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Abstract

Recently there has been a lot of work on pruning filters
from deep convolutional neural networks (CNNs) with the
intention of reducing computations. The key idea is to rank
the filters based on a certain criterion (say, l1-norm, aver-
age percentage of zeros, etc) and retain only the top ranked
filters. Once the low scoring filters are pruned away the
remainder of the network is fine tuned and is shown to give
performance comparable to the original unpruned network.
In this work, we report experiments which suggest that the
comparable performance of the pruned network is not due
to the specific criterion chosen but due to the inherent plas-
ticity of deep neural networks which allows them to recover
from the loss of pruned filters once the rest of the filters
are fine-tuned. Specifically, we show counter-intuitive re-
sults wherein by randomly pruning 25-50% filters from deep
CNNs we are able to obtain the same performance as ob-
tained by using state of the art pruning methods. We em-
pirically validate our claims by doing an exhaustive evalu-
ation with VGG-16 and ResNet-50. Further, we also evalu-
ate a real world scenario where a CNN trained on all 1000
ImageNet classes needs to be tested on only a small set of
classes at test time (say, only animals). We create a new
benchmark dataset from ImageNet to evaluate such class
specific pruning and show that even here a random pruning
strategy gives close to state of the art performance. Lastly,
unlike existing approaches which mainly focus on the task
of image classification, in this work we also report results
on object detection. We show that using a simple random
pruning strategy we can achieve significant speed up in ob-
Ject detection (74% improvement in fps) while retaining the
same accuracy as that of the original Faster RCNN model.

*The first two authors have contributed equally

1. Introduction

Over the past few years, deep convolutional neural net-
works (CNNs) have been very successful in a wide range
of computer vision tasks such as image classification [37} 4}
24] , object detection [10, (9,133,132} [27]] and image segmen-
tation [3}28]. In general, with each passing year, these net-
works are becoming deeper and deeper with a correspond-
ing increase in the performance [13} (18} [36]]. However, this
increase in performance is accompanied by an increase in
the number of parameters and computations. This makes
it difficult to port these models on embedded and mobile
devices where storage, computation and power are limited.
In such cases, it is crucial to have small, computationally
efficient models which can achieve performance at par or
close to large networks. This practical requirement has led
to an increasing interest in model compression where the
aim is to either (i) design efficient small networks [20, [16]
or (i) efficiently prune weights from existing deep networks
[12, 139, [11]] or (iii) efficiently prune filters from deep con-
volutional networks [26} 23| 130l [17] or (iv) replace expen-
sive floating point weights by binary or quantized weights
[5,131L 111} 141] or (v) guide the training of a smaller network
using a larger (teacher) network [2} [15]].

In this work, we focus on pruning filters from deep con-
volutional neural networks. The filters in the convolution
layers typically account for fewer parameters than the fully
connected layers (the ratio is 10:90 for VGG-16 [26]), but
they account for most of the floating point operations done
by the model (99% for VGG-16 [26]). Hence reducing
the number of filters effectively reduces the computation
(and thus power) requirements of the model. All existing
works on filter pruning [26} 23} 30} [17] follow a very similar



recipe. The filters are first ranked based on a specific crite-
rion such as, [1-norm [26] or percentage of zeros in the filter
[17]. The scoring criterion essentially determines the im-
portance of the filter for the end task, typically image clas-
sification [24]. Only the top-m ranked filters are retained
and the resulting pruned network is then fine tuned. It is
observed that when pruning up to 50% of the filters using
different proposed criteria, the pruned network almost re-
covers the original performance after fine-tuning. The claim
is that this recovery is due to soundness of the criterion cho-
sen for pruning. However, in this work we argue that this
recovery is not due the specific pruning criterion but due
to the inherent plasticity of deep CNNs. Specifically, we
show that even if we prune filters randomly we can match
the performance of state-of-the-art pruning methods.

