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Abstract—Over the last decade, Convolutional Neural Network (CNN) models have been highly successful in solving complex vision
problems. However, these deep models are perceived as ”black box” methods considering the lack of understanding of their internal
functioning. There has been a significant recent interest in developing explainable deep learning models, and this paper is an effort in
this direction. Building on a recently proposed method called Grad-CAM, we propose a generalized method called Grad-CAM++ that
can provide better visual explanations of CNN model predictions, in terms of better object localization as well as explaining
occurrences of multiple object instances in a single image, when compared to state-of-the-art. We provide a mathematical derivation
for the proposed method, which uses a weighted combination of the positive partial derivatives of the last convolutional layer feature
maps with respect to a specific class score as weights to generate a visual explanation for the corresponding class label. Our extensive
experiments and evaluations, both subjective and objective, on standard datasets showed that Grad-CAM++ provides promising
human-interpretable visual explanations for a given CNN architecture across multiple tasks including classification, image caption
generation and 3D action recognition; as well as in new settings such as knowledge distillation.

Index Terms—Explainable AI, Interpretable ML, Convolutional Neural Networks, Computer Vision
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1 INTRODUCTION

The dramatic progress of machine learning in the form
of deep neural networks has opened up new Artificial
Intelligence (AI) capabilities in real-world applications. It
is no new fact that deep learning models offer tremendous
benefits with impressive results in tasks like object detec-
tion, speech recognition, machine translation to name a few.
However, the connectionist approach of deep learning is
fundamentally different from earlier AI systems where the
predominant reasoning methods were logical and symbolic.
These early systems could generate a trace of their inference
steps, which then became the basis for explanation. On the
other hand, the effectiveness of today’s intelligent systems is
limited by the inability to explain their decisions to human
users. This issue is especially important for risk-sensitive
applications such as security, clinical decision support or
autonomous navigation.

To this end, various methods have been proposed by
researchers over the last few years to know what is beneath
the hood when using deep learning models. For instance,
one category of methods rationalize/justify the decision of a
model by training another deep model which comes up with
explanations as to why the model behaved the way it did.
Another approach has been to probe the black-box neural
network models by trying to change the input intelligently
and analyzing the model’s response to it. While there has
been promising progress in this area (a detailed survey
is presented in Section 2), existing efforts are limited and
the objective to achieve explainable deep learning has a
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long way to go, considering the difficulty and variations
in problem scope.

In the context of understanding Convolutional Neural
Networks (CNNs), Zeiler & Fergus [1] made one of the
first efforts in understanding what a CNN learns. Their
method, however, involves significant computations to gen-
erate this understanding. Zhou et al.followed up on the
same objective in [2] and showed that various layers of
the CNN behave as unsupervised object detectors using a
new technique called CAM (Class Activation Mapping). By
using a global average pooling [3] layer, and visualizing
the weighted combination of the resulting feature maps
at the penultimate (pre-softmax) layer, they were able to
obtain heat maps that explain which parts of an input image
were looked at by the CNN for assigning a label. However,
this technique involved retraining a linear classifier for
each class. Similar methods were examined with different
pooling layers such as global max pooling in [4] and log-
sum-exp pooling in [5]. Selvaraju et al.subsequently [6] came
up with an efficient generalization of CAM, known as Grad-
CAM, which fuses the class-conditional property of CAM
with existing pixel-space gradient visualization techniques
such as Guided Back-propagation [7] and Deconvolution [1]
to highlight fine-grained details on the image. Grad-CAM
made CNN-based models more transparent by visualizing
input regions with high resolution details that are important
for predictions.

While the visualizations generated by gradient-based
methods such as Grad-CAM provide explanations for the
prediction made by the CNN model with fine-grained de-
tails of the predicted class, these methods have limitations
- for example, their performance drops when localizing
multiple occurrences of the same class (Figure 1). In addi-
tion, for single object images, Grad-CAM heatmaps often
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do not capture the entire object in completeness, which we
show is required for better performance on the associated
recognition task. To address these limitations and to extend
the visualizations to spatiotemporal data such as videos,
in this work, we propose Grad-CAM++, a generalized vi-
sualization technique for explaining CNN decisions, which
ameliorates the aforementioned flaws and provides a more
general approach. Our key contributions in this work are
summarized as follows:

• We introduce pixel-wise weighting of the gradients
of the output w.r.t. a particular spatial position in
the final convolutional feature map of the CNN.
This approach provides a measure of importance
of each pixel in a feature map towards the overall
decision of the CNN. Importantly, we derive closed-
form solutions for the pixel-wise weights, as well as
obtain exact expressions for higher order derivatives
for both softmax and exponential output activation
functions. Our approach requires a single backward
pass on the computational graph, thus making it
computationally equivalent to prior gradient-based
methods while giving better visualizations.

• While several methods exist to visualize CNN
decisions, namely, Deconvolution, Guided Back-
propagation, CAM, and Grad-CAM, the assessment
of the quality of visualizations is done mainly
through human evaluations or some auxiliary metric
like localization error with respect to bounding boxes
(ground truth). This need not correlate with the ac-
tual factors responsible for the network’s decision.
We propose new metrics in this work to evaluate
(objectively) the faithfulness of the proposed expla-
nations to the underlying model, i.e., whether the
visualization directly correlates with the decision.
Our results with these metrics show superior per-
formance of Grad-CAM++ over state-of-the-art.

• In accordance with previous efforts in visualizing
CNNs, we also conduct human studies to test the
quality of our explanations. These studies show
that the visualizations produced by Grad-CAM++
instill greater trust in the underlying model (for the
human user) than the corresponding visualizations
produced by Grad-CAM.

• Through both visual examples and objective evalu-
ations, we also show that Grad-CAM++ improves
upon Grad-CAM in weakly supervised localization
of object classes in a given image.

• A good explanation should be able to effectively
distill its knowledge. This aspect of explainable-AI
is largely ignored in recent works. We show that
in a constrained teacher-student setting, it is possi-
ble to achieve an improvement in the performance
of the student by using a specific loss function
inspired from the explanation maps generated by
Grad-CAM++. We introduce a training methodology
towards this objective, and show promising results
of students trained using our methodology.

• Lastly, we show the effectiveness of Grad-CAM++
in other tasks (beyond recognition) - in particular,
image captioning and 3D action recognition. Visual-

ization of CNN decisions so far have largely been
limited to 2D image data, and this is one of very
few efforts (one similar recent effort is [8]) on visual
explanations of 3D-CNNs in video understanding .

