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Abstract

3D reconstruction from a single image is a key problem in multiple applications
ranging from robotic manipulation to augmented reality. Prior methods have tack-
led this problem through generative models which predict 3D reconstructions as
voxels or point clouds. However, these methods can be computationally expen-
sive and miss fine details. We introduce a new differentiable layer for 3D data
deformation and use it in DEFORMNET to learn a model for 3D reconstruction-
through-deformation. DEFORMNET takes an image input, searches the nearest
shape template from a database, and deforms the template to match the query image.
We evaluate our approach on the ShapeNet dataset and show that - (a) the Free-Form
Deformation layer is a powerful new building block for Deep Learning models
that manipulate 3D data (b) DEFORMNET uses this FFD layer combined with
shape retrieval for smooth and detail-preserving 3D reconstruction of qualitatively
plausible point clouds with respect to a single query image (c) compared to other
state-of-the-art 3D reconstruction methods, DEFORMNET quantitatively matches
or outperforms their benchmarks by significant margins. For more information,
visit: https://deformnet-site.github.io/DeformNet-website/.

1 Introduction
This paper studies the structured prediction problem of regressing unordered point sets with implicit
and often ambiguous input spaces. A concrete instance which embodies this type of problem is 3D
object geometry reconstruction (3DR) from single-view images for partial shape guidance [9]. The
ambiguity arises from the fact that 3D-to-2D mapping is not invertible and large portions of the object
features are typically occluded. 3DR is a pivotal learning problem in visual understanding, with
numerous applications across domains. For instance, an intelligent robot requires a 3D model of the
object instance to reason about manipulation. Similarly, in augmented reality recognizing the 3D
shapes of often unseen objects in the world is necessary for both correct rendering and interaction.

3DR has been explored in a large body of extant work in computer vision, for problems such as
structure from motion [10, 16] or multiview stereo [1, 7, 11, 12, 14, 18, 22] and at times even with
single view images [6]. Ingenious work on “Shape-from-X" has utilized priors on natural images to
infer geometric features, with “X" being shading, texture, specularity, shadow and so on [2, 17, 23,
28, 39]. Most of the aforementioned methods require carefully constructed features, a problem that is
addressed by data-driven methods relying on large-scale 3D object datasets [3, 35].

Data-driven methods learn implicit priors for various object recognition tasks such as shape com-
pletion and 3D reconstruction. Broadly, these methods use the prior knowledge in two ways: (i)
image-based shape retrieval that focuses on algorithm design to find the nearest shape in database
for the query image [3, 26, 36], and (ii) deep generative models which operate directly on the query
image and generate a 3D reconstruction as output, matching the shape distribution but resulting in
different shape instances than in the database [5, 8, 15, 25, 32, 33, 37].
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Figure 1: Our framework and DeformNet architecture. ‘+’ denotes stacking activations from image encoder,
voxel encoder and voxel decoder. The output of decoder is the prediction on the offsets of control points, which
decides the free-form deformation of input shape on the next step.

We note that the majority of recent methods for 3DR resort to either direct volumetric representation
(aka voxels) or meshes from multi-view images as their shape representation. While intuitive,
these representations can be both computationally inefficient and ineffective in capturing the natural
invariance of 3D shapes under geometric transformations. A recent method by Fan et al. uses Point
Set Generation Network (PSGN) to alleviate these problems. As they note, a point cloud is a simple,
uniform structure that is relatively easier to learn than voxels, as it does not have to encode multiple
primitives or combinatorial connectivity patterns. Additionally, point clouds are computationally
superior to voxels since they do not require 3D convolutions and are amenable to direct manipulation
when it comes to shape deformation and transformation. However, though direct prediction of fixed
size point clouds improves 3DR performance, giving up on connectivity can result in a lack of fine
shape features since loss functions are focused on overall reconstruction.

At the same time, Spatial Transformer Networks (STN) have presented an appealing method to
learn geometric transformations in 2D images [20]. STNs are a modular, differentiable and dynamic
upgrade to pooling operations that learn to zoom in and eliminate background clutter, thereby
“standardizing” the input. However, they have primarily been studied in the context of discrete grids
in image inputs to facilitate image classification.

