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An Order Preserving Bilinear Model for Person Detection in Multi-Modal Data

Oytun Ulutan∗1, Benjamin S. Riggan2, Nasser M. Nasrabadi3 and B. S. Manjunath1

1Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA
2US Army Research Lab, Adelphi, MD

3West Virginia University, Morgantown, WV

Abstract

We propose a new order preserving bilinear framework
that exploits low-resolution video for person detection in
a multi-modal setting using deep neural networks. In this
setting cameras are strategically placed such that less ro-
bust sensors, e.g. geophones that monitor seismic activ-
ity, are located within the field of views (FOVs) of cam-
eras. The primary challenge is being able to leverage suffi-
cient information from videos where there are less than 40
pixels on targets, while also taking advantage of less dis-
criminative information from other modalities, e.g. seis-
mic. Unlike state-of-the-art methods, our bilinear frame-
work retains spatio-temporal order when computing the
vector outer products between pairs of features. Despite
the high dimensionality of these outer products, we demon-
strate that our order preserving bilinear framework yields
better performance than recent orderless bilinear mod-
els and alternative fusion methods. Code is available at
https://github.com/oulutan/OP-Bilinear-Model

1. Introduction
Human detection is a frequently studied problem, espe-

cially in the context of surveillance applications [3, 5, 6, 25].

In our work, we are interested in cases where visual detec-

tors fail due to insufficient number of pixels on the target

(i.e., low resolution). Therefore, our objective is to provide

a detection framework that is robust to challenging condi-

tions, such as few pixels on target, by leveraging multi-

modal sensor data.

Low-resolution videos can be generated from a scenario

where a high resolution camera with a wide field of view

(FOV) placed close to a power source but far away from

the field with targets. This requires visual detection frame-

works to search for small (few pixels) objects on a large

∗ulutan@ece.ucsb.edu

field. Seismic sensors on the other hand can provide re-

liable information about their close surroundings and can

easily be distributed on a large field. This allows the data

from a seismic sensor to improve the detection of cameras

in regions where camera view and sensor range intersects.

In this work, we consider a typical surveillance setting

(e.g., border patrol) where multiple sensors and cameras

are used to monitor a particular area. Traditional methods

for person detection that rely only upon visual cues tend

to perform poorly on low resolution imagery data from our

dataset. For this reason, we aim to jointly leverage corre-

sponding sensor (e.g., seismic) and imaging data (Fig. 1).

In this context, we propose a new order-preserving bi-

linear fusion model for person detection, leveraging pair-

wise interactions between convolutional features in a new

way. We demonstrate that sparse feature selection com-

bined with bilinear fusion selects the optimal combinations

of spatio-temporal features. We show that the proposed fu-

sion method is differentiable and the final model is end-

to-end trainable. The performance of our fusion model is

tested in a new multi-modal person detection dataset with

syncronized seismic sensors and video cameras [18]. The

dataset is available through requests1. Our experimental re-

sults show that our model achieves better detection accuracy

and reduced false positive rates compared to the state of the

art fusion methods.

2. Related Work
In a surveillance setting, traditional detection methods

for multimodal sensor data depend on hand-crafted features

such as frequency domain analysis [6, 25], Symbolic Dy-

namic Filtering [3], and Cepstral features [20]. Damarla et
al. [5] extracts and fuses hand-crafted features from multi-

ple different modalities for person detection. Recently, with

the advances of computational hardware and the increase

1The dataset can be obtained by sending an email to

benjamin.s.riggan.civ@mail.mil
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Figure 1. An example of time synchronized seismic and visual

data. Frames are cropped centering the seismic sensor’s location.

As a person gets closer to the center of image, the amplitude of the

seismic signals increase. Red arrows indicate the person.

of available data, feature learning has been integrated with

classification to achieve end-to-end trainable systems [14].

Ngiam et al. [19] analyzed the relations between dif-

ferent modalities in deep networks and showed that cross-

modality feature learning can improve single modality per-

formance. Riggan et al. [22] used Coupled AutoEncoders

for cross-modal face recognition fusing visible and thermal

imaging. [9, 27] achieved fusion by concatenating features

from CNNs trained on RGB and depth images.