2 RELATED WORK

In this section, we present a survey of related efforts in
understanding the predictions of CNNs in recent years. As
mentioned earlier, Zeiler & Fergus [1] proposed one of the
first efforts in this area of understanding deep CNNs, and
developed a deconvolution approach to better understand
what the higher layers in a given network have learned.
“Deconvnet” makes data flow from a neuron activation in
the higher layers, down to the image. In this process, parts
of the image that strongly activate that neuron get high-
lighted. Springenberg et al.[7] extended this work to guided
backpropagation which helped understand the impact of each
neuron in a deep network w.r.t. the input image. These
visualization techniques were compared in [9]. Yosinski et
al.[10] proposed a method to synthesize the input image
that causes a specific unit in a neural network to have a
high activation, for visualizing the functionality of the unit.
A more guided approach to synthesizing input images that
maximally activate a neuron was proposed by Simonyan et
al.in [11]. In this work, they generated class-specific saliency
maps by performing a gradient ascent in pixel space to
reach a maxima. This synthesized image serves as a class-
specific visualization and helps understand how a given
CNN modeled a class.

From a different perspective, Ribeiro et al.[12] introduced
LIME (Local Interpretable Model-Agnostic Explanations), a
method which makes a local approximation to the complex
decision surface of any deep model with simpler inter-
pretable classifiers like sparse linear models or shallow
decision trees. For every test point, analyzing the weights of
the sparse linear model gives an intuition to a non-expert as
to the relevance of that feature in that particular prediction.
Shrikumar et al.[13] more recently proposed DeepLift which
evaluates the importance of each input neuron for a partic-
ular decision by approximating the instantaneous gradients
(of the output with respect to the inputs) with discrete gradi-
ents. This obviates the need to train interpretable classifiers
for explaining each input-output relations (as in LIME) for
every test point. In another approach, Al-Shedivat et al.[14]
proposed Contextual Explanation Networks (CENs), a class
of models that jointly learns to predict and explain its
decision. Unlike existing posthoc model-explanation tools,
CENs combine deep networks with context-specific prob-
abilistic models and construct explanations in the form
of locally-correct hypotheses. Konam [15] developed an
algorithm to detect specific neurons which are responsible
for decisions taken by a network and additionally locate
patches of an input image which maximally activate those
neurons. Lengerich et al.[16] proposed a different method
altogether, where instead of explaining the decision in
terms of the input, they developed statistical metrics to
evaluate the relation between the hidden representations
in a network and its prediction. Another recent work [17],
focusing on interpretability for self-driving cars, trained a
visual attention model followed by a CNN model to obtain



Fig. 1. Success of Grad-CAM++ for: (a) multiple occurrences of the same class (Rows 1-2), and (b) localization capability of an object in an image
(Rows 3-4). Note: All dogs are better visualized in the Grad-CAM++ and Guided Grad-CAM++ saliency maps for input images of rows 1 and 2
as compared to Grad-CAM. Similarly, the entire region of the class is localized for input images of rows 3 and 4 (full body of the snake and the
head/legs of the bird). Grad-CAM heatmaps only exhibit partial coverage.

potentially salient image regions and applied causal filtering
to find true input regions that actually influence the output.

In spite of these recent developments, we are still far
from the desired goal of interpretable deep learning models,
and there is a continued need to develop algorithms that
can generate interpretable explanations of the results of
deep models used across domains. A key objective of these
efforts is to build trust in these systems when integrating
them into our daily lives. Our work in this paper is mainly
inspired by two algorithms, namely CAM [2] and Grad-
CAM [6], which are widely used today [18]. In CAM, the
authors demonstrate that a CNN with a Global Average
Pooling (GAP) layer shows localization capabilities despite
not being explicitly trained to do so. In a CNN with GAP,
the final classification score Y c for a particular class c can be
written as a linear combination of its global average pooled
last convolutional layer feature maps Ak.

Y c =
∑
k

wc
k.
∑
i

∑
j

Ak
ij (1)

Each spatial location (i, j) in the class-specific saliency map
Lc is then calculated as:

Lc
ij =

∑
k

wc
k.A

k
ij (2)

Lc
ij directly correlates with the importance of a particular

spatial location (i, j) for a particular class c and thus func-
tions as a visual explanation of the class predicted by the
network. CAM estimates these weights wc

k by training a

linear classifier for each class c using the activation maps
of the last convolutional layer generated for a given image.
This however limits its explainability prowess to CNNs with
a GAP penultimate layer, and requires retraining of multiple
linear classifiers (one for each class), after training of the
initial model.

Grad-CAM was built to address these issues. This ap-
proach [6] defines the weights wc

k for a particular feature
map Ak and class c as:

wc
k =

1

Z

∑
i

∑
j

∂Y c

∂Ak
ij

(3)

where Z is a constant (number of pixels in the activation
map). Grad-CAM can thus work with any deep CNN where
the final Y c is a differentiable function of the activation
maps Ak, without any retraining or architectural modifi-
cation. To obtain fine-grained pixel-scale representations,
the Grad-CAM saliency maps are upsampled and fused
via point-wise multiplication with the visualizations gen-
erated by Guided Backpropagation [7]. This visualization is
referred to as Guided Grad-CAM.

This approach however has some shortcomings as
shown in Fig 1. Grad-CAM fails to properly localize objects
in an image if the image contains multiple occurrences of the
same class. This is a serious issue as multiple occurrences of
the same object in an image is a very common occurrence
in the real world. Another consequence of an unweighted
average of partial derivatives is that often, the localization
doesn’t correspond to the entire object, but bits and parts



of it. This can hamper the user’s trust in the model, and
impede Grad-CAM’s premise of making a deep CNN more
transparent.

In this work, we propose a generalization to Grad-CAM
which addresses the abovementioned issues and conse-
quently serves as a better explanation algorithm for a given
CNN architecture, and hence the name for the proposed
method, Grad-CAM++. We derive closed-form solutions
for the proposed method and carefully design experiments
to evaluate the competence of Grad-CAM++ both objec-
tively and subjectively. In all our experiments, we compare
the performance of our method with Grad-CAM as it is
considered the current state-of-the-art CNN discriminative
(class specific saliency maps) visualization technique [18].
We now present the proposed methodology, beginning with
its intuition.

