still yields stable results. Fig. 8
compares the results from ED//GAN and ED+GAN by re-
moving the batch normalization in Enc and Dec. The corre-
sponding NRDS is listed in Table 3.

Table 3. NRDS for different weight settings (Fig. 8).
0.001 0.01 0.1 1 std

ED+GAN .1172 .1143 .1163 .0731 .0215
ED//GAN .1432 .1434 .1458 .1466 .0017

From the two experiments, ED//GAN vs. ED+GAN
with/without batch normalization on ED (i.e., Enc and Dec),
we observe that ED//GAN generally yields higher NRDS,
indicating better image quality. In addition, the NRDS val-
ues for ED//GAN vary much less than those of ED+GAN,



Figure 8. Comparison between ED//GAN (top) and ED+GAN
(bottom) without batch normalization on the UTKFace dataset.
From left to right, the weights on the adversarial loss are 0.001,
0.01, 0.1, and 1, respectively.

as observed from the lower standard deviation (std), indi-
cating robustness against different weights. These obser-
vations completely agree with our claim — ED//GAN sta-
bilizes the training regardless of the trade-off issue in the
traditional ED+GAN structure.

We notice that for ED//GAN, the NRDS value slightly
changes with the change of weight. However, the change
is too small to be observable from visual inspection. We
also observe that NRDS achieves the peak value at certain
weight settings. For example, NRDS achieves the highest
value at λ = 1 in both Tables 2 and 3, which happens to be
the case of the proposed ED//GAN without weight setting.

4.2. Adaptation from Existing Works to ED//GAN

An essential merit of ED//GAN is its adaptability for ex-
isting ED+GAN works. Specifically, an existing work that
adopted the ED+GAN structure could be easily modified to
the ED//GAN structure without significantly reducing the
performance but with the benefit of not having to fine-tune
the weight. To demonstrate the adaptability of ED//GAN,
we modify two existing works: 1) Pix2Pix [4] for image
transformation and 2) CAAE [23] for image manipulation.
According to Fig. 2, the modification is simply to parallelize
a G (the copy of Dec) to the original network. The objec-
tive functions are modified from Eq. 1 to Eq. 3, which is
straightforward to implement.

4.2.1 Adaptation on Pix2Pix

We adapt the network in Pix2Pix [4], which is ED+GAN
structure, to the proposed ED//GAN structure as shown in
Fig. 9.

In Pix2Pix, ED is implemented by the U-Net, which di-
rectly passes feature maps from encoder to decoder, pre-
serving more details. In order not to break the structure of
U-Net, we apply another U-Net as the generator G in the
corresponding ED//GAN version. Fig. 10 compares the re-
sults from Pix2Pix and its ED//GAN version. The reported
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Adversarial 

loss

Pix2Pix (ED+GAN) Adaptation to ED//GAN

U-Net

D

Reconstruction 

loss

Adversarial 

loss
U-Net

U-Net

Figure 9. Left: the network structure of Pix2Pix (ED+GAN).
Right: the adaptation to the proposed ED//GAN. Solid black ar-
rows denote the feedforward path, and dashed arrows in red and
blue indicate backpropagation from the reconstruction loss and the
adversarial loss, respectively.

weight in Pix2Pix is 100:1, where the weight on reconstruc-
tion loss is 100, and 1 on the adversarial loss. We change
the weight setting to 1:1 and 1000:1 to illustrate its effect
on the generated images.

Input Real 1:1 100:1 1000:1 ED//GAN

Figure 10. Comparison between Pix2Pix and its ED//GAN ver-
sion. Pix2Pix generates images at different weight settings as de-
noted by λ:1, where λ and 1 indicate the weights of the reconstruc-
tion loss and adversarial loss, respectively. ED//GAN denotes the
generated images from the modified decoupled structure.

We observe that the generated images with the weight of
1:1 introduce significant artifacts (zoom in for better view).
With higher weight on the reconstruction loss, e.g., 100:1
and 1000:1, more realistic images can be generated, whose
quality is similar to that from the ED//GAN version that
does not need weight setting.

4.2.2 Adaptation on CAAE

We next adapt CAAE [23], a conditional ED+GAN struc-
ture, to the proposed ED//GAN structure as shown in
Fig. 12. CAAE generates aged face by manipulating the
label concatenated to the latent variable z from Enc.