Fusing different features extracted from a single modal-

ity has been achieved using multiple different methods

which are also applicable to multi-modal fusion. [26, 32]

achieved late fusion between optical flow and RGB by aver-

aging the confidence scores of single CNNs for video clas-

sification. Karpathy et al. [12] analyzed concatenating fea-

tures from different time instances and trained fully con-

nected layers to fuse information over time in a video.

Bilinear models were first analyzed by Tenenbaum and

Freeman [30] to manipulate two factors from images, style

and content. Recently bilinear models have achieved suc-

cess in multiple tasks. Lin et al. [16] fused two convolu-

tional neural networks to obtain orderless descriptors and

improved results in fine-grained visual recognition. Car-

reira et al. [4] used second order statistics of the local de-

scriptors for semantic segmentation. RoyChowdhury et al.
[23] used bilinear CNNs to improve results in face identifi-

cation tasks. Gao et al. [10] improves the bilinear methods

by developing a compact pooling method.

The main difference between recent bilinear methods

[4, 10, 16, 23] and our method is that we use the outer prod-

uct of vectors and obtain the pairwise feature interactions at

each spatio-temporal indices. This is in contrast with these

methods that use pooling methods over all indices and ob-

tain an ‘orderless’ descriptor without preserving the order.

Figure 2. ROIs seen from a wider camera view. Each ROI is lo-

cated around the sensor locations which are known a priori. No-

tice that in the figure, target is within the Sensor A’s region which

produces a positive sample whereas the sample from Sensor B is

a negative sample. There are multiple ROIs within this camera

frame but only two of them are shown.

3. Technical Approach
The goal is to detect the region of interest(ROI) with a

person walking in a field that is being monitored by a multi-

modal sensor network data consisting of video cameras and

seismic geophones. In this context, a ROI is any contigu-

ous set of pixels and corresponding sensor data. Detection

is defined on ROIs with corresponding camera and sensor

pairs. We pose this as a binary classification problem for

each ROI. Fig. 2 shows example ROIs located around the

sensor locations which are known a priori. The inputs to our

model are a single optical flow frame and its corresponding

seismic signal for the same time interval.

In the following sections, we define the problem as a

general multi-modal fusion problem and derive our fusion

model by explaining each of the modules.

3.1. Problem Definition

Let X and Z be two sets of local descriptors extracted

from two different modalities. Each descriptor xux,vx,tx ∈
X represents the feature vector for the spatio-temporal

voxel defined by the indices ux, vx, tx, and similarly for the

other modality zuz,vz,tz ∈ Z . Let x and z be N × 1 and

M × 1 dimensional feature vectors respectively.

Our goal is to develop a fusion algorithm O = f(X ,Z )
such that spatio-temporal indices are preserved. For every

spatio-temporal index from both modalities, we have the

output feature vector:

oux,vx,tx,uz,vz,tz = f(xux,vx,tx , zuz,vz,tz ) (1)

where oux,vx,tx,uz,vz,tz ∈ O are the local descriptors of

the output. If the input modalities are synchronized in time

and space then we will have (ux, vx, tx) = (uz, vz, tz) =
(u, v, t). Indices from Eq. 1 simplifies into:

ou,v,t = f(xu,v,t, zu,v,t) (2)
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Figure 3. Order Preserving Bilinear model: Data from both modalities go through their respective CNN streams. Resulting features are

compressed into lower dimensional vectors by sparse feature reduction and then fused by taking outer product at every spatio-temporal

index. Since the order is preserved, 3D convolutions are leveraged. Since every module is differentiable, the whole model is trained

end-to-end.

Furthermore, if we let modality X to be a spatial signal

and modality Z to be a temporal signal. That gives tx = 1
and uz = vz = 1 and simplifies the Eq. 1 into:

ou,v,t = f(xu,v, zt) (3)

Eq. 3 defines the local descriptor which is the output of

the fusion method. Note that in both Eq. 2 and Eq. 3, the

calculation of ou,v,t, depends on the input values at indices

u, v, t, which gives an ordered descriptor. Ordered descrip-

tors allow us to exploit the relations between neighboring

terms by using methods such as 3D convolutions. The goal

is to detect targets using spatial images and temporal seis-

mic sensor data, which fits into the formulation in Eq. 3.