To effectively prove our point, it is crucial that we look
at factors/measures other than the final performance of the
pruned model. To do so we draw an analogy with the hu-
man brain and observe that the process of pruning filters
from a deep CNN is akin to causing damage to certain
portions of the brain. It is known that the human brain
has a high plasticity and over time can recover from such
damages with appropriate treatment [19]. In our case, the
process of fine-tuning would be akin to such post-damage
(post-pruning) treatment. If the injury damages only redun-
dant or unimportant portions of the brain then the recov-
ery should be complete quickly and with minimal treatment.
Similarly, we could argue that if the pruning criteria is in-
deed good and prunes away only unimportant filters then
(i) the performance of the model should not drop much (ii)
the model should be able to regain its full performance after
fine-tuning (iii) this recovery should be fast (i.e., with fewer
iterations of fine tuning) and (iv) the quantum of data used
for fine-tuning should be less. None of the existing works
on filter pruning do a thorough comparison w.r.t. these fac-
tors. We not only consider these factors but also present
counter-intuitive results which show that a random pruning
criteria is comparable to state of the art pruning methods
on all these factors. Note that we are not claiming that we
can always recover the full performance of the unpruned
network. For example, it should be obvious that in the de-
generate case if 90% of the filters are pruned then it would
be almost impossible to recover. The claim being made is
that, at different pruning levels (25%, 50%, 75%) a random
pruning strategy is not much worse than of state of the art
pruning strategies.

To further prove our point, we wanted to check if such
recovery from pruning is task agnostic. In other words, in
addition to showing that a network trained for image classi-
fication (faskl) can be pruned efficiently, we also show that
same can be done with a network trained for object detec-
tion (task2). Here again, we show that a random pruning
strategy works at par with state of the art pruning methods.

Stretching this idea further and continuing the above anal-
ogy, we note that once the brain recovers from such dam-
ages, it is desirable that in addition to recovering its per-
formance on the tasks that it was good at before the injury,
it should also be able to do well on newer tasks. In our
case, the corresponding situation would be to take a net-
work pruned and fine-tuned for image classification (old
task) and plug it into a model for object detection (new
task). Specifically, we show that when we plug a randomly
pruned and fine tuned VGG-16 network into a Faster RCNN
model we can get the same performance on object detec-
tion as obtained by plugging (i) the original unpruned net-
work or (ii) a network pruned using a state of the art pruning
method. This once again hints at the inherent plasticity of
deep CNNs which allows them to recover (up to a certain
level) irrespective of the pruning strategy.

Finally, we consider the case of class specific pruning
which has not been studied in the literature. We note that in
many real world scenarios, it is possible that while we have
trained an image classification network on a large dataset
containing many classes, at test time we may be interested
in only a few classes. A case in point, is the task of ob-
ject detection using the Pascal VOC dataset [8]. RCNN
and its variants [10} |9} [33]] use as a sub-component an im-
age classification model trained on all the 1000 ImageNet
classes. We hypothesize that this is an overkill and instead
create a class specific benchmark dataset from ImageNet
which contains only those 52 classes which correspond to
the 20 classes in Pascal VOC. Ideally, one would expect
that a network trained, pruned and fine-tuned only for these
52 classes when plugged into faster RCNN should do better
than a network trained, pruned and fine-tuned on a random
set of 52 classes (which are very different from the classes
in Pascal VOC). However, we observe that irrespective of
which of these networks is plugged into Faster RCNN the
final performance after fine-tuning is the same, once again
showing the ability to recover from unfavorable situations.

To the best of our knowledge, this is a first of its kind
work on pruning filters which:

1. Proposes that while assessing the performance of a
pruning method, we should consider factors such as
amount of damage (drop in performance before fine-
tuning), amount of recovery (performance after fine-
tuning), speed of recovery and quantum of data re-
quired for recovery.

2. Performs extensive evaluation using two image clas-
sification networks (VGG-16 and ResNet) and shows
that a random pruning strategy gives comparable per-
formance to that of state of the art pruning strategies
w.r.t. all the above factors.

3. Shows that such behavior is task agnostic and a ran-
dom pruning strategy works well even for the task of



object detection. Specifically, we show that by ran-
domly pruning filters from an object detection model
we can get a 74% improvement in fps while maintain-
ing almost the same accuracy (1% drop) as the original
unpruned network

4. Shows that pruned networks can adapt with ease to
newer tasks

5. Proposes a new benchmark for evaluating class spe-
cific pruning

2. Related Work

In this section, we review existing work on making deep
convolutional neural networks efficient w.r.t. their mem-
ory and computation requirements while not compromising
much on the accuracy. These approaches can be broadly
classified into the following categories (i) pruning unim-
portant weights (ii) low rank factorization (iii) knowledge
distillation (iv) designing compact networks from scratch
or (v) using binary or quantized weights and (vi) pruning
unimportant filters. Below, we first quickly review the re-
lated work for the first five categories listed above and then
discuss approaches on pruning filters which is the main fo-
cus of our work.