Inspired the ideas from PSG and STN, we propose DEFORMNET- a model that extends STN style
geometric operations to 3D using the notion of Free-Form Deformations (FFD). When used in
conjunction with a point cloud representation, this method not only benefits from computational
efficiency but also can preserve fine details in shapes since it implicitly preserves connectivity in
structures. DEFORMNET uses a single image input to first perform shape retrieval from an object
dataset using a learned image-to-shape embedding, and then deforms the point cloud representation
of the retrieved template using the FFD layer in an encoder-decoder style network architecture as
depicted in Figure 1. DEFORMNET intuitively builds on the strengths of Shape Retrieval, PSG, and
STNs while compensating for their shortcomings. We implement FFD as a differentiable layer for
end-to-end training along with point set correspondence based loss functions Chamfer Distance and
Earth-Mover’s Distance, as in [8].

To summarize, the main contributions of this paper are:

• Introduction of Free Form Deformation as a differentiable layer to be used as a new building block
that enables 3D data manipulation.

• A novel framework, DEFORMNET based on FFD layer to achieve smooth geometric deformations
in point clouds for 3D Reconstruction.

• Evaluation of DEFORMNET on rendered images achieves state-of-the-art performance in compari-
son to both Point Prediction Methods such as PSG [8] and Generative Models such as 3D-R2N2 [5].

2 Related Work
Generative Models for 3D Reconstruction. Recently, generative models for 3D reconstruction have
produced state-of-the-art results. One approach is targeting voxel reconstruction through a 3D voxel
neural network. [5] proposed a 3D recurrent neural network (3D-R2N2) based on long-short-term
memory (LSTM) to infer 3D volumetric shape from a single view or multiple views. Girdhar et
al. [13] proposed a TL-embedding network which embeds image and shape together for single
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view 3D volumetric shape generation. Wu et al. [34] proposed a 3D VAE-GAN which brings the
two popular generative models together in volumetric shape generation and reconstruction. There
are also representative advances in unsupervised/weakly supervised 3D learning for reconstruction.
[37] proposed a perspective transformer net for reconstruction from a single image which only uses
images contour as supervision. [25] proposed a conditional generative network for unsupervised
reconstruction from images.

All of the above neural network based 3D reconstruction methods use voxel representations, which
requires a large amount of memory and is inefficient due to the small space usage of generic 3D
shapes. Fan et al. [8] proposed an alternative approach with neural networks that output unordered
3D point sets for 3D reconstruction. In our work, we combine both voxel and point set representations
by using a 3D convolutional neural network to generate a deformation that is applied to 3D points
sets for output which can preserve fine detail in the template shape.

Spatial Transformer Networks Conventional convolutional neural networks lack the ability to warp
or select a patch from an image that is relevant to the target task, which leads to an unnecessarily
larger and deeper network for larger images. To alleviate this issue, Jadenberg et al. [20] proposed
the Spatial Transformer Networks (STN) that can apply geometric transformations to an input or
activations such as Affine Transformation or Thin-Plane-Spline to extract a patch that is relevant to
the task. Kanazawa et al. [21] proposed a WarpNet, an unsupervised method for deforming an image
using a Spatial Transformer Network. This work is similar in spirit to the WarpNet in that the neural
network generates deformation parameters and the loss is defined using the deviation of the deformed
input to the ground truth. However, unlike the WarpNet, we condition the network on two inputs (the
reference image and a template shape) and use it for 3D shape deformation and reconstruction.

3D Shape Deformation Recently, Yumer and Mitra [38] proposed a 3D Convolutional Neural
Network that generates a deformation field as an output for 3D mesh editing given a user input.
We employ the same deformation representation, Free-Form Deformation (FFD) to generate 3D
deformation field.

The primary difference between our approach and that of Yumer et al. are that they supervise the
network using precomputed deformation offsets while we propose an end-to-end trainable network
which only requires the target shape as the sole source of supervision. We accomplish this by
computing distance between a set of points and minimizing it with respect to the deformation field
(Sec. 3.4). In addition, unlike Yumer et al., we focus on the 3D reconstruction given an image input,
rather than 3D editing.