Our model is organized into four sub-components as

shown in Fig. 3: 1) input sensor signals are processed

by dedicated CNNs for each modality (Section 3.2); 2) at

each spatial and temporal index, feature vectors are com-

pressed in their depth dimension (Section 3.3); 3) outer

product is used in each spatio-temporal index to obtain the

bilinear feature vector (Section 3.4); and 4) 3D convolu-

tions are used to leverage neighborhood relations of spatio-

temporally ordered terms (Section 3.5).

3.2. CNN Features

In previous works, CNNs have been shown to extract

useful features for variety of tasks on spatial [11], tempo-

ral [2] and spatio-temporal [26] modalities. CNNs extract

local feature vectors at each spatio-temporal index (u, v, t).
The size of the vector depends on the number of filters in

the last convolutional layer, i.e., depth of the layer. For each

modality at each index u, v, t we have:

x′
u,v = [x′

1, x
′
2, ...x

′
N ′ ]T , (4)

z′
t = [z′1, z

′
2, ...z

′
M ′ ]T . (5)

The prime (′) notations refer to the values before feature

selection.

3.3. Sparse Feature Selection

The proposed fusion method, explained in Section 3.4,

generates a high dimensional vector. Using high dimen-

sional vectors are computationally challenging and can be

prone to overfitting due to increased number of parameters.

Within these large number of features, we want to priori-

tize which feature pairs are more useful (further discussed

in Section 3.4.2). Therefore, we implement an efficient

way to perform spatio-temporal feature selection by com-

bining sparse 1×1 convolutions with bilinear fusion. More-

over, this method maintains spatio-temporal order. The

goal is to compress the input vector to reduce the dimen-

sions from Eq. 4. From here on, we generically use the

term ‘reduction’ to represent both feature selection and di-

mensionality reduction operations. We define our reduction

function r(.) as:

r(x′
u,v) = xu,v = [x1, x2, ..., xN ]T , (6)

where N < N ′ so that we obtain a more compact feature

vector and we define the each reduced component xi as the

linear combinations of the original vector:

xi = ReLU(
N ′∑
k=1

wx
ikx

′
k) = max(0,

N ′∑
k=1

wx
ikx

′
k), (7)
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where weights wx
ik are learned over the training and the

norm of the weights are regularized using L1 normaliza-

tion. Compared to L2 normalization or without normal-

ization, L1 normalization generates a more sparse set of

weights which forces the network to ‘choose’ the features

that will be included in the summation. By L1 regular-

ization, the weights |wx
ik| are mostly close to zero except

a few weights that are multiplying essential set of features

x′
k. This is similar to LASSO [35, 17] and provides a fea-

ture selection operation. Similarly for the second modality,

reducing the vector from Eq. 5:

r(z′
t) = zt = [z1, z2, ...zM ]T , (8)

zi = ReLU(

M ′∑
k=1

wz
ikz

′
k) = max(0,

M ′∑
k=1

wz
ikz

′
k). (9)

3.4. Order Preserving Bilinear Fusion

Reduced CNN features (Eq. 6 and Eq. 8) are fed into

the fusion layer. At each spatial and temporal index, local

feature vectors from both modalities are fused by taking the

outer product. The fusion function at each spatio-temporal

index u ∈ U, v ∈ V, t ∈ T can be written as:

ou,v,t = f(xu,v, zt) = vectorize(xu,vz
T
t ) (10)

At each index, we have length N vector xu,v and length

M vector zt. Outer product between these feature vectors

generate the N ×M second order pairwise features matrix:

xu,vz
T
t =

⎡
⎢⎢⎢⎣

x1z1 x1z2 ... x1zM
x2z1 x2z2 ... x2zM

...
. . .