Optimal brain damage [25]] and optimal brain surgery [7]
are two examples of approaches which prune the unimpor-
tant weights in the network. A weight is considered unim-
portant if the output is not very sensitive to this weight.
They show that pruning such weights leads to minimal
drop in the overall performance of the network. However,
these methods are computationally expensive as they re-
quire the computation of the Hessian (second order deriva-
tive). Another approach is to use low rank factorization
of the weight tensor/matrices to reduce the computations
[211 138] 22} |6l 40]. For example, instead of directly mul-
tiplying a high dimensional weight tensor W with the in-
put tensor I, we could first compute a low rank approxima-
tion of W = UXV where the dimensions of U, ¥ and V'
are much smaller than the dimensions of W. This essen-
tially boils down to decomposing the larger matrix multi-
plication operation into smaller operations. Also, the low
rank approximation ensures that only the important infor-
mation in the weight matrix is retained. Alternately, re-
searchers have also explored designing compact networks
from scratch which have fewer number of layers and/or pa-
rameters and/or computations [20]]. There are also some ap-
proaches which quantize [11]] or binarize [31} 5] the weights
of a network to reduce both memory footprint and compu-
tation time. Another line of work focuses on transferring
the knowledge from bigger trained network (or ensemble of
networks) to smaller (thin) network [2][15].

The main focus of our work is on pruning filters from
deep CNNs with the intention of reducing computations. As

mentioned earlier, while the convolution filters do not ac-
count for a large number of parameters, they account for al-
most all the computations that happen in the network. Here,
the idea is to rank the filters using a scoring function and
then retain only the top scoring functions. For example,
in [26]], the authors have used the [1-norm of the filters to
rank their importance. The argument is that filters having a
lower 11-norm will produce smaller activation values which
will contribute minimally to the output of that layer. Alter-
nately, in [29] authors have proposed entropy as a measure
to calculate the importance of a filter. If a filter as high
entropy than the filter is more informative and hence more
important. On the other hand, [17] calculate the average
percentage of zeros in the corresponding activation maps of
filters and hypothesize that filters having more average per-
centage of zeros in their activation are less important. In
[30] authors have used Taylor series expansion that approx-
imates the change in cost function caused by pruning filters.
Unlike [25], this method uses information from first deriva-
tive only. Another work on pruning filters [23] proposes
that instead of pruning filters based on current layer’s statis-
tics they should be pruned based on next layer’s statistics.
Essentially the idea of [23]] is to look at the activation map
of layer 2 4+ 1 and prune out the channel which will give you
the minimum change in output on its removal and its corre-
sponding filter in layer ¢. In [14]] authors proposed a similar
idea to [23] but instead of removing the filters one by one
they have proposed to use LASSO regression. Lastly, in [1]]
authors has used particle filtering to prune out the filters.

3. Methodology

In this section, we first formally define the problem of
pruning filter and give a generic algorithm for pruning filters
using any appropriate scoring function. We then discuss ex-
isting scoring functions along with some new variants that
We propose.

3.1. Problem Statement

Suppose there are K convolutional layers in a CNN and
suppose the layer k contains ny, filters. We use F},; to denote
the ¢-th filter in the k-th layer. Each such filter is a three di-
mensional tensor, Fj,; € R XWkiXhki where 4, is the num-
ber of input channels for layer k& and wy;, hy; are the width
and height of the ¢-th filter in the k-th layer. Our goal is
to rank all the filters in layer k, { Fi;, Fi, ..., Fk; } and then
retain the top-my, filters where my (< ny,) is a hyperparame-
ter which indicates the desired pruning. For example, based
on available computation resources, if we want to reduce
the number of computations in this layer by half then we
can set my = “g). Let the original output of layer k be
denoted by OF € R™*wi*hk where wy, hy, are the width
and height and ny is the number of channels which is the
same as the number of filters. After pruning and retaining



only top-my, filters the size of the output will be reduced to
my, X wy, x h. Thus, pruning filters not only reduces the
number of computations in this layer but also reduces the
size of the input to the next layer (which is the same as the
output of this layer). The same process of pruning can then
be repeated across all layers of the CNN. The main task here
is to find the right scoring function for ranking the filters.