3 GRAD-CAM++: PROPOSED METHODOLOGY

3.1 Intuition

Consider a saliency map Lc (as defined in Eqn 2 where i &
j are the iterators over the pixels in the map), and a binary
object classification task, with output 0 if object is absent
or 1 if present. (For image I in Fig. 2, the network outputs
1.) Ak represents the visualization of the kth feature map.
According to previous work [1], [19], each Ak is triggered
by an abstract visual pattern. In this example, Ak

ij = 1 if a
visual pattern is detected else 0. (In Fig. 2, the dark regions
correspond to Ak

ij = 1.) The derivative ∂yc

∂Ak
ij

is expected to
be high for feature map pixels that contribute to the presence
of the object. Without loss of generality, let us assume the
derivative map to be:

∂yc

∂Ak
ij

= 1 if Ak
ij = 1

= 0 if Ak
ij = 0 (4)

Plugging in values from Eqn 4 into Eqn 3, we obtain the
following feature map weights in the case of Grad-CAM for
the given input image I , wc

1 = 15
80 , wc

2 = 4
80 and wc

3 = 2
80 for

the three feature maps. Here Z = 80, the number of pixels in
the feature map. The Grad-CAM saliency map Lc

grad−CAM

is thus obtained using Eqn 2 (refer Fig. 2). Comparing with
the input image I , it is evident that the spatial footprint
of an object in an image is important for Grad-CAM’s
visualizations to be strong. Hence, if there were multiple
occurrences of an object with slightly different orientations
or views (or parts of an object that excite different feature
maps), different feature maps may be activated with dif-
fering spatial footprints, and the feature maps with lesser
footprints fade away in the final saliency map.

This problem can be fixed by taking a weighted average
of the pixel-wise gradients. In particular, we reformulate
Eqn 3 by explicitly coding the structure of the weights wc

k

as:

wc
k =

∑
i

∑
j

αkc
ij .relu(

∂Y c

∂Ak
ij

) (5)

where relu is the Rectified Linear Unit activation function.
Here the αkc

ij ’s are weighting co-efficients for the pixel-wise

gradients for class c and convolutional feature map Ak. In
the above example, by taking

αkc
ij =

1∑
l,m

∂yc

∂Ak
lm

if
∂yc

∂Ak
ij

= 1

= 0 otherwise (6)

presence of objects in all feature maps are highlighted with
equal importance.

The idea behind considering only the positive gradients
in Eqn 5 is similar to works such as Deconvolution [1] and
Guided Backpropogation [7]. wc

k captures the importance
of a particular activation map Ak, and we prefer positive
gradients to indicate visual features that increase the output
neuron’s activation, rather than suppress the output neu-
ron’s activation. An empirical verification of this “positive
gradients” hypothesis is presented later in Section 7.1.

We now present the proposed methodology.

3.2 Methodology
We derive a method for obtaining the gradient weights αkc

ij

for a particular class c and activation map k. Let Y c be the
score of a particular class c. Combining Eqn 1 and Eqn 5, we
get:

Y c =
∑
k

{
∑
a

∑
b

αkc
ab.relu(

∂Y c

∂Ak
ab

)}[
∑
i

∑
j

Ak
ij ] (7)

Here, (i, j) and (a, b) are iterators over the same activation
map Ak and are used to avoid confusion. Without loss of
generality, we drop the relu in our derivation as it only
functions as a threshold for allowing the gradients to flow
back. Taking partial derivative w.r.t. Ak

ij on both sides:

∂Y c

∂Ak
ij

=
∑
a

∑
b

αkc
ab.

∂Y c

∂Ak
ab

+
∑
a

∑
b

Ak
ab{αkc

ij .
∂2Y c

(∂Ak
ij)

2
} (8)

Taking a further partial derivative w.r.t. Ak
ij :

∂2Y c

(∂Ak
ij)

2
= 2.αkc

ij .
∂2Y c

(∂Ak
ij)

2
+
∑
a

∑
b

Ak
ab{αkc

ij .
∂3Y c

(∂Ak
ij)

3
} (9)

Rearranging terms, we get:

αkc
ij =

∂2Y c

(∂Ak
ij)

2

2 ∂2Y c

(∂Ak
ij)

2 +
∑

a

∑
bA

k
ab{

∂3Y c

(∂Ak
ij)

3 }
(10)

Substituting Eqn 10 in Eqn 5, we get the following Grad-
CAM++ weights:

wc
k =

∑
i

∑
j

[

∂2Y c

(∂Ak
ij)

2

2 ∂2Y c

(∂Ak
ij)

2 +
∑

a

∑
bA

k
ab{

∂3Y c

(∂Ak
ij)

3 }
].relu(

∂Y c

∂Ak
ij

)

(11)
Evidently, comparing with Eq 3, if ∀i, j, αkc

ij = 1
Z , Grad-

CAM++ reduces to the formulation for Grad-CAM. Thus,
Grad-CAM++, as its name suggests, can be (loosely) consid-
ered a generalized formulation of Grad-CAM.

In principle, the class score Y c can be any prediction; the
only constraint being that Y c must be a smooth function. For
this reason, unlike Grad-CAM (which takes the penultimate
layer representation as their class score Y c), we pass the
penultimate layer scores through an exponential function,
as the exponential function is infinitely differentiable.



Fig. 2. A hypothetical example elucidating the intuition behind grad-CAM++. The CNN task here is binary object classification. Clearly taking a
weighted combination of gradients Lc

grad−CAM++ provides better salient features (all the spatially relevant regions of the input image are equally
highlighted) than its unweighted counterpart Lc

grad−CAM (some parts of the object are paled out in the saliency map). The values in the pixels of
each saliency map indicates the intensity at that point.

Fig. 3. An overview of all the three methods – CAM, Grad-CAM, Grad-
CAM++ – with their respective computation expressions.

In Fig 1, we illustrate visually the advantage of Grad-
CAM++ over Grad-CAM. A bird’s eye view of all the
three methods – CAM, Grad-CAM, and Grad-CAM++ – is
presented in Fig. 3.

3.3 Computation Analysis

The time overhead for calculating higher-order derivatives
remains of the same order as Grad-CAM, as only the diago-
nal terms are used (no cross higher-order derivatives). If we
pass the penultimate layer scores through an exponential
function and the last layer has only linear or ReLU acti-
vation functions, the calculation of higher-order derivatives
becomes trivial. Let Sc be the penultimate layer scores for
class c.

Y c = exp(Sc) (12)

∂Y c

∂Ak
ij

= exp(Sc)
∂Sc

∂Ak
ij

(13)

The quantity ∂Sc

∂Ak
ij

can be easily calculated using machine
learning libraries such as PyTorch or TensorFlow, which
implement automatic differentiation.

∂2Y c

(∂Ak
ij)

2
= exp(Sc)

[(
∂Sc

(∂Ak
ij)

)2

+
∂2Sc

(∂Ak
ij)

2

]
(14)

Now, assuming a ReLU activation function, f(x) =
max(x, 0), its derivatives are given by:

∂f(x)

∂x
= 1 x > 0

= 0 x ≤ 0
(15)

∂2f(x)

∂x2
= 0 (16)

Eq 16 holds even if the activation function is linear. Inserting
Eq 16 into Eqn 14, we have:

∂2Y c

(∂Ak
ij)

2
= exp(Sc)

(
∂Sc

∂Ak
ij)

)2

(17)

Similarly,

∂3Y c

(∂Ak
ij)

3
= exp(Sc)

(
∂Sc

∂Ak
ij

)3

(18)

Inserting Eqn 17 and Eqn 18 into Eqn 10, we get:

αkc
ij =

( ∂Sc

∂Ak
ij

)2

2( ∂Sc

∂Ak
ij

)2+
∑

a

∑
bA

k
ab(

∂Sc

∂Ak
ij

)3
(19)

With a single backward pass on the computational graph,
all the gradient weights αkc

ij (as defined in Eqn 5) can be
computed. We used the exponential function due to its
simplicity. Other smooth functions such as the softmax acti-
vation function can also be used with corresponding closed-
form expressions to compute the weights. The derivation of
the gradient weights for softmax is given below in Section
3.4.