...

xNz1 xNz2 ... xNzM

⎤
⎥⎥⎥⎦ . (11)

We stack the rows together in lexicographical order, i.e.,

N ×M dimensional matrix into an MN × 1 vector. This

gives the fused feature vector at each spatio-temporal index.

ou,v,t = [o1, o2, ...oMN ]T =
[
x1z1 ... x1zM ... xNz1 ... xNzM

]T (12)

We repeat this operation for each spatial index u, v and

temporal index t and obtain the fused second order feature

vector at every combination of indices u, v, t.

3.4.1 Differentiability for Backpropagation

This fusion operation is differentiable for gradient opera-

tions and it is end-to-end trainable. In this section we show

how the gradient can be backpropagated to each modality

stream. Let L denote the cross-entropy loss function. Then

by chain rule, we obtain:

∂L

∂xu,v

=
∂L

∂ou,v,t

∂ou,v,t

∂xu,v

=
∂L

∂ou,v,t

⎡
⎢⎢⎢⎣

∂o1
∂x1

...
∂o1
∂xN

.

.

.
. . .

.

.

.
∂oMN
∂x1

...
∂oMN
∂xN

⎤
⎥⎥⎥⎦ (13)

where ∂L
∂ou,v,t

can be calculated using chain rule of deriva-

tives for layers between loss L and the outer product. Each

partial derivative in the matrix can be written as:

∂op
∂xr

=
∂(xszq)

∂xr
(14)

where p = 1, ..,MN , q = 1, ..,M , r = 1, .., N and s =
1, .., N . For s = r, this simplifies into:

∂op
∂xr

=
∂(xrzq)

∂xr
= zq (15)

For s �= r, Eq. 14 becomes 0. Gradients before this layer

can also be calculated by the regular CNN chain rule. ∂L
∂zt

can be calculated similarly for the second modality.

3.4.2 Effects of Feature Selection

The outer product generates a high dimensional feature vec-

tor at each index ou,v,t. To handle the high dimension-

ality, we pool the convolutional features before the outer

product operation by feature selection (Section 3.3). When∑N ′

k=1 w
x
ikx

′
k > 0 and

∑M ′

l=1 w
z
jlz

′
l > 0, multiplying the

terms from Eq. 7 and Eq. 9 yields for each xizj in Eq. 12:

xizj =
N ′∑
k=1

wx
ikx

′
k ×

M ′∑
l=1

wz
jlz

′
l =

N ′∑
k=1

M ′∑
l=1

wxz
kl x

′
kz

′
l (16)

where each wxz
kl = wx

ikw
z
jl. Otherwise, the xizj = 0. This

shows that output of reduced fusion operation is linear com-

binations of the second order interactions of the original fea-

ture vectors before the feature selection operation x′
k, z

′
l.

Weights of 1 × 1 convolutions wx
ik, w

z
jl are trained with

L1 regularization, hence they are individually sparse (Sec-

tion 3.3). Therefore, this ensures that when multiplied, the

produced set of weights are also sparse and the product

wx
ikw

z
jl is non-zero only if corresponding features k, l from

each modality x′
k, z

′
l are individually important for the task

which is similar to sparse representations[21].

3.5. 3D Convolutions

Since the outer product operation is repeated for every

combination of the spatial (u, v) and temporal (t) indices,

output of the fusion operation is a spatio-temporal feature
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tensor as shown in Fig. 3. This tensor allows us to use

shared weights that stride across spatial and temporal di-

mensions, i.e., 3D convolutions, to reduce the total num-

ber of parameters and chances of overfitting by exploiting

spatio-temporal correlations. In the tensor, at every spatio-

temporal index, we have a feature vector of length MN
which is the output of the outer product between length M
vector x and length N vector z. In the 3D convolutions, this

dimension corresponds to the depth of input. The intuition

behind keeping the spatio-temporal order is that certain ac-

tivations in certain combinations of spatial and temporal in-

dices complement each other. By having all the second or-

der pairs as features at each index, we can find feature pairs

that are sufficiently discriminative.