Huang et al. [19] also proposed an approach to 3D reconstruction through template retrieval and
deformation, which relies on jointly segmenting the 2D image and 3D templates and creating the
3D reconstruction from deformed parts of the segmented templates. Their approach differs from
ours in that it relies on having noisy segmentation of the shapes in their database, in that it performs
reconstruction by segmenting both the input image and templates and deforming template parts to fit
with the parts of the segmented image via direct optimization, and in that it takes significantly longer
to run due to the optimizations it employs.

To summarize, voxelized representations suffer from memory inefficiency and difficulty in generating
fine details, previous deformation networks require the limiting supervision of point displacements,
and previous work on reconstruction through template deformation relied on noisy segmentation in
the shapes database. Purely generative models don’t leverage the high quality and broad availability
of shape databases. Our paper finds a balance between the flexibility of a generative approach and the
output quality of a database-focused approach. It does this without requiring any supervision beyond
that of the desired shape. This addresses the major problems with the current best methods.

3 DEFORMNET

In this section, we propose the DEFORMNET framework that generates a 3D shape reconstruction
from a single image. Unlike recent single-view 3D reconstruction works that use Convolutional
Neural Networks, we do not use voxelized output [5, 13, 34], which cannot recover fine details due
to the coarse resolution of the voxel grid, and do not directly generate a point cloud from scratch
[8]. Instead, we propose an end-to-end network that deforms a template 3D shape to match an input
image and preserves the topology of the template shape and train it using the target shape only. This
can be seen as combining the key insights from prior work that used Free-Form Deformation in a
deep learning model [38] and the Chamfer distance for the objective function [8].
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In the following subsections, we first introduce metric learning based shape template retrieval, which
finds the most topologically similar 3D shape template for a given image (Sec. 3.1). Then, we
introduce DEFORMNET, which takes a set of templates that we use for deformation and a query
image and learns to output the deformation field end-to-end given the target shape (Sec. 3.3). Lastly,
we present two objective functions that measure the deviation of the deformed shape from the target
shape by finding correspondences on-the-fly (Sec. 3.4). See Figure 1 for illustration.

3.1 Shape Template Retrieval

To make use of the high-quality 3D CAD models in the existing database, the first step of the
framework is to retrieve shape templates that have a similar topology to the object in a query image.
For this, we use metric learning to learn an embedding that preserves topological similarity between
shapes. Specifically, we first define the metric space by a set of constraints that force dissimilar
shapes to be at least a margin father away than the distance between similar objects.

d(F(xi;θ),F(x j;θ))+∆ < d(F(xi;θ),F(xk;θ)) where i, j ∈ Cn,k ∈ Cm,m 6= n (1)
where ∆ ∈ R is a margin, Cn indicates a set containing all elements in the n-th class and d(·, ·) is an
arbitrary distance function. We use a parametric metric space representation using a neural network
F(·;θ) where θ denote the parameters in the neural network. The above constraints can be converted
to a loss function which forms a triplet loss [29]. By minimizing the loss function with respect to
θ , we can generate a feature representation that preserves perceptual similarity in a metric space
where the distance operation is meaningful. However, due to difficulty in mining hard negatives
and inefficiency of not reusing features in a batch, the naive metric learning approach only yields
a moderate result [24, 29]. Instead, we use the smoothed version of the triplet loss that reuses all
features in a batch for efficient hard negative mining [24] and allows fast and effective training.

J =
1

2|P|
∑

(i, j)∈P

log

 ∑
i,k∈Ni

exp{∆−di,k}+
∑

j,l∈N j

exp{∆−d j,l}

+di, j

2

+

(2)

where di, j indicates d(F(xi;θ),F(x j;θ)) and Ni denotes a set of shapes that belong to different
categories from the category of i.

Specifically, we used a 2D CNN to implement F(xi;θ) ∈ RD and xi denotes rendering of the i-th
shape. We define the positive pairs P to be renderings of the same shape from different perspectives
and negatives N to be renderings from different shapes. We define the similarity to be the inverse of
the distance in the metric space and retrieve K-nearest neighbors from a query image and use the
shapes that generated the images for the next stage.