The saliency maps for a given image, Lc is then calcu-
lated as a linear combination of the forward activation maps,
followed by a relu layer:

Lc
ij = relu(

∑
k

wc
k.A

k
ij) (20)

Similar to Grad-CAM, to generate the final saliency maps,
we carry out pointwise multiplication of the upsampled
(to image resolution) saliency map Lc with the pixel-space
visualization generated by Guided Backpropagation. The
representations thus generated are hence called Guided Grad-
CAM++.

3.4 Gradient Weights for Softmax Function
Like the exponential function, the softmax function is also
smooth and commonly used to obtain final class probabil-
ities in classification scenarios. In this case, the final class
score Y c is:

Y c =
exp(Sc)

Σkexp(Sk)
(21)

where the index k runs over all output classes and Sk is the
score pertaining to output class k in the penultimate layer.

∂Y c

∂Ak
ij

= Y c

[
∂Sc

∂Ak
ij

− ΣkY
k ∂S

k

∂Ak
ij

]
(22)

If the neural network has just linear or ReLU activation
functions then ∂2Sc

(∂Ak
ij)

2 would be 0 (Eqn 16).

∂2Y c

(∂Ak
ij)

2
=
∂Y c

∂Ak
ij

[
∂Sc

∂Ak
ij

− ΣkY
k ∂S

k

∂Ak
ij

]
− Y c

(
Σk

∂Y k

∂Ak
ij

∂Sk

∂Ak
ij

)
(23)

∂3Y c

(∂Ak
ij)

3
=

∂2Y c

(∂Ak
ij)

2

[
∂Sc

∂Ak
ij

− ΣkY
k ∂S

k

∂Ak
ij

]
− 2

∂Y c

∂Ak
ij

(
Σk

∂Y k

∂Ak
ij

∂Sk

∂Ak
ij

)
− Y c

(
Σk

∂2Y k

(∂Ak
ij)

2

∂Sk

∂Ak
ij

)
(24)

Plugging Eqn 23 and Eqn 24 in Eqn 10, we get the gra-
dient weights. Note that although evaluating the gradient
weights in the case of the softmax function is more involved
than the case of the exponential function, it can still be
computed via a single backward pass on the computation
graph for computing the ∂Sk

∂Ak
ij

terms.

4 EXPERIMENTS AND RESULTS
We conducted a comprehensive set of experiments to study
the correlation of the visual explanation with the model
prediction (faithfulness) as well as human interpretability
(trust). Our experiments involved both objective and subjec-
tive assessment, as presented in this section. For all experi-
ments, we used an off-the-shelf VGG-16 [20] model from the
Caffe Model Zoo [21], to be consistent with earlier work that
used the same model [6]. We also show results with AlexNet
[22] and ResNet-50 [23] architectures in the Appendix.
The implementation of our method is publicly available at
https://github.com/adityac94/Grad CAM plus plus.

Fig. 4. Example explanation maps for 2 images generated by Grad-
CAM++ and Grad-CAM.

4.1 Objective Evaluation for Object Recognition
We first evaluate the faithfulness of the explanations gen-
erated by Grad-CAM++ for the object recognition task. For
every image, a corresponding explanation map Ec is gen-
erated by point-wise multiplication of the class-conditional
saliency maps (upsampled to image resolution) with the
original image:

Ec = Lc ◦ I (25)

where ◦ refers to the Hadamard product, I is the input
image, c is the class label predicted by the model, and Lc

is the class-conditional saliency maps as in Eqn 20. The
same procedure was followed for both Grad-CAM++ and
Grad-CAM. Sample qualitative results are shown in Fig.
4. We also studied the performance with three different
metrics: (i) Average drop %; (ii) % increase in confidence;
and (iii) Win % - each of which is described below.

(i) Average Drop %: A good explanation map for a class
should highlight the regions that are most relevant for
decision-making. It is expected that removing parts of an
image will reduce the confidence of the model in its de-
cision, as compared to its confidence when the full image
is provided as input. We leverage this to study the perfor-
mance of the explanation maps generated by Grad-CAM++
and Grad-CAM. We note the change in confidence between
the setting when the full image is provided as input, and
the setting when only the explanation maps are provided as
input. While a reduction in confidence is expected for both
Grad-CAM++ and Grad-CAM (possibly due to removal of
context), we hypothesize that Grad-CAM++ maintains a
higher confidence in the predicted (correct) label than Grad-
CAM. This suggests that the visual explanation of Grad-
CAM++ includes more of what is relevant (be it the object
or the context) for a correct decision.

We compute this metric as the average % drop in the
model’s confidence for a particular class in an image when
having only the explanation map1. The Average Drop %
is expressed as (

∑N
i=1

max(0,Y c
i −O

c
i )

Y c
i

)100, where Y c
i is the

1. If the model predicted the (correct) class label with the full image
as input with confidence 0.8 and the model’s confidence in the class
fell to 0.4 when only shown the explanation map, the % drop in model
confidence would be 50%.

https://github.com/adityac94/Grad_CAM_plus_plus


Method Grad-CAM++ Grad-CAM
Average Drop % 36.84 46.56
(Lower is better)
% Incr. in Confidence 17.05 13.42
(Higher is better)
Win % 70.72 29.28
(Higher is better)

TABLE 1
Results for objective evaluation of the explanations generated by
Grad-CAM++ and Grad-CAM on the ImageNet (ILSVRC2012)

validation set (“incr”=increase).

Method Grad-CAM++ Grad-CAM
Average Drop % 19.53 28.54
(Lower is better)
% Incr. in Confidence 18.96 21.43
(Higher is better)
Win % 61.47 39.44
(Higher is better)

TABLE 2
Results for objective evaluation of the explanations generated by

Grad-CAM++ and Grad-CAM on the PASCAL VOC 2007 validation set
(“incr”=increase).

model’s output score (confidence) for class c on the ith

image and Oc
i is the same model’s confidence in class c with

only the explanation map region as input. We use max in
the numerator to handle cases where Oc

i > Y c
i . This value

is computed per image and averaged over the entire dataset.