4. Implementation Details
The data is collected in a sensor field with 16 seis-

mic sensors and 4 video cameras[18]. Seismic sensors are

placed on a grid and the video cameras are placed outside

the sensor field, observing it from different directions. In

a surveillance setting, viewpoints and conditions vary for

cameras and sensors, and surroundings can change the de-

tected signature of the seismic sensors. To take this into

account and to make the model generalizable, we split the

data such that camera views (angle, background) and seis-

mic sensors that are used in test set are different than the

ones in training set. Each person in the field wears a GPS

sensor. Using the location information we label the samples

as positive when a person is within 15 meters of a seismic

sensor. This results in 69483 negative and 16481 positive

samples in training set and 26064 negative and 6440 posi-

tive samples in test set.

Videos are recorded at 30 frames per second at 640×360
resolution and seismic signals captured at 4096 Hz sam-

pling rate. A 100 × 100 region that is centered at a seis-

mic sensor location (known a priori) is cropped from each

camera frame. From seismic signals we extract our data

points as 1 second intervals with 50% overlap. For the video

data, we compute optical flow(OF). For each seismic sig-

nal centered at time t, OF frames are computed from the

seismic sensor’s corresponding region over the time inter-

val [t − 1, t + 1]. Magnitudes of these OF frames are av-

eraged and used as the input to the proposed method. By

averaging OF frames the spatio-temporal modality video is

compressed into a spatial representation that encodes the

temporal motion information. The reasoning behind this

approach is mostly computational. This approach is further

investigated and compared to LSTMs in Section 5.6.

To measure the performance of our methods, we re-

port the precision, recall and F1-score values for the pos-

itive class. Recall values measure the detection accuracy

whereas Precision measures the rate of false positives. In a

data as unbalanced as ours, reporting both recall and preci-

sion becomes important. Since the negative class has signif-

icantly more samples than the positive class, high accuracy

in detecting negative samples might still mean high false

positive rates. For example 90% accuracy in negative test

samples still means 26064 × 0.10 = 2606 false positives

which is 40% of the total number of positive samples.

All models are trained using TensorFlow [1] and opti-

mized using ADAM optimizer[13].

4.1. Single Modality CNNs

For extracting useful features from both seismic and vi-

sual data, we independently train modality specific CNNs

for the detection task and analyze their performances.

Since there are no similar works using seismic sensors

to be used for transfer learning, a randomly initialized 1-

dimensional CNN is trained for the seismic modality. For

the visual modality, we leverage the Inception V3 network

architecture explained in [29] and initialize the network

with weights that are pretrained for ImageNet [24]. Since

this network is trained on RGB images and trained to detect

ImageNet-specific features, we use earlier layers instead of

the full architecture. Earlier layers in a CNN extract basic

features such as edges, corners and these features are more

generalizable. In [34] the authors quantified the general-

ity and specificity of the layers and showed that the earlier

layers are more generalizable. In [33] an OF CNN for ac-

tion recognition is initialized using weights from a model

trained for ImageNet. In our case, for the OF CNN we use

the first five convolutional layers from Inception V3 model

and initialize the weights from a ImageNet trained model.

4.2. Order Preserving Bilinear Fusion

The proposed approach (Fig. 3) consists of two dedi-

cated streams of CNNs for each modality (Section 3.2),

their corresponding sparse feature selection layers (Section

3.3), outer product between outputs of the two streams at

each spatio-temporal index to preserve the order (Section

5.2), 3D convolutions (Section 3.5) and a final fully con-

nected layer for classification. We refer this model as Order

Preserving (OP) Bilinear Model.

Architectures used for the modality dedicated CNN

streams are the same architectures as the single modality

models defined in previous section. This allows us to initial-

ize the model weights with pretrained weights from single

modality models. Each CNN stream is followed by sparse

feature selection and the fusion is achieved by order pre-

serving outer product operation. Since the proposed outer

product fusion is differentiable, as shown in Section 3.4.1,

the whole model is fine-tuned in an end-to-end fashion.

5. Experiments and Results
In the following sections, we conduct a series of exper-

iments to analyze the performance of each module in our
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Model Recall Precision F1-Score

Seismic 0.90 0.87 0.89

Seismic Reduced 0.89 0.86 0.88

Visual 0.82 0.89 0.86

Visual Reduced 0.78 0.89 0.83

OP-Bilinear Fusion 0.97 0.96 0.96

Table 1. Precision, Recall and F1-Score values for single modality

models and the proposed fusion method.