The original network used in CAAE has an extra dis-
criminator on z to force z to be uniformly distributed. We
do not show this discriminator in Fig. 12 because it does
not affect the adaptation. Fig. 11 shows some random ex-
amples to compare the original and modified structures. The
weights of the reconstruction loss and adversarial loss are 1
and 10−4 (i.e., 1:10−4) as reported in the original work. We
use another two different weight settings, 1:10−2 and 1:1,
for the original structure and compare the results with the
corresponding ED//GAN version.



1:10−4 1:10−2 1:1 ED//GAN

Figure 11. Comparison between CAAE [23] and its ED//GAN version. CAAE generates images at different weights as denoted by 1:λ,
where 1 and λ indicate the weights of the reconstruction loss and adversarial loss, respectively. ED//GAN denotes the generated images
from the modified decoupled structure.
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Figure 12. Left: the ED+GAN structure used in CAAE [23] (the
discriminator on z is neglected for simplicity because the modifi-
cation will not affect that part). Right: the adaptation to the pro-
posed ED//GAN. Solid black arrows denote the feedforward path,
and dashed arrows in red and blue indicate backpropagation from
the reconstruction loss and the adversarial loss, respectively. The
label y is concatenated to z and D to control the age.

The NRDS is provided for both adaptation experiments
to statistically analyze the adaptability of ED//GAN, as
shown in Tables 4 and 5, respectively. We observe that the

Table 4. NRDS for Pix2Pix adaptation.

Method ED+GAN ED//GAN
1:1 100:1 1000:1

NRDS .2190 .2641 .2572 .2597

Table 5. NRDS for CAAE adaptation.

Method ED+GAN ED//GAN
1:10−4 1:10−2 1:1

NRDS .2527 .2496 .2430 .2547

ED//GAN structure still, in general, yields higher or similar
NRDS values than the coupled counterpart. Although in Ta-
ble 4, the proposed ED//GAN ranks number two, ED//GAN
achieves the competitive result without the need of tuning
the weight parameter. In Table 5, ED//GAN ranks the top as
compared to the ED+GAN structure. Note that we show al-

ternatives of parameter setting based on the optimal settings
that are already known from the original papers. If design-
ing a new structure without any prior knowledge, however,
it could be difficult to find out the optimal weight with only
a few trials.

It is worth emphasizing that the goal is not to beat the
best result from fine-tuned ED+GAN. Rather, ED//GAN
aims at achieving stable and competitive results without
having to fine-tune the weight.

5. Conclusion
This paper proposed the novel decoupled learning struc-

ture (ED//GAN) for image generation tasks with image-
conditional models. Different from existing works where
the reconstruction loss (from ED) and the adversarial loss
(from GAN) are backpropagated to a single decoder, re-
ferred to as the coupled structure (ED+GAN), in ED//GAN,
the two losses are backpropagated through separate net-
works, thus avoiding the interaction between each other.
The essential benefit of the decoupled structure is such that
the weighting factor that has to be fine-tuned in ED+GAN
is no longer needed in the decoupled structure, thus im-
proving stability without looking for the best weight setting.
This would largely facilitate the wider realization of more
specific image generation tasks. The experimental results
demonstrated the effectiveness of the decoupled learning.
We also showed that existing ED+GAN works can be con-
veniently modified to ED//GAN by adding a generator that
learns the residual.
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[25] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A.
Efros. Generative visual manipulation on the natural
image manifold. In European Conference on Com-
puter Vision, pages 597–613. Springer, 2016.

[26] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks. arXiv preprint arXiv:1703.10593,
2017.


	1 . Introduction
	2 . Decoupled Learning
	2.1 . Difference between ED+GAN and ED//GAN
	2.2 . The General Framework
	2.3 . Training of the ED//GAN
	2.3.1 Reconstruction Learning
	2.3.2 Adversarial Learning

	2.4 . Boosting Effect from Adversarial Learning

	3 . Normalized Relative Discriminative Score
	4 . Experimental Evaluation
	4.1 . Comparison between ED//GAN and ED+GAN
	4.2 . Adaptation from Existing Works to ED//GAN
	4.2.1 Adaptation on Pix2Pix
	4.2.2 Adaptation on CAAE


	5 . Conclusion