3.2 DEFORMNET: Model
Given a reference image and a shape template that closely matches the object in the input image from
the Shape Retrieval stage (Sec. 3.1), we want to generate the parameters of a deformation which
transforms the shape template into the shape in the reference image. Unlike conventional CNN for
reconstruction, DEFORMNET takes two different modalities as inputs and thus has two CNNs in
these respective domains to encode the inputs. First, for the 2D image, we used 2D CNN for an
image encoder EI(I) ∈RFI and for the 3D shape input, we voxelized sampled points on the surface to
generate dense point cloud and voxelized to feed into a 3D CNN encoder Es(S) ∈ RFS . We simply
combined the information from two modes by stacking the final fully connected layer activation to
the last 3D CNN activation along the channel so that we preserve the spatial information from the
3D shape template. The combined information from both encoders contains all information that we
need to know from both inputs and thus call the latent variable z ∈ RFI+FS . z is then fed into a 3D
decoder D(z), a 3D Deconvolutional Neural Network, to expand the spatial dimension of the output.
Since the 3D encoder loses spatial details as we project the activations from 3D convolution layers to
a coarser voxel grid, we use a 3D U-Net structure which is an extension of the 2D U-Net proposed
in [38] to recover the details in the output. The U-net has an hourglass shape and skip connections
between the 3D encoder and 3D decoder that crosses the latent variable (Fig. 1).

The final output of the decoder is a vector field V = {vi}i=1,...,N3 , v ∈ R3 which is used as the offset
for the N3 control points in the Free-Form Deformation Layer (Sec. 3.3). Each offset vi, represents
x,y,z offset of the corresponding control point. These values are used to then compute the deformed
point cloud output, which is the final output of the network, and which can then be compared against
the ground truth point cloud of the input image shape.
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3.3 Free-Form Deformation Layer
Free-Form Deformation (FFD) [30] is the 3D extension of a Bezier curve form, which has been
widely used for shape deformation. Since it is defined on a 3D grid, FFD fits with 3D convolutional
neural network and has been used for generating 3D deformation using a neural network before[38].
The DEFORMNET learns the FFD for every input image - shape template pair, and the predicted
FFD on shape template will generate the final deformed shape. In this paper, we mainly focus on
manipulating and evaluating reconstructions with point clouds, though the learned FFD could also be
applied to other formats.

FFD is formally formulated as following. Let p = (u,v,w) be the normalized point coordinate in the
grid and ∆i jk be the 3D deformation offset at the grid control point pi jk = (i, j,k). Then, the point p
after deformation is defined as

p′ =
l∑

i=0

m∑
j=0

n∑
k=0

(pi jk +∆i jk)Bl,i(u)Bm, j(v)Bn,k(w) (3)

where Bn,m(x) =
(n

m

)
(1−x)n−mxm is a binomial function, and l,m,n are sizes of the control point grid.

The interpolation will mix the displacement of all control points around each data point, generating a
smooth deformed output. The 3D decoder outputs deformation field V . Note that p′ is differentiable
with respect to vi jk, which guarantees that the backward propagated gradients could flow from the
objective function on the top of FFD, making FFD learnable.

3.4 Objective Functions
To make the DEFORMNET end-to-end trainable, we need to define a loss function that optimizes
the target task: deforming a template shape to match a target shape. Ideally, the function should
measure difference between deformed shape and a template shape and should return 0 if and only if
the deformed shape overlaps the template exactly. However, 3D shapes are defined by vertices and
faces whose accurate topological similarity is difficult to measure. So, rather than measuring the
topological similarity, we sample points on the surface of a shape and use the set of points (point
cloud) as a surrogate for a shape. Point clouds are easy to manipulate due to their simplicity and
efficiency, and we follow [8] by using distance functions on point clouds as the loss function. If the
network generates the correct deformation field V that minimizes the point cloud distances, then the
deformed point could will match the target point cloud accurately as well. We explore two point
cloud distance functions: Earth Mover’s distance (EMD) and Chamfer distance (CD) [27]. Both
distance measures are based on point-wise L-2 distance.