(ii) % Increase in Confidence: Complementary to the
previous metric, it would be expected that there must be
scenarios where providing only the explanation map region
as input (instead of the full image) rather increases the
confidence in the prediction (especially when the context
is distracting). In this metric, we measure the number of
times in the entire dataset, the model’s confidence increased
when providing only the explanation map regions as input.
Formally, the % Increase in Confidence metric is defined as
(
∑N

i=1

1Y c
i

<Oc
i

N )100, where 1x is an indicator function that
returns 1 when the argument is true. All other notations are
as defined for the previous metric.

(iii) Win %: To further complement the above metrics, we
also compute a metric that measures the number of times
in th given set of images, the fall in the model’s confidence
for an explanation map generated by Grad-CAM++ is less
(more favorable) than that of Grad-CAM. This value is
expressed as a percentage.

The results of our experiments on the ImageNet
(ILSVRC2012) validation dataset are shown in Table 1. Grad-
CAM++ performs better than Grad-CAM on all three met-
rics. A higher % increase in confidence and a lower average
drop % is consistent with our hypothesis that the pixel-
wise weighting adopted by Grad-CAM++ in generating the
visual explanations is more model-appropriate and consistent
with the model’s prediction. We also performed the same
experiment on the Pascal VOC 2007 validation set. The
results for this experiment are shown in Table 2, which once
again supports the superior performance of Grad-CAM++.
In this case, the Pascal VOC 2007 train set was used to fine-
tune the VGG-16 network (trained on ImageNet).

More empirical results showing the effectiveness of
Grad-CAM++ for other architectures, viz, AlexNet [22] and

Resnet-50 [23] are provided in Appendices A.2 and ??.

4.2 Evaluating Human Trust
In the previous subsection, we explored the faithfulness
of the proposed method; here, we evaluate the human
interpretability or trust of our explanations. We generated
explanation maps for all images in the ImageNet validation
set for 5 classes, leading to a total of 250 images. The expla-
nations generated by Grad-CAM were treated as baseline
for comparison. These maps, along with their corresponding
original image, were shown to 13 human subjects (who have
no knowledge of the field or deep learning whatsoever) and
asked which explanation algorithm invoked more trust in
the underlying model. The explanation algorithm that gets
more votes from the subjects can be considered as invoking
more human trust in the underlying VGG-16 model. To
further substantiate our claim, we chose 5 classes which
have the highest F1-score for the validation dataset (above
0.94). As each class just has 50 images in the validation set,
F1-score (harmonic mean of precision and recall) is a better
suited metric than classification error.

For each image, two explanation maps were generated,
one from Grad-CAM and one from Grad-CAM++. Examples
of some of these explanation maps are presented in Fig 5.
The subjects were provided the class of the image and asked
to select the map they felt best described the object in the
image (without knowledge of which one is Grad-CAM or
Grad-CAM++). The subjects also had the option to select
“same” if they felt both the generated explanation maps
were similar. The responses for each image was normalized,
such that the total score possible for each image is 1.02.
These normalized scores were then added, with the total
achievable score being 250. Grad-CAM++ achieved a score
of 109.69 as compared to 56.08 of Grad-CAM. The remaining
84.23 was labeled as ”same” by the subjects. This empirical
study provides strong evidence for our hypothesis that the
proposed improvement in Grad-CAM++ helps aid human-
interpretable image localization, and thus invokes greater
trust in the model that makes the decision. As Grad-CAM++
is a generalization of Grad-CAM, it performs similar to
Grad-CAM in about 33.69% cases.

4.3 Harnessing Explanations for Object Localization
In this subsection, we show the effectiveness of Grad-
CAM++ for class-conditional localization of objects in a
given image. We selected Pascal VOC 2012 dataset for this
experiment as it has bounding box annotations for each of
its image. The VGG-16 network was fine-tuned on the VOC
2012 train set and evaluations were performed on the VOC
2012 validation set. For a given image and a class c, the
corresponding explanation map Ec(δ) is generated using
Eqn 25, with a slight modification that the class-specific
saliency maps Lcs are min-max normalized and thresholded
by an intensity δ, i.e. all intensities above δ were converted

2. To elaborate on this point, we obtained 13 responses for each
image. For example, among the 13 responses, if 5 chose the explana-
tion map generated by Grad-CAM++, 4 chose the explanation map
generated by Grad-CAM and 4 chose the option “same”, the respective
scores from Grad-CAM++ and Grad-CAM would be 0.38 and 0.31 (with
the remaining being “same”).



Fig. 5. Sample visual explanations on ImageNet generated by Grad-CAM and Grad-CAM++ (Section 4.2)

Fig. 6. Object localization capabilities of Grad-CAM and Grad-CAM++, shown forEc(δ = 0.25). The green boxes represent ground truth annotations
for the images. (Section 4.3)

to 1.0. We define an Intersection over Union (IoU) metric
LoccI(δ), for a class c, threshold value δ and an image I , as:

LoccI(δ) =
Area(internal pixels)

Area(bounding box) +Area(external pixels)
(26)

where Area(bounding box) refers to the area of the
bounding box/es for a class c in a given image I ,
Area(internal pixels) refers to the number of non-zero
pixels in the explanation map that lie inside the bounding
box/es and Area(external pixels) refers to the number of
non-zero pixels that lie outside the bounding box/es. Higher
the value of LoccI(δ), better the localization of the explana-
tion map. We only considered those images in the VOC 2012
val set, which contained bounding box annotations for at
least one class in the predicted Top-5 classes by the VGG-
16 network. The results for this experiment are presented
in Table 3. The same δ was used to threshold both expla-
nation maps (Grad-CAM++ and Grad-CAM) for fairness of

Method Grad-CAM++ Grad-CAM
mLoccI(δ = 0) 0.34 0.33
mLoccI(δ = 0.25) 0.38 0.28
mLoccI(δ = 0.5) 0.28 0.16

TABLE 3
IoU results for object localization on the PASCAL VOC 2012 val set

(higher is better). mLoccI(δ = η) refers to mean LoccI(δ) per label per
image, with a threshold value of δ = η. (Section 4.3)

comparison. The results show Grad-CAM++’s improvement
over Grad-CAM on this metric too. In particular, the IoU
improvement increases with greater values of δ, which
supports our intuition presented in Section 3.1 that Grad-
CAM’s heatmaps of the objects have lower intensity values
in general, when compared to Grad-CAM++. Examples of
the improved object localization obtained by Grad-CAM++
are shown in Fig 6.