3.2. A Generic Algorithm for Pruning

Algorithm [T] summarizes the generic recipe used by dif-
ferent approaches for pruning filters. As shown in the algo,
pruning typically starts from the outermost layer. Once the
low scoring filters from this layer are pruned, the network
is then fine-tuned and the same process is then repeated for
the layers before it. Once all the layers are pruned and fine-
tuned, the entire network is then tuned for a few epochs.

Algorithm 1 Prune(CNN)

1: K < number of layers in the network

2: Fy, = {Fx1, Fya, ..., Fip, } (filters in layer k)

3: for each layer k € K ...1do

4:  for each filter Fy; € Fj1, Fxo, ..., Fin, do
scoreg; = scoring_function(Fy;)

end for

F,; = top_m_filters(Fy, scoreg, ..., SCOT€ky,)

CNN = retain_filters(CNN, F},)

9:  Finetune C N N for p epochs

10: end for

11: Finetune the final pruned C' N N for g epochs

e A

Existing methods for pruning filters differ in the
scoring_function that they use for ranking the filters. We
alternately refer to this scoring function as pruning criteria
as discussed in the next subsection.

3.3. Pruning Criteria

We now describe various pruning criteria which are used
by existing approaches and also introduce some new vari-
ants of existing pruning criteria. These criteria are essen-
tially used as scoring-function() in Algorithm|[I]

1. Mean Activation [30] : Most deep CNNs for im-
age classification use ReLLU as the activation function
which results in very sparse activations (as all nega-
tive outputs are set to 0). We could compute the mean
activation of the feature map corresponding to a filter
across all images in the training data. If this mean acti-
vation is very low (because most of the activations are
0) then this feature map and hence the corresponding
filter is not going to contribute much to the discrimina-
tory power of the network (since the filter rarely fires
for any input). Hence, [30] uses the mean activation as
a scoring function for ranking filters.

2. [3-Norm [26] : The authors of [26] suggest that the I;-

norm (||F||1) of a filter can also be used as an indicator
of the importance of the filter. The argument is that
if the /;-norm of a filter is small then on average the
weights in the filter will be small and hence produce
very small activations. These small activations will not
influence the output of the network and hence the cor-
responding filters can be pruned away. One important
benefit of this method is that apart from computing the
l1-norm, it does not need any extra computation during
pruning and fine-tuning.

. Entropy [29]] : If the feature map corresponding to a

filter produces the same output for every input (image)
then this feature map and hence the corresponding
filters may not be very important (because it does not
play any discriminatory role). In other words, we are
interested in feature maps (and hence filters) which
are more informative or have a high entropy. If we
divide the possible range of the average output of a
feature map into b bins then we could compute the
entropy of the ¢-th feature map (or filter) [29] as :

b
Ei ==Y pijlogpi
j=1

where p;; is the probability that the output of the i-th
feature map lies in the j-th bin. This probability can
be computed as the fraction of input images for which
the average output of the feature map lies in this bin.

. Average Percentage of Zeros (APoZ) [17] : As men-

tioned earlier, when ReLU is used as the activation
function, the output activations are very sparse. If most
of the neurons in a feature map are zero then this fea-
ture map is not likely to contribute much to the output
of the network. The Average Percentage of Zeros in
the output of each filter can thus be used to compute
the importance of the filter (the lesser the better).

. Sensitivity : We could compute the gradient of a filter

w.r.t. the loss function (i.e., cross entropy). If a filter
has a high influence on the loss function then the value
of this gradient would be high. The [;-norm of this
gradient averaged over all images can thus be used to
compute the importance of a filter.