Earth Mover’s distance: The EMD is defined as the minimum of sum of distances between a point
in one set and a point in another set over all possible permutation of correspondences. To find the
minimum, the EMD implicitly solves bipartite matching problem. More formally, given two sets of
points S1,S2, the EMD is defined as

dEMD(S1,S2) = min
φ :S1→S2

∑
p∈S1

‖p−φ(p)‖2 (4)

where φ is some bijection from S1 to S2.

Chamfer distance: CD is computationally easier than EMD, since it uses sub-optimal matching to
determine the pair-wise relation. For each point in one point set, CD simply treat the nearest neighbor
in the other set as the image of this point. Formally, CD is defined as

dCD(S1,S2) =
∑

p1∈S1

min
p2∈S2

‖p1− p2‖2
2 +

∑
p2∈S2

min
p1∈S1

‖p1− p2‖2
2 (5)

We use two forms of regularization in addition to the distance function, the first being L1 loss over all
point cloud offsets to force the network to deform the template as little as possible, and the second
being L2 loss over the difference between neighboring control point offsets to promote smooth
deformation.

3.5 Implementation Details
For shape retrieval, we use the multiview rendered images of shape from [5] to train the network and
used the GoogLeNet model [31]. At training and testing time, the template shape input is chosen
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at random from the 5 most similar shapes from the same category. For EMD, we precomputed
ground truth correspondences between each input and its 5 most similar shapes using the Hungarian
Algorithm; thus it should be noted that the correspondence is based on the undeformed template,
which is an approximation of true EMD. We evaluated using true EMD loss and found it to not work
better, and as discussed in the appendix focused on using Chamfer distance as the loss for training.
For Chamfer distance, we use the output of the network directly to compute the distance.

We used TensorFlow to implement the networks and used Adam optimizer with momentum term
of 0.95. The model is trained with an initial learning rate of 5e-4 and goes down to 5e-5 after 20k
iterations. After selection based on performance, we choose a batch size of 16 for training. We use
leaky ReLU as an activation function. Note that to make use of EMD, we resample the point clouds
to normalize the number of points. We train on point clouds with 1024 points. For deformation, we
set N=4 as the number of control points in each dimension that points are computed with (so each
point in the deformed output point cloud is a function of N3 = 64 control points). We use λ = 0.05
for regularization on control point offsets.

4 Experimental Evaluation
4.1 Experimental Setup
We train and evaluate our models on the ShapeNet database [4], which contains a large quantity of
manually created and cleaned 3D CAD models. Specifically, we select 5 representative categories to
study on: chair, car, airplane, bench and sofa, following Gwak et al. [15]. The images for training
and testing are rendered in various angles to provide synthetic training data for the model. In total,
22,324 shape models are covered, where training/testing split is 80%/20%. The 3D CAD objects are
originally stored as meshes, so we enriched the dataset via resampling the meshes into point clouds
and voxelizing them into voxels.

4.2 3D Shape Reconstruction from RGB Images
We compare our work with point set generation network (PSGN) [8], which is the state-of-the-art in
deep learning based 3D reconstruction from a single image. PSGN chooses point clouds as the 3D
representation, which allows manipulation including geometric transformations and deformations.
Also, point clouds can in principle contain more information than voxel representations due to the
latter’s discrete nature, and point clouds are easy to convert into voxels whereas the other way around
will be tricky. Therefore we also target point clouds, though the learned free-form deformation can
be applied to both voxel, point cloud, and mesh.

On point clouds, PSGN proposed two metrics for training and evaluating the reconstruction - CD and
EMD. To have a fair comparison, we use the same point-set based metrics and follow their experiment
setups. We train and test with relatively sparse point clouds with 1024 points, though as will be
demonstrated in section 4.6 our model can be applied to dense point clouds despite being trained with
sparse ones. To have comparable scaling of distances, during evaluation point clouds are bounded in
a hemisphere with a radius of unit 1 and are aligned to their ground plane. Unit 1 is defined as 1/10 of
the length of the 3D grid as done in PSGN. We train our models on all five categories with only the
CD the loss (as it was found that EMD provided no benefit over CD), and provide both CD and EMD
metrics on the test set alongside the same metrics for the newest trained model released by PSGN.