5 LEARNING FROM EXPLANATIONS: KNOWLEDGE
DISTILLATION
Inspired by the ideas introduced by Zagoruyko and Ko-
modakis [24], we show that in a constrained teacher-student
learning setting [25]–[28], knowledge transfer to a shallow
student (commonly called knowledge distillation) is possible
from the explanation of CNN decisions generated by Grad-
CAM++. For the first experiment, we use Wide Resnets
[29] for both the student and teacher networks. We train
a WRN-40-2 teacher network (2.2 M parameters) on the
CIFAR-10 [30] dataset. In order to train a student WRN-
16-2 network (0.7 M parameters), we introduce a modified
loss Lexp student, which is a weighted combination of the
standard cross entropy loss Lcross ent and an interpretability
loss, Linterpret:

Lexp student(c,Ws,Wt, I) = Lcross ent(c,Ws(I))+

α(Linterpret(c,Ws,Wt, I)) (27)

where Linterpret is defined as:

Linterpret(c,Ws,Wt, I) = ||Lc
s(Ws(I))−Lc

t(Wt(I))||22 (28)

In the above equations, I refers to the input image and
c denotes the corresponding output class label. Lc is as
defined in Eqn 20 and α is a hyper parameter that controls
the importance given to the interpretability loss.Ws refers to
the weights of the student network, and Wt the weights of
the teacher network. The intuition behind our formulation
in Eqn 27 is that the student network should not only
minimize standard cross-entropy loss for classification, but
also learn from the most relevant parts of a given image
used for making a decision (the Linterpret term) from the
teacher network.

Table 4 shows the results for this experiment.
Lexp student(Grad-CAM++) and Lexp student(Grad-CAM)
refer to loss functions as defined in Eqn 27, where the
explanations for image I are generated using Grad-CAM++
and Grad-CAM respectively. Lcross ent is the normal cross
entropy loss function, i.e. the student network is trained
independently on the dataset without any intervention from
the expert teacher. The first three rows show these results.
We further also included LKD , the knowledge distillation
loss introduced by Hinton et al.in [25] with temperature
parameter set to 4 (same as used in [24]), and these results
are shown in Rows 4-6 of Table 4. The original teacher’s
error rate was 5.8%. These results show that: (i) knowledge
distillation can be improved by considering the explana-
tions of the teacher; and (ii) Grad-CAM++ provides better
explanation-based knowledge distillation than Grad-CAM.
We note that the student considered had a 68.18% reduction
in the number of parameters when compared to the teacher
in this experiment.

To further study the potential of knowledge distillation
using Grad-CAM++, we conducted experiments on the PAS-
CAL VOC 2007 data set, and the results are shown in Table
5. Lcross ent is once again the normal cross entropy loss
function, i.e. the student network is trained independently
on the dataset without any intervention from the expert
teacher. In the CIFAR-10 dataset, each image is of size
32 × 32, allowing little spatial bandwidth for transfer of
salient explanations [24]. However, the VOC 2007 data set

Loss function used Test error rate
Lcross ent 6.78
Lexp student(Grad-CAM++) 6.74
Lexp student(Grad-CAM) 6.86
Lcross ent + LKD 5.68
Lexp student(Grad-CAM++)+LKD 5.56
Lexp student(Grad-CAM)+LKD 5.8

TABLE 4
Results for knowledge distillation to train a student (WRN-16-2) from a

deeper teacher network (WRN-40-2). (Section 5 contains the
description of the loss functions used.)

loss function used mAP (% increase)
Lexp student(Grad-CAM++) 0.42 (35.5%)
Lcross ent + LKD 0.34 (9.7%)
Lcross ent [Baseline] 0.31 (0.0%)

TABLE 5
Results for training a student network with explanations from the
teacher (VGG-16 fine-tuned) and with knowledge distillation on

PASCAL VOC 2007 dataset. The % increase is with respect to the
baseline loss Lcross ent. (Section 5)

has larger images with bigger spatial extents of the visual
explanations for a CNN’s decision. The results show an
increase in the mean Average Precision (mAP) of about 35%
as compared to training the student network solely on the
VOC 2007 train set. The teacher network is a standard VGG-
16 architecture pretrained on Imagenet with the penultimate
layer fine-tuned to the VOC 2007 train set. The student net-
work was a shallower 11-layer CNN with 27M parameters
(an 80% reduction). (The α parameter in Eqn 27 was taken
to be 0.01 for all experiments in this section).

6 EXPLANATIONS FOR IMAGE CAPTIONING AND
3D ACTION RECOGNITION
Similar to other such methods, Grad-CAM++ can be used to
understand any machine learning model’s decision as long
as it utilizes a CNN as an integral module. In this section,
we present the results for experiments on two such tasks -
Image Captioning and 3D Action Recognition. To the best
of our knowledge, this is the first effort to generate visual
explanations of CNNs in the video domain.

6.1 Image Captioning
We considered a standard image captioning model [31]
trained on the Flickr30k data set [32] [33] using an adap-
tation of the popular Show-and-Tell model [34]. The ar-
chitecture includes a CNN to encode the image followed
by an LSTM to generate the captions. For fairness of com-
parison, we use the same settings as used for this task in
Grad-CAM. To generate the heatmaps, Eqn 20 was used
with the log probability of the predicted caption as Y c

(for classification tasks, Y c was related to the output of
the neuron representing the cth class). Fig 7 illustrates the
visual explanations of four randomly chosen images from
the Flickr30k data set for the predicted caption. In all the im-
ages, Grad-CAM++ produces more complete heatmaps than
Grad-CAM. For instance, in the first example, Grad-CAM++
highlights both the girl and the plant for the caption “A
young girl accompanied by a small plant”, whereas Grad-
CAM highlights only the girl. In the second example in the
first row, although the predicted caption is wrong, Grad-
CAM++’s visualization gives insight into what the network



Fig. 7. Visual explanations of image captions predicted by CNN-based neural network architectures using both Grad-CAM and Grad-CAM++.
(Section 6.1)

Method Grad-CAM++ Grad-CAM
Average Drop % 59.79 95.26
(Lower is better)
% Incr. in Confidence 6.68 0.84
(Higher is better)
Win % 94.09 5.91
(Higher is better)

TABLE 6
Results on the 3D action recognition task for visual explanations

generated by Grad-CAM++ and Grad-CAM for 3k videos from the
Sports-1M Dataset using same performance metrics introduced in

Section 4.1 (“incr” denotes increase).

focused on - the colored glasses (which is predicted as
pillars by the network) and the man. Comparatively, Grad-
CAM’s visualization is incomplete with no heat generated
at the man’s spatial location in the image. In order to study
the experiment further with diverse captions, we generated
visual explanations for the four images using 5 different
captions, which were used while training the captioning
model [31]. We show one such result in Figure 13. The
results with the other three images are shown in Appendix
Figures 8, 14 and 15. For all the captions, Grad-CAM++
provides more complete explanations corresponding to the
captions when compared to Grad-CAM.