. Scaled Entropy : We propose a new variant of the en-

tropy based criteria. We observe that a filter may have
a high entropy but if all its activations are very low
(belonging to lower bins) then this filter is not likely
to contribute much to the output. We thus propose to
use a combination of entropy and mean activation by
scaling the entropy by the mean activation of the filter.



This scaled-entropy of :—th filter can be computed as:

b
SE; = — Zpijlogpij * Mean;

j=1

where M ean; is the average activation of the ¢-th filter
over all input images.

7. Class Specific Importance : In this work, we are also
interested in a more practical scenario, where a net-
work trained for detecting all the 1000 classes from
ImageNet is required to detect only (I < 1000) of
these classes at test time (say, only animals). Intu-
itively, we should then devise a scoring function which
retains only those filters which are important for these
[ classes. To do so we once aging compute the gradi-
ent of the loss function w.r.t. the filter. However, now
instead of averaging the /;-norm of this gradient over
all images in the training data, we compute the average
over only those images in the training data which cor-
respond to the [ classes of interest. This class-specific
average is then used to rank the filters.

8. Random Pruning : One of the main contributions of
this work is to show that even if we randomly prune the
filters from a CNN, its performance after fine-tuning is
not much worse than any of the above approaches.

4. Experiments: Image Classification

In this section, we focus on the task of image classifi-
cation using the ImageNet [34] dataset. The dataset is split
into three sets : training (1.3M images), validation (50K im-
ages), and testing (100K images with held-out class labels).
We experiment with two popular networks, viz., VGG-16
and ResNet-50. We first train these networks using the full
ImageNet training data and then prune them using Algo-
rithm [I] We compare the performance of different scoring
functions as listed in the section[3.3

4.1. Comparison of different pruning methods on
VGG-16

VGG-16 [35] has 13 convolutional (CONV) and two
fully connected (FC) layers. The number of filters in each
CONV layer in the the standard VGG-16 network [335] is
{64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512,
512}. We first train this network as it is (i.e., with the stan-
dard number of filters in each layer) using the ImageNet
training data. When evaluated on the standard ImageNet
test set, this trained model gives us a top-1 accuracy of 69%
which is comparable to the accuracy reported elsewhere in
the literature. We now prune this network, one layer at
a time starting from the last convolution layer. We prune
away m% of filters from each layer where we chose the

Heuristic 25% 50% 75%

Random 0.650 0.569 0415
Mean Activation 0.652 0.570 0.409
Entropy 0.641 0.549 0.405
Scaled Entropy  0.637 0.550 0.401
l1-norm 0.667 0.593 0.436
APoZ 0.647 0.564 0422
Sensitivity 0.636  0.543 0.379

Table 1: Comparison of different filter pruning strategies on
VGG-16.

value of m to be {25, 50, 75}. We use one of the scoring
functions described in Section [3.3]to select the top m% fil-
ters. We drop the remaining (100 - m)% filters from this
layer and then fine-tune the pruned network for 1 epoch.
We then repeat the same process for the lower layers and
use the same value of m across all layers. Once the network
is pruned till layer 1, we then fine tune the entire pruned net-
work for 12 epochs using 1/10-th of the training data picked
randomly. The only reason for not using the entire training
data is that it is quite computationally expensive. We did not
see any improvement in the performance on the validation
set by fine-tuning beyond 12 epochs. We then evaluate this
pruned and fine-tuned network on the test set. Below, we
discuss the performance of the final pruned and fine-tuned
network obtained using different pruning strategies.

Performance of pruned network after fine-tuning: In Ta-
ble[I] we report the performance of the final pruned network
after fine tuning. We observe that random pruning works
better than most of the other pruning methods described ear-
lier. /1-norm is the only scoring function which does better
than random and that too by a small margin. In fact, if we
fine-tune the final trained network using the entire training
data then we observe that there is hardly any difference be-
tween random and /;-norm (see Table[2). This provides em-
pirical evidence for our claim that the amount of recovery
(i.e., final performance after fine-tuning) is not due to the
soundness of the pruning criteria. Even with random prun-
ing, the performance of the pruned network is comparable.
Of course, as the percentage of pruning increases (i.e, , as
m increases) it becomes harder for the pruned network to
recover the full performance of the original network (but
the point is that it is equally hard irrespective of the prun-
ing method used). Thus, w.r.t. the amount of recovery after
damage (pruning), a random pruning strategy is as good as
any other pruning strategy. We further drive this point in
Figure [Ta] where we show that after pruning and fine tuning
for every layer, the amount of recovery after fine tuning is
comparable across different pruning strategies.