Distances From Cameras(meters) 50-80 80-110 110-140

Visual Reduced 0.96 0.93 0.74

OP-Bilinear Fusion 0.98 0.96 0.95

Distances From Sensors(meters) 0-5 5-10 10-15

Seismic Reduced 0.96 0.93 0.80

OP-Bilinear Fusion 0.99 0.97 0.93

Table 2. Recall rates for different distances from the cameras and

seismic sensors. Even though the performance of OP-Bilinear

model also decreases with range, the change is not as signifi-

cant since it incorporates the information from the complementary

modality.

method. First, we report experiments on the single modal-

ity CNNs and analyze the effects of dimensionality reduc-

tion. Then, we demonstrate the superior performance of the

proposed bilinear fusion method compared to single modal-

ity models and alternative fusion methods. Furthermore, we

compare the order-preserving methods that exploit 3D con-

volutions with their fully connected counterparts. Finally,

we compare our visual approach with a LSTM approach.

5.1. Impact of Sparse Feature Reduction

For each modality, two different models are trained. Ini-

tial models use convolutional layers followed by fully con-

nected layers. These models are labeled as ‘Seismic’ and

‘Visual’ in the tables. Additionally, we train models with

the sparse feature selection method explained in Section

3.3. We add the feature selection layer between convolu-

tional and fully connected layers. These models are labeled

as ‘Seismic Reduced’ and ‘Visual Reduced’ in the tables.

Table 1 implies that sparse feature selection (reduced

models) from Section 3.3 provide a slight trade-off in per-

formance for computation efficiency for computing bilinear

features. In the Visual CNN, the reduction in number of

parameters are significant with this reduction method.

5.2. Fusion Compared to Single Modalities

Table 1 compares the proposed fusion method against

single modality models and shows that the fusion method

provides the best performance in accuracy (Recall) and false

positive rate (Precision). Fig. 5 compares the method with

other select models by plotting Precision-Recall curves.

This plot demonstrates that our model is the best perform-

Figure 4. Examples of correct detections from the OP-Bilinear

Model where single modality models fail. Red arrows indicate

the targets.

Model Recall Precision F1-Score

End-to-End OP-Bilinear 0.95 0.95 0.95

OP-Bilinear Fusion 0.97 0.96 0.96

Table 3. Precision, Recall and F1-Score values for different initial-

ization methods.

ing classifier since OP-Bilinear curve achieves the best

Precision-Recall trade-off at every point.

Fig. 4 shows 3 sets of data samples. The first set shows

the cases where both Visual and Seismic models fail but

the fusion model correctly detects the target. In both sam-

ples, OF captures a weak motion and seismic sensor cap-

tures noise-like signals, but the fusion method detects the

person nevertheless. The second set shows the samples

where Visual model fail but Seismic and OP-Bilinear mod-

els correctly detects the target. Similarly, the third set shows

the samples where Seismic model fails but Visual and OP-

Bilinear model detects the target. This demonstrates that the

fusion model achieves robust detection even when the input

from a single sensor deteriorates.

We further compare the fusion model to the single

modality models. As the distance between the target and

the sensors increase, the performance deteriorates. Table 2

demonstrates that the proposed OP-Bilinear Fusion model

is more robust to distance. The fusion model can effec-

tively incorporate the information from the complementary

modality when one modality degrades with range.

5.3. Effects of Initialization

In Section 3.4.1, we have derived the gradient for the

proposed outer product operation. Since the gradient ex-

ists, the whole model is end-to-end trainable. In the previ-

ous section, we showed the results of the proposed method

by initializing the model with single modality CNN model

weights and fine-tuning the whole model. To investigate

end-to-end training, we train a model using the same archi-

tecture, except the filter weights for the model are randomly
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Figure 5. Precision-Recall curves show that OP-Bilinear Fusion

achieves the best detection rate and fewest false positives.

initialized. Table 3 compares the performance of the end-

to-end trained network with the model that is fine-tuned on

pre-trained weights. This shows that pre-training achieves a

slightly better performance than random initialization.