6.2 3D Action Recognition
For the task of 3D action recognition, we used a 3D-CNN
architecture, in particular, the C3D model [35] trained on the
Sports-1M Dataset [36], which contains 1, 133, 158 YouTube
sports videos annotated with 487 Sports labels. In partic-
ular, we selected windows of 16 frames from each video
to train the model. The visual explanations are generated
from the last convolution layer feature maps of the C3D
model. The generated explanations (for both Grad-CAM
and Grad-CAM++) were upsampled to the video resolution
and then the corresponding explanation video maps were
generated by point-wise multiplication with the original
video. While generating the explanation maps Ec as in
Eqn 25, I is the input video and c is the predicted action
of the video. For empirical evaluation of the generated
explanations, we collected arbitrary 3k videos from Sports-
1M Datsaet [36] and used the same performance metrics

described in Section 4. The results of our experiment on
these randomly selected 3k videos are shown in Table 6.
The performance of Grad-CAM++ is better than Grad-CAM
in all the metrics, thus supporting Grad-CAM++’s merit for
use in video-based classification tasks. Sample qualitative
results are shown in Figure 9, where the 16 frames in a
video is subsampled to 6 frames for clearer presentation
(no handpicking was done while choosing these videos). In
both scenarios, the explanations generated by Grad-CAM++
are more semantically relevant. (We also enclose MPEG
video files as supplementary materials, which provide a
better visualization of our claim. The file name indicates the
action predicted by the CNN model as well as the method
used. For example, tennis.mpg, tennis_gcam.mpg and
tennis_gcam++.mpg refer to the original 16 frame video,
the explanation maps generated using Grad-CAM and ex-
planation maps generated using Grad-CAM++ respectively
when the model predicted “tennis” as the action.) In general,
the generated video explanation maps, Ecs, show a clearer
explanation for the corresponding action in the case of Grad-
CAM++ as compared to Grad-CAM. Grad-CAM++ tends to
highlight the context of the video (similar to images) as less
bright and most discriminative parts as brighter regions in
the video explanations. The quantitative results in Table 6
suggest that the region highlighted by Grad-CAM++ is more
relevant for the prediction made by the model.

7 DISCUSSION

7.1 Why only Positive Gradients in Grad-CAM++?
In Section 3.2, we hypothesize that a weighted combination
of positive gradients w.r.t. each pixel in an activation map
Ak strongly correlates with the importance of that activation
map for a given class c (Eqn 5). In this section, we test the
correctness of this assumption by relaxing the constraint on
the gradients. We take the same VGG-16 model used for
our objective evaluation studies on the Pascal VOC 2007
val set (Section 4.1) and redo the experiment with a slightly
different wc

k:

wc
k =

∑
i

∑
j

αkc
ij .

∂Y c

∂Ak
ij

(29)



Fig. 8. Visual explanations generated by Grad-CAM and Grad-CAM++ on a given image (1) predicting 5 different captions: (2) A little boy rides a
bike down a hill on a miniature dirt bike; (3) A young boy in a helmet rides a bike on the road; (4) A child with a helmet on his head rides a bike; (5)
The young boy pedals quickly at a BMX race; and (6) The little boy rides his bicycle in a race.

Note that the relu() function is dropped as we consider
all the gradients. The αkc

ij s are calculated as in Eqn 10, with
the exception that αkc

ij 6= 0 for negative gradients.

αkc
ij =

∂2Y c

(∂Ak
ij)

2

2 ∂2Y c

(∂Ak
ij)

2 +
∑

a

∑
bA

k
ab{

∂3Y c

(∂Ak
ij)

3 }
(30)

We refer to this modified version of Grad-CAM++ (where
we do not restrict to positive gradients) as Grad-CAM++⊥.
Table 7 shows the poor performance of Grad-CAM++⊥

when compared to Grad-CAM. These results support our
claim that the positive gradients are critical to decide the
importance of an activation map Ak for a given class c.

Method Grad-CAM++⊥ Grad-CAM
- Average drop% 32.43 28.54
(Lower is better)
- % incr. in confidence 19.12 21.43
(Higher is better)
- Win% 26.09 73.91
(Higher is better)

TABLE 7
Results for objective evaluation of explanations generated by

Grad-CAM++⊥ and Grad-CAM on the Pascal VOC 2007 validation set
(2510 images) (“incr” denotes increase). In this experiment, the weights
wc

ks were taken to be a weighed combination of all the gradients of an
activation map Ak (both positive and negative).

7.2 Does Grad-CAM++ do well because of larger maps?
One could question if Grad-CAM++ was doing well because
of larger explanations in each image. In general, we expect
a lower drop in classification score if the explanation map
region provided as input to the model for a given image
I and class c has greater area. We plotted an ROC curve
to measure this trade-off between the spatial area of the
occluded map and the relative confidence in class after
occlusion (that is, the quantity Oc

I∗100
Y c
I

, where Oc
I is new

score with occluded image and Y c
I is original score with

full image as input), for both Grad-CAM and Grad-CAM++.
A threshold parameter θ was varied from 0 to 1 at equally-
spaced discrete intervals to generate the curve. For a given θ,
the occluded image is Oc

i = I ◦∆, where ∆kj = 0 if Lc
kj < γ

else ∆kj = 1. k, j are iterators over the pixels and γ is the

θ-quantile of the empirical distribution of each explanation
region’s pixel values. Formally, Pr(Lc

kj < γ) = θ. The em-
pirical distribution is calculated for each image individually
and then averaged across the dataset. Figure 10 shows the
result. One can observe that at each quantile (θ), Grad-
CAM++ highlights regions that are as faithful or more to
the underlying model than Grad-CAM, irrespective of the
spatial extents.

8 CONCLUSION
In this work, we proposed a generalized approach for visual
explanations of CNN based architectures, Grad-CAM++.
We provided a derivation for our method and showed
that it is a simple, yet effective generalization of earlier,
popularly used, gradient-based visual explanation meth-
ods.Our method addresses the shortcomings of Grad-CAM
- especially multiple occurrences of a class in an image and
poor object localizations. We validated the effectiveness of
our method both objectively (faithfulness to the model being
explained) and subjectively (invoking human trust) using
standard well-known CNN models and datasets (ImageNet
and Pascal VOC). We showed that Grad-CAM++ can also
prove superior on tasks such as image caption generation
and video understanding (action recognition). In Section
5, we motivated a research direction where explanations
of a deep network are not only used to understand the
reasonings behind model decisions but also utilized to train
a shallower student network. The student network learned
much better representations than the original teacher net-
work (lower test error rate) when using explanations for
knowledge distillation. Future work involves refining the
loss formulation in the teacher-student setting so as to distill
knowledge via Grad-CAM++ explanations more effectively.
We also hope to study the proposed method in more detail
when there are multiple classes in a single image, as well
as explore the possibility of extending our algorithm to ex-
plain decisions made by other neural network architectures
such as recurrent neural networks, long short-term memory
networks, and generative adversarial networks.
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APPENDIX A
SUPPLEMENTARY MATERIALS
We herein present further experimental results to confirm
the effectiveness of Grad-CAM++. In the main text, we
carried out all experiments with the VGG-16 architecture.
To show that our results are not biased by the choice of
CNN architecture, we carry out extensive experiments using
both AlexNet [22] and ResNet-50 [23] architectures. For
all experiments, the activation maps Ak considered were
the last convolutional feature maps of the network (as in
the main text for VGG-16). This appendix is organized as
follows:
• We first present results from objective evaluation of

performance of the two explanation algorithms, viz
Grad-CAM and Grad-CAM++ for both AlexNet and
ResNet-50 architectures, similar to the one carried
out in Section 4.1 of the main text.