As a side note we would like to mention that we do not
include the performance of ThiNets [23] in Table E} This
is because it uses a slightly different methodology. In par-
ticular there are two major differences. First, in ThiNets



Heuristic 50%

Random 0.6701
Mean Activation 0.6662
Entropy 0.6635
Scaled Entropy  0.6625
[1-norm 0.6759
APoZ 0.6706
Sensitivity 0.6659

Table 2: Performance after fine-tuning with full data

pruning is done only till layer 10 and not upto layer 11 as
is the case for all numbers reported in Table E} Secondly,
in ThiNets, if a CONV layer appears before a max-pooling
layer then it is fine-tuned for an extra epoch to compensate
more for the downsampling in the max pooling layer. For
a fair comparison, we followed this exact same strategy as
ThiNet but using a random pruning criteria. In this setup,
a randomly pruned network was able to achieve 68% top-
1 accuracy after 50% pruning which is comparable to the
performance of the corresponding ThiNet (69%).

Amount of initial damage caused by different pruning
strategies: One might argue that while random pruning
strategy is equivalent to other pruning strategies w.r.t. fi-
nal performance after fine tuning, it is possible that the
amount of initial damage caused by a careful pruning strat-
egy maybe less than than caused by random pruning. This
could be important in cases where enough time or resources
are not available for fine-tuning after pruning. To evalu-
ate this, we compute the accuracy of the network just after
pruning (and before fine-tuning) at each layer. Figure [Ib]
compares this performance for different pruning strategies.
Here again we observe that the damage caused by a random
pruning strategy is not worse than other pruning strategies.
The only exception is when we prune the first 4 layers in
which case the damage caused by /;-norm based pruning is
less than random pruning. We hypothesize that this is be-
cause the first 4 layers have very few filters and hence one
needs to be careful while pruning for filters from these lay-
ers. In fact, in hindsight we would recommend not to prune
any filters from these 4 layers because the computation sav-
ings are less as compared to drop in accuracy.

Speed of recovery and quantum of data for fine-tuning:
Another important criteria is the speed of recovery, i.e., the
number of iterations for which the network needs to be fine-
tuned after pruning. It is conceivable that a carefully pruned
network may be able to recover and reach its best perfor-
mance faster than a randomly pruned network. However, as
shown in Figure[Ic|that almost all the pruning strategies (in-
cluding random) reach their peak after 2 epochs when fine-
tuned with one-tenth of the data. Even, if we increase the
quantum of data, this behavior does not change as shown in
Figure|ld|(for /;-norm based pruning and random pruning).
Of course, as we increase the quantum of data the amount of

recovery increases, i.e., the peak performance of the pruned
network increases. However, the important point is that a
random strategy is no worse than a careful pruning strategy
w.r.t. speed of recovery and quantum of data required.

4.2. Pruning ResNet-50 using /;-Norm and Random

While the above set of experiments focused on VGG-16,
we now turn our attention to ResNet-50 [[13] which gives
state of the art results on ImageNet. We took a trained
ResNet-50 model which gave 74.5% top-1 accuracy on the
ImageNet test set which is again comparable to the accuracy
reported elsewhere in the literature. ResNet contains 16
residual blocks wherein each block contains 3 layers with
a skip connection from the first layer to the third layer. The
standard practice is to either prune the first layer of each
block or the first two layers of each block. In the first case,
out of the total 48 convolution layers (16 * 3) we will end up
pruning 16 and in the second case we will end up pruning
32. As before, for each pruned layer we vary the percentage
of pruning from 25%, 50% to 75%. Here, we only com-
pare the performance of /;-Norm with random pruning as
these were the top performing strategies on VGG-16. This
was just to save time and resources as given the deep struc-
ture of ResNet it would have been very expensive to run all
pruning strategies. Once again from Table [3] we observe
that random pruning performs at par (in fact, slightly bet-
ter) when compared to /;-Norm based pruning. Note that,
in this case the pruned models were trained with only one-
tenth of the data. The performance of both the methods are
likely to improve further if we were to fine-tune the pruned
network on the entire training data.