5.4. Comparisons with Fusion Methods

We compare our proposed OP-Bilinear Model with

multiple late fusion approaches, feature concatenation ap-

proaches and state of the art Orderless Bilinear methods.

Average Fusion: We compare our results with a simple

confidence score averaging late fusion method. This is a

widely used method due to its simplicity [12, 26, 32]. In

this method, we take the confidence scores from individu-

ally trained models ‘Seismic’ and ‘Visual’ from Section 4.1

and average them to get the final score for each datapoint.

Results are labeled as ‘Average Fusion’ in Table 4.

Dempster Shafer Fusion: We compare our results with

a more sophisticated late fusion method, Demster Shafer

theory [7]. This theory is a framework for reasoning with

uncertainty and generally applicable to sensor fusion mod-

els. We implement this model similar to [15]. We assume

more uncertainty for visual modality than seismic modal-

ity, e.g. 35% versus 15%, due to noise and resolution. The

results of this framework are shown in Table 4 with label

‘Demster Shafer Fusion’.

Compared with these late fusion methods, our proposed

fusion method is able to model the relations between the

modalities and achieve better performance. Table 4 demon-

strates that the proposed OP-Bilinear fusion model achieves

higher detection rate (Recall) with lower false positive rate

(Precision).

Concatenation-Fully Connected: Many multi-modal

fusion [9, 27, 31] and feature fusion [12] methods concate-

nate the feature vectors from CNNs and classify the results

using fully connected layer. This simple stacking of fea-

ture vectors compresses the spatial or temporal order since

the features at every index are stacked into a single vector.

Note that such operation does not exploit correlations in the

Model Recall Precision F1-Score

Average Fusion [26, 12] 0.90 0.92 0.91

Dempster Shafer Fusion [15] 0.93 0.95 0.94

Concatenation-FC [27, 12] 0.91 0.89 0.90

OP-Concatenation 0.93 0.90 0.91

Orderless Bilinear [16] 0.87 0.90 0.88

OP-Bilinear Fusion 0.97 0.96 0.96

Table 4. Precision, Recall and F1-Score values for different fusion

methods and proposed method. Cited papers use similar (multi-

modal or feature) fusion methods to our experimentation models.

spatial or temporal order. The output of this fusion can be

expressed as:

ou,v,t = [o1, o2, ...oM+N ]T =
[
x1 ... xN z1 ... zM

]T (17)

and vectors at each spatial and temporal indices are also

stacked into a vector as:

[
o1,1,1 ... ou,v,t ... oU,V,T

]T
(18)

Results of this model are provided in Table 4 and Fig. 5

under the label ‘Concatenation-FC’. The results show that

the OP-Bilinear method achieves better performance than

the Concatenation model by extracting bilinear features and

preserving order.

Orderless Bilinear Descriptor: Bilinear pooling meth-

ods [16, 23, 4, 10] use sum pooling over spatial indices to

pool the second order feature tensor into an orderless feature

representation. Inspired by this idea, we sum the output of

the outer product operation xu,vz
T
t from every spatial and

temporal indices.

∑
u,v,t

xu,vz
T
t =

⎡
⎢⎢⎢⎣

x1z1 x1z2 ... x1zM
x2z1 x2z2 ... x2zM

...
. . .

...

xNz1 xNz2 ... xNzM

⎤
⎥⎥⎥⎦ (19)

Results of these fusion models can be seen in Table 4 and

Fig. 5. The results demonstrate that the proposed method

achieves the highest recall and precision rate among alter-

native fusion methods. Additionally, we observe that Or-

derless Bilinear model performs worse than the Concate-

nation. We believe that summation approach over all the

spatio-temporal indices in the former model loses the infor-

mation instead of achieving fusion.