• This is followed by additional qualitative results of
our Image Captioning results from Section 6.1.

A.1 Evaluation of Object Recognition Performance
with Other Architectures
The experimental setup in this section is the same as
described in Section 4.1 of the main text, with the only
difference being the CNN architecture used. Tables 8 and
9 report results for experiments carried out using AlexNet,
while Tables 10 and 11 present the empirical results for
the ResNet-50 architecture. These results follow a similar
trend as seen in Tables 1 and 2 in the main text, and further
accentuate our claim of the improved performance obtained
by Grad-CAM++. Qualitative results are shown in Fig 11 for
AlexNet and in Fig 12for the ResNet-50 architecture.

We note in passing that there seems to be a correlation
between the ”Average drop %” metric (for both Grad-CAM
and Grad-CAM++) and the generalization prowess of the
deep network they explain. Resnet-50 has the lowest top-
1 and top-5 classification error on the ImageNet dataset,
followed by VGG-16 and subsequently AlexNet [20], [23].
For ImageNet the ”Average drop %” metric for ResNet-50
(28 − 31%), VGG-16 (36 − 47%) and AlexNet (62 − 83%)
follows the same trend. This correlation also exists for
the Pascal VOC dataset. This metric can hence be potentially
exploited to help obtain more generalizable deep network models
from data.

Method Grad-CAM++ Grad-CAM
- Average drop% 62.75 82.86
(Lower is better)
- % incr. in confidence 8.24 3.16
(Higher is better)
- Win% 86.56 13.44
(Higher is better)

TABLE 8
Results for objective evaluation of the explanations generated by both

Grad-CAM++ and Grad-CAM on the ImageNet (ILSVRC2012)
validation set (“incr” denotes increase). The explanations were

generated for decisions taken by the AlexNet architecture. (See
Section 4.1 for details of the metrics used.)

A.2 Additional Results on Image Captioning
In continuation to the results in Section 6.1, we present
here the additional results of the visual explanations on the

Method Grad-CAM++ Grad-CAM
- Average drop% 29.16 45.82
(Lower is better)
- % incr. in confidence 19.76 14.38
(Higher is better)
- Win% 72.79 27.21
(Higher is better)

TABLE 9
Results for objective evaluation of the explanations generated by both
Grad-CAM++ and Grad-CAM on the Pascal VOC 2007 validation set

(2510 images) (“incr” denotes increase). The explanations were
generated for decisions taken by the AlexNet architecture.(See Section

4.1 for details of the metrics used.)

Method Grad-CAM++ Grad-CAM
- Average drop% 28.90 30.36
(Lower is better)
- % incr. in confidence 22.16 22.11
(Higher is better)
- Win% 60.51 39.49
(Higher is better)

TABLE 10
Results for objective evaluation of the explanations generated by both

Grad-CAM++ and Grad-CAM on the ImageNet (ILSVRC2012)
validation set (“incr” denotes increase). The explanations were

generated for decisions taken by the ResNet-50 architecture.(See
Section 4.1 for details of the metrics used.)

considered images with five different captions in Figures
8, 14 and 15. We note that Grad-CAM++ provides more
complete explanations in each of these images, as before.

Method Grad-CAM++ Grad-CAM
- Average drop% 16.19 20.86
(Lower is better)
- % incr. in confidence 19.52 21.99
(Higher is better)
- Win% 58.61 41.39
(Higher is better)

TABLE 11
Results for objective evaluation of the explanations generated by both
Grad-CAM++ and Grad-CAM on the Pascal VOC 2007 validation set

(2510 images) (“incr” denotes increase). The explanations were
generated for decisions taken by the ResNet-50 architecture.(See

Section 4.1 for details of the metrics used.)



Fig. 11. Example explanation maps Ec (see Eqn 25 in main text) for images generated by Grad-CAM and Grad-CAM++. These explanations are
for decisions made by the AlexNet architecture. Panel A shows images where Grad-CAM++ solves the problem of poor class localization. Panel B
depicts images where Grad-CAM++ is effective for explaining multiple occurrences of the same class in an image. For each set of three images the
class label predicted by the network is written horizontally on the leftmost edge.



Fig. 12. Example explanation maps Ec (see Eqn 25 in main text) for images generated by Grad-CAM and Grad-CAM++. These explanations are
for decisions made by the ResNet-50 architecture. Panel A shows images where Grad-CAM++ solves the problem of poor class localization. Panel
B depicts images where Grad-CAM++ is effective for explaining multiple occurrences of the same class in an image. For each set of three images
the class label predicted by the network is written horizontally on the leftmost edge.



Fig. 13. Visual explanations generated by Grad-CAM and Grad-CAM++ on a given image (1) predicting 5 different captions: (2) A little girl, with dark
hair and a yellow vest with striped pants on, is crouching down next to a flower basket; (3) A small child wearing yellow and white is crouched by
a basket holding a flower; (4) A young girl crouched on the floor picks at flowers in a basket; (5) One little girl in a yellow shirt carrying a basket of
flowers; and (6) Little girl is looking at the flowers.

Fig. 14. Visual explanations generated by Grad-CAM and Grad-CAM++ on a given image (1) predicting 5 different captions: (2) A woman in a red
sweater and a girl is in front of a girl in a green hoodie and a girl with a brown jacket and pink purse; (3) A woman in a red sweater walks by two
younger women talking near a busy street; (4) Two Asian women are talking behind an older woman who is wearing a red sweater; (5) A woman in
a red sweater walks past two younger women who are chatting; and (6) Three asian women, two young, one old, on an urban sidewalk.

Fig. 15. Visual explanations generated by Grad-CAM and Grad-CAM++ on a given image (1) predicting 5 different captions: (2) A priest stands in a
pulpit giving a ceremony motioning with his hands in front of stained glass windows in the church; (3) A religious man giving a sermon at a beautifully
carved pulpit with stained glass murals behind him; (4) A priest speaks from an ornate pulpit with stained glass pictures in the background; (5) A
man is speaking at a podium in a church; and (6) A priest delivering mass in a church.
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