Here we report the per category comparison on both CD and EMD metrics in Table 1. In PSGN, they
include the mean value of point-set based metrics from 3D-R2N2 [5], thus we also list them here. On
CD metrics, we outperform PSGN and 3D-R2N2 on all categories; on EMD, PSGN achieves better
values on the car and sofa categories, but our model performs significantly better in the other three
categories as well as the average value. This indicates PSGN has good performance on rotund and

Table 1: Comparison with point set generation network and 3D-R2N2 on point-set based metrics. ’Rtvr’ is
the loss when just using one of the top 5 templates at random, without deformation. ’No Rtvr’ is our model
trained without shape retrieval, to deform a random in-category shape. The numbers are the average point-wise
distances. (Lower is better)

Category CD EMD
Ours Rtrv No Rtrv PSGN[8] 3D-R2N2[5] Ours Rtrv No Rtrv PSGN[8] 3D-R2N2[5]

airplane 0.10 0.15 0.20 0.14 - 0.56 0.64 0.74 1.15 -
bench 0.10 0.24 0.21 0.21 - 0.55 0.64 0.68 0.98 -

car 0.09 0.14 0.13 0.11 - 0.52 0.63 0.63 0.38 -
chair 0.13 0.19 0.27 0.33 - 0.51 0.62 0.70 0.77 -
sofa 0.21 0.30 0.37 0.23 - 0.77 0.83 0.84 0.60 -

mean 0.13 0.20 0.24 0.20 0.71 0.58 0.67 0.72 0.78 1.02
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Figure 2: Visual comparison of different approaches. Left to right: input image, retrieved shape, point set
generation network output, the output reconstruction trained with CD on our full model, ground truth shape. The
examples are hand-picked from 4 categories.

less detailed objects, while our strength is on objects with more fine-grained details such as chairs
and airplanes. Both our work and PSGN focus on reconstruction on point clouds, where the point-set
based metrics are straightforward and intuitive.

To contrast the two methods clearly, we show the visual comparison in Figure 2. In general, our
reconstruction can recover the main features from the object, even when the input template is not
ideal for the image. This can be attributed to the combined benefits of shape retrieval and deformation
- shape retrieval alone provides very good complete 3D shape templates without missing features,
and deformation is able to preserve all of the template’s main features while tweaking them to more
closely match their shape in the image input.

4.3 Ablation Analysis

Sensitivity to input shape template. Image-based shape retrieval could provide reasonable CAD
model as template to start deforming with. We therefore also provide analysis on the degree to which
DEFORMNET relies on having a good shape template.

Figure 3: Sensitivity to shape template
choice. The horizontal axis is the CD be-
tween ground truth and a random template
input, and the vertical axis is the CD between
ground truth and the output from DEFORM-
NET.

To do this analysis, we compute the statistics on test set
of all categories: for each group of input template (In),
output (Out), ground truth shapes, we compute the tuple
(dCD(In,GT),dCD(Out,GT)). Figure 3 shows the scatter-
ing plot of 516 random groups. Most of them lie closely to
the horizontal axis, showing that DEFORMNET is not very
sensitive to the input template’s quality, which indicates
the robustness of DEFORMNET. We also report the CD
and EMD with randomly picked shape template as input
(without shape retrieval) in 2, averaged on all categories.
Note that DEFORMNET without shape template retrieval
still outperforms PSGN on average.

Joint skip connections. The joint skip connections stack-
ing activations from 3D encoder and 3D decoder serve
as information conveyors on the same level of spatial res-
olution. To verify its importance, we trained a network
without the joint skip connections and measured its per-
formance in CD and EMD metrics as shown in Table 2.
Since the joint skip connections feed sharp information
from the shape directly to deeper layers in the decoder, the
reconstruction is more accurate in terms of CD loss.