5.5. Impact of 3D Convolutions

In this section we investigate the merits of 3D convolu-

tions. Since the model is order preserving (OP), output of

the fusion model is a spatio-temporal tensor. This tensor al-

lows us to leverage 3D convolutions to reduce the total num-

ber of parameters and chances of overfitting by exploiting
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Model Recall Precision F1-Score

Concatenation-FC 0.91 0.89 0.90

OP-Concatenation 0.93 0.90 0.91

Bilinear-FC 0.95 0.75 0.85

OP-Bilinear Fusion 0.97 0.96 0.96

Table 5. Precision, Recall and F1-Score values for Order Preserv-

ing (OP) fusion methods and their fully connected orderless vari-

ants. OP methods exploit 3D convolutions, other methods do not.

spatio-temporal correlations. We demonstrate this by com-

paring OP models that exploit 3D convolutions with cor-

responding fully connected models on two different fusion

approaches, i.e., concatenation and bilinear feature descrip-

tors. Table 5 demonstrates that models that preserve order

achieve superior performance in both fusion approaches.

Order Preserving Concatenation: In this model, we

adjust our order preserving approach to concatenation meth-

ods. We concatenate the features from each modality at ev-

ery spatio-temporal index as in Eq. 17. However, instead of

stacking the vectors further (as in Eq. 18), we use these con-

catenated vectors as spatio-temporal local descriptors with

M + N length feature vector ou,v,t at each index (u, v, t).
Since the spatio-temporal order of descriptors is preserved

this allows us to use 3D convolutions to exploit correlations.

Tables 4, 5 show the results of this model under the label

‘OP-Concatenation’ and demonstrates that order preserving

concatenation performs better than simple concatenation.

Bilinear-Fully Connected: In this model, we replace

the 3D convolutions from the model in Section 5.2 with

fully connected layers and fine-tune the network similarly

with pre-trained CNN weights. This effectively removes

the weight sharing of 3D convolutions, which removes the

order-preserving aspect of the model and makes the model

prone to overfitting.

Table 5 demonstrates the improvement in performance

with preserving order on Bilinear Feature descriptors. OP-

Bilinear model results with significantly fewer false pos-

itive rates, i.e, much higher precision compared to fully-

connected method.

5.6. Averaging OF and LSTM Comparison
Our visual input is the magnitudes of OF vectors av-

eraged over a time interval. Extracting OF from low-

resolution cameras generate noisy inputs. Additionally, for

this application, location and existence of the motion is as

important as the evolution of the motion. Spatial location

of the motion captured among subsequent frames does not

change drastically and averaging over a short time inter-

val allows OF magnitudes to compress the motion captured

while reducing the noise. This generates a low dimensional,

compact feature description. However, a more complex

and higher dimensional approach is capable of an incre-

mentally better performance. Recurrent Neural Networks

(RNNs) and Long-Short Term Memory (LSTMs) models

Model Recall Precision F1-Score

Visual 0.82 0.89 0.86

LSTM 0.86 0.86 0.86

Table 6. Comparison of the visual and LSTM model.

have been shown to achieve good performance on variety of

tasks [8, 28, 36]. We compare the performance of our aver-

aged OF model with an LSTM model. In the LSTM model

each input frame (OF Magnitude) goes through the convo-

lutional part of the ’Visual’ model from Section 4.1 and the

outputs of the consecutive frames are fed into an LSTM cell

similar to Activity Recognition model in [8]. Table 6 shows

the performance of the LSTM compared to averaged OF vi-

sual model. This demonstrates that averaging reduces the

dimensionality and has slightly better false positive rates

compared to small improvement in detection performance

of LSTMs. Additionally, for low-power strategic scenarios,

processing every frame through a CNN model may not be

possible(which is required in LSTM) whereas taking an av-

erage over a time interval and processing only this compact

snapshot is more feasible.

6. Conclusions
In this work, we introduced an OP-Bilinear Fusion

method to jointly leverage sensor data and imagery. By con-

ducting a series of experiments we analyzed the impact of

each module. We demonstrated that our feature selection

algorithm makes the fusion method feasible by effectively

reducing dimensionality with only a small tradeoff in single

modality detection performance. We showed that our fusion

model performs improves performance over models trained

on single modalities and demonstrated that the fusion is

beneficial. We compared the proposed fusion method with

the traditional multi-modal and feature fusion methods and

achieved better performance with the proposed method. Fi-

nally, we compared our approach of averaging OF frames

to a more complicated LSTM approach and showed that by

averaging multiple OF frames the sequence information is

not lost and the model performs similarly.
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