Heuristics  #Layers Pruned 25% 50%  75%

Random 16 0.722 0.683 0.617
l1-norm 16 0.714 0.677 0.610
Random 32 0.696 0.637 0.518
l1-norm 32 0.691 0.633 0.514

Table 3: Comparison of different filter pruning strategies on
ResNet (Top-1 accuracy of unpruned network is 0.745)

S. Experiments: Class specific pruning

Existing work on pruning filters (or model compression,
in general) focuses on the scenario where we have a net-
work trained for detecting all the 1000 classes in ImageNet
and at test time it is again evaluated using data belonging to
all of these 1000 classes. However, in many real world sce-
narios, at test time we may be interested in fewer classes. A
case in point, is the Pascal VOC dataset which contains only
20 classes. Intuitively, if we are interested in only fewer
classes at test time then we should be able to prune the net-
work to cater to only these classes. Alternately, we could
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Figure 1: Pruning and Fine-tuning VGG-16

train the original network itself using data corresponding to
these classes only. To enable these experiments, we first
create a new benchmark from ImageNet which contains
only those 52 classes which correspond to the 20 classes in
Pascal VOC. Note that the mapping of 52-20 happens be-
cause ImageNet has more fine-grained classes. For exam-
ple, there is only one class for ‘dog’ in Pascal VOC but Ima-
geNet contains many sub-classes of ‘dog’ (different breeds
of dogs). We manually went over all the classes in Ima-
geNet and picked out the classes which correspond to the
20 classes in Pascal VOC. In some cases, we ignored Im-
ageNet classes which were too fine-grained and only con-
sidered those classes which were immediate hyponyms of a
class in Pascal VOC. We then extracted the train, test and
valid images for these classes from the original ImageNet
dataset. We refer to this subset of ImageNet as ImageNet-
52P (where P stands for Pascal VOC). We refer to the origi-
nal ImageNet dataset as ImageNet-1000. Note that the train,
test and validation splits of ImageNet-52P are subsets of the
corresponding splits of ImageNet-1000. In particular , the
training split of ImageNet-1000 does not overlap with the
test or validation splits of ImageNet-52P.

We first compare the performance in the following two
setups: (i) model trained on ImageNet-1000 and evaluated
on the test split of ImageNet-52P and (ii) model trained on

ImageNet-52P and evaluated on the test split of ImageNet-
52P. We observe that while in the first setup we get a top-1
accuracy of 74%, in the second setup we get an accuracy of
87%. This suggests that model trained on ImageNet-1000
is clearly overloaded with extra information about the re-
maining 948 classes and hence performs poorly on the 52
classes of interest. We should thus be able to prune the net-
work effectively to cater to only the 52 classes of interest.
Note that in practice it is desirable to have just one network
trained on ImageNet-1000 and then prune it for different
subsets of classes that we are interested in instead of train-
ing a separate network from scratch for each of these sub-
sets. We again compare different pruning strategies as listed
earlier except that now when fine-tuning (after each layer
and at the end of all layers) we only use ImageNet-52P. In
other words, we fine-tune using only data corresponding to
the 52 classes. Once again, we observe that there is not
much difference between random pruning and other prun-
ing strategies. Also with 25% pruning, we are able to al-
most match the performance of a network trained only on
these 52 classes (i.e., 87%) .

6. Experiments: Faster Object Detection

The above experiments have shown that with reasonable
levels of pruning (25-50%) and enough fine-tuning (using



Heuristics 25% 50% 75%

Random 0.859 0.820 0.692
Mean Activation ~ 0.866 0.816 0.698
Entropy 0.860 0.802 0.684
Scaled Entropy 0.863 0.813 0.691
l1-norm 0.867 0.823 0.729
APoZ 0.858 0.811 0.700
Important Classes  0.857 0.795  0.655
Sensitivity 0.849 0.793 0.634

Table 4: Comparison of different filter pruning strategies
when fine-tuned and evaluated with ImageNet-52P.