CD EMD
w/o skip 0.183 0.563
w/o reg 0.125 0.582
full 0.127 0.585

Table 2: Ablation analysis

Regularizer. To understand the functionality of the deformation regu-
larizer, we have trained and tested a network without the regularization
term in the objective function. Quantitatively, the model without regu-
larization performs slightly better than the model with it, as shown in
Table 2. However, the regularizer encourages more conservative and
smooth deformation. For mesh reconstruction, this lowers the chance for
faces to cross during deformation. As illustrated in the mesh reconstruction experiment in Figure 6,
the regularizer enforces the consistency among offsets of neighboring control points, which is not
guaranteed in the model without the regularizer.
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Figure 4: Reconstruction on sparse and dense point clouds. Sparse point cloud have 1024 points, dense point
clouds have 16384 points. The model is trained on sparse point clouds only.

Point cloud density. One advantage of FFD is that the same deformation can be applied to any
number of points in the control points grid, which bridges the gap between low and high resolution.
To have a fair comparison with PSGN, we also trained on sparse point clouds with 1024 points, but
our trained model could be directly used on deforming and reconstructing dense point clouds. Figure
4 shows the comparison between reconstructed sparse and dense point clouds, using the model trained
on sparse point clouds. In general, network deforms dense point clouds similarly to sparse ones.

4.4 3D Reconstruction with Real Images

Figure 5: Real image reconstruction. On the first three test examples, DEFORMNET generates reasonable
reconstruction, while the last one fails.

We also tested our model on real world images and visualization results are shown in Figure 5,
including a failure case. Since we trained our model on synthesized images with single-colored
backgrounds, we segmented real images as the input into network as done in PSGN. Our network
successfully infers the 3D shape in some cases, but fails on some others. One solution could be
domain adaptation and transfer learning, to bridge the gap between rendered and real world images,
which we leave to future work.

4.5 Mesh Reconstruction

Free-form deformation has been widely used on deforming mesh objects, and with FFD layer in
a deep neural network, the learnable manipulation and reconstruction on mesh become possible.
As analyzed in section 4.3, the regularized model refrains from drastic changes in a local patch,
which gives out mesh reconstruction with plausible quality. Figure 6 shows an example of mesh
reconstruction on a chair.

Figure 6: Comparison between the behavior of De-
formNet with and without regularization during train-
ing. The ground truth and retrieved model are similar
except for the thickness of the seat and its height. The
arrows shown in the zoomed-in figures are the offsets
of control points. Color denote the offset’s magnitude.
The regularized model learns to consistently squeeze
the seat uniformly whereas the unregularized model
displaces the control points less smoothly, which re-
sults in the difference in the output mesh reconstruc-
tion.

5 Conclusions and Outlook
This paper examines the structured prediction problem of regressing 3D point clouds based on
image input to solve 3D Reconstruction with a single image. We note that existing methods with
volumetric representations fall short on computational efficiency. This paper leverages the Point
cloud-based representation coupled with a 3D generalization of the Spatial Transformer using Free-
Form Deformation to achieve state of the art results on reconstruction with ShapeNet. We introduce
Free Form Deformation as a differentiable layer to enable 3D data manipulation. This can have wider
implications beyond 3D reconstruction, such as in point-cloud processing, and learning to perform
grasping on unseen objects.
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6 Supplementary Material

6.1 CD vs EMD

Table 3: Comparison of
performance with CD and
EMD. This evaluation is on
a slightly different test set
than in Table 1 and 2.

Train \ Test CD EMD
CD 0.10 0.52
EMD 0.11 0.50

We trained DeformNet trained with both CD and EMD as objective
functions, then test both of them using CD and EMD metrics. The average
distance is reported on the Table 3. In terms of the point-set based metrics,
the performance of these two models are similar. Besides, from our
observation on output visualization, we don’t find significant difference
between these two metrics. With respect to computation efficiency, CD
runs much faster with KDTree searching for nearest neighbors, so we
primarily used it for the evaluations in this paper.

6.2 Additional Images

We present 18 additional qualitative examples, drawn at random from the test set:
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