entire data) the pruned network is able to recover and almost
match the performance of the unpruned network on the orig-
inal task (image classification) even with a random pruning
strategy. However, it is possible that if such a pruned net-
work is used for a new task, say object detection, then a ran-
domly pruned network may not give the same performance
as a carefully pruned network. To check this, we performs
experiments using the Faster-RCNN model for object de-
tection. Note that the Faster-RCNN model uses a VGG-16
model as a base component and then adds other components
which are specific to object detection. We experiment with
the PASCAL-VOC 2007 dataset [8]] which consists of 9,963
images, containing 24,640 annotated objects. We first plug-
in a standard trained VGG-16 network into Faster-RCNN
and then train Faster-RCNN for 70K iterations (as is the
standard practice). This model gives a mean Average Pre-
cision (mAP) value of 0.66. The idea is to now plug-in
a pruned VGG-16 model into faster RCNN instead of the
original unpruned model and check the performance. Table
[5] again shows that the specific choice of pruning strategy
does not have much impact on the final performance on ob-
ject detection. Of course, as earlier, as the level of pruning
increases the performance drops (but the drop is consistent
across all pruning strategies). We now report some more
interesting experiments on pruning Faster RCNN.

Directly pruning Faster RCNN: Instead of plugging in a
pruned VGG-16 model into Faster-RCNN, we could alter-
nately take a trained Faster-RCNN model and then prune it
directly. Here again, we use a simple random pruning strat-
egy and observe that the performance of the pruned model
comes very close to that of the unpruned model. In partic-
ular, with 50% pruning we are able to achieve a mAP of
0.648 with a 74% speedup in terms of frames per second.

Plugging in a VGG-16 model trained using ImageNet-
52P: Since we are only interested in the 52 classes corre-
sponding to Pascal-VOC, we wanted to check what happens
if we plug-in a VGG-16 model trained, pruned and fine-
tuned only on ImageNet-52P. As shown in Table[7]we do not
get much benefit of plugging in this specialized model into
Faster-RCNN. In fact, in a separate experiment we observed
that even if we train a VGG-16 model on a completely ran-

Heuristics 25% 50% @ 75%

Random 0.647 0.600 0.505
Mean Activation 0.647 0.601 0.489
Entropy 0.635 0.584 0.501
Scaled Entropy  0.640 0.593  0.507

l1-norm 0.628 0.608 0.520
APoZ 0.646 0.598 0.514
Sensitivity 0.636 0592 0.485

Table 5: Object detection results obtained by plugging-in
different pruned VGG-16 models into Faster-RCNN.

Faster-RCNN  Baseline 25% 50% 75%
mAP 0.66 0.655 0.648 0.530
fps 7.5 10 13 16

Table 6: Object detection results when directly pruning
(random) a fully trained Faster-RCNN model.

Heuristics 25% 50% @ T75%
Random 0.647 0.580 0.469
Mean Activation  0.644 0.583 0.454
Entropy 0.642 0578 047
Scaled Entropy 0.645 0.580 0.443
l1-norm 0.648 0.601 0.487
APoZ 0.641 0.585 0.466
Important Classes 0.631 0.568 0.432
Sensitivity 0.637 0.576 0.4345

Table 7: Object detection results obtained by plugging-
in different pruned VGG-16 models fine-tuned with
ImageNet-52P as opposed to ImageNet-1000.

dom set of 52 classes (different from the 52 classes corre-
sponding to Pascal VOC) and then plug in this model into
Faster RCNN, even then the final performance of the Faster
RCNN model remains the same. This is indeed surprising
and further demonstrates the ability of these networks to re-
cover from unfavorable situations.

7. Conclusion and Future Work

We evaluated the performance of various pruning strate-
gies based on the (i) drop in performance after pruning (ii)
amount of recovery after pruning (iii) speed of recovery and
(iv) amount of data required. We do extensive evaluations
with two networks (VGG-16 and ResNet50) and present
counter-intuitive results which show that w.r.t. all these fac-
tors a random pruning strategy performs at par with princi-
pled pruning strategies. We also show that even when such
a randomly pruned network is used for a completely new
task it performs well. Finally, we present results for pruning
Faster RCNN and show that even a random pruning strategy
can give a 74% speed-up w.r.t frames per second while giv-
ing only a 1% drop in the performance.
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