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Abstract

In this paper we show the importance of the head
pose estimation in the task of trajectory forecasting. This
cue, when produced by an oracle and injected in a novel
socially-based energy minimization approach, allows to get
state-of-the-art performances on four different forecasting
benchmarks, without relying on additional information such
as expected destination and desired speed, which are sup-
posed to be know beforehand for most of the current fore-
casting techniques. Our approach uses the head pose esti-
mation for two aims: 1) to define a view frustum of atten-
tion, highlighting the people a given subject is more inter-
ested about, in order to avoid collisions; 2) to give a short-
time estimation of what would be the desired destination
point. Moreover, we show that when the head pose esti-
mation is given by a real detector, though the performance
decreases, it still remains at the level of the top score fore-
casting systems.

1. Introduction

Trajectory forecasting stands for predicting where the
people would go, i.e. estimate the location of pedestrians in
the future frames within a surveillance camera video. Usu-
ally, these approaches assume to observe the behavior of a
pedestrian for some frames, and then predict his/her loca-
tions in the next frames. In the last years, some learning-
based methods have been proposed, mostly based on recur-
rent neural networks, and in particular on LSTM [3, 4]. De-
spite performing very well on many public datasets, learn-
ing based approaches require a huge amount of annotated
data to be trained, which is a time consuming operation
that is usually a limit for real life applications. In contrast,
model-based approaches rely on hand generated models of
crowd behavior; to overcome the lack of training data, they
usually assume to have in advance rich information describ-
ing the future state of a pedestrian, like his desired speed
and his destination point [29, 35, 40, 45]. Such a knowledge
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allows to create a set of hypotheses of trajectories where oc-
clusions are avoided and a social distance among the people
is maintained. This strategy brings to a contradiction, since,
in particular, the future destination implies to know details
about the trajectory that we actually want to forecast.

In this paper, we propose a model-based forecasting ap-
proach that discards information coming from the future
time steps, advocating the use of the head pose estima-
tion [33, 34, 39] as a way to address this problem. The head
pose captures the people focus, also named Visual Frustum
of Attention (VFOA) [36], as maintained by literature on
social psychology and neuroscience [17, 38, 41]. Poten-
tially, the head pose is an agreed proxy for the short-term
future prediction, not only in social psychology and neuro-
science [8, 9, 12, 26, 28], but also in tracking [29, 36, 6].
Furthermore, knowing the head pose allows describing the
social contexts of the moving agents, as people within a
cone of visual attention are likely to steer the agents to avoid
collisions.

We propose here a new energy-based model to encode
the people intention and their social context in a simple and
intuitive way. The model simplicity allows us to study the
importance of both aspects separately, further to analyzing
the influence of the head pose quantization and the aperture
of the cone of attention (cf. Fig. 1). Interestingly, we attain
best performances when the cone of attention has an aper-
ture of 30 degrees, matching the results of psychological
studies [16].

We consider for study four challenging datasets which
offer the head pose annotations and which have recently
been considered for the trajectory forecasting task: the
UCY, Zara0Ol, Zara02 [22] and TownCentre [7]. By only
considering the head pose as given by the oracle, i.e. causal
information, we definitely outperform current state-of-the-
art which leverages the future people destination informa-
tion [29, 35, 40, 45]. The results remain very competitive
with state-of-the-art, setting the best score in two cases out
of four when we replace the oracle with a per-frame head-
pose estimator. We believe that this calls for the importance
of head pose for the people trajectory prediction.



We claim two main contributions: 1) the use of head ori-
entation as a novel way to improve the estimation of per-
son’s future path, and 2) a novel energy based approach for
trajectory forecasting.

The rest of the paper is organized as follows: in Sec. 3 we
propose the prediction model, discussing its learning and
inference. In Sec. 4 we evaluate against 4 comparative ap-
proaches showing also some ablation studies. Finally, we
conclude the paper in Sec. 5.

2. Related work

A large body of literature have addressed the topic of
path prediction, by adopting Kalman filters [18], linear re-
gressions [27], Gaussian regression models [31, 32, 43, 44],
autoregressive models [2] and time-series analysis [30].
Our approach departs from these classical approaches be-
cause we also consider the human-human interactions and
the person intention, expressed by the VFOA.
Human-human interactions. The consideration of other
pedestrians in the scene and their innate avoidance of colli-
sion was first pioneered by [15]. The initial seed was fur-
ther developed by [22] and [29], which respectively intro-
duced a data-driven and a continuous model. Notably, these
approaches remain top performers on modern datasets, as
they successfully employ essential cues for track prediction
such the human-human interaction and the people intended
destination. More recent works encode the human-human
interactions into a “’social” descriptor [3, 4, 25] or proposes
human attributes [46, 24] for the forecasting in crowds. Our
work mainly differentiates from [22, 29] because we only
consider for interactions those people who are within the
cone of interest of the person, which we encode with the
VFOA (as also maintained by psychological studies [16]).
Destination-focused path forecast. Starting from the sem-
inal work of Kitani ef al. [19], path forecast has been cast
as an inverse optimal control (IOC) problem. Follow-up
work has additionally utilized inverse reinforcement learn-
ing [1, 47] and dynamic reward functions [21] to address
the occurring changes in the environment. We describe
these approaches as destination-focused because they all
require the end-point of the person track to be known,
which later work has relaxed to a set of plausible path end
points [10, 23]. We share with these works the importance
of the person intention, but we believe that knowing the des-
tination undermines the reason why we may be predicting
the trajectories. By contrast, we represent the person inten-
tion by their VFOA which, as we show, may be estimated
at the current frame.

VFOA and the social motivation. The interest into the
VFOA stems from sociological studies such as [8, 9, 11,
12, 13, 28, 42], whereby VFOA has been shown to corre-
late to the person destination, pathway and speed. Inter-

estingly, the correlation is higher in the cases of poor vis-
ibility, such as at night time, and in general when the per-
son is being busy with a secondary task (e.g. bump avoid-
ance) further to the basic walking. These studies motivate
the use of VFOA as a proxy to forecasting trajectories. Us-
ing VFOA comes with the further advantage that it can be
estimated [5, 34, 37] on a frame basis, thus requiring no
oracle information and enabling a real-time system. While
our experiment is agnostic about the head pose estimation
algorithm, in our experiments we will use an off-the-shelf
head pose estimator [14].

3. Our Model

We formulate the predictive model as a joint optimiza-
tion problem, where the position of each individual in the
next frame is simultaneously estimated by minimizing an
energy function. We gather into the energy three intuitive
terms: (1) a collision avoidance term, which accounts for
the multi-agent nature of the system, (2) a destination term,
which accounts for the goal of each individual behaviour,
and (3) a constant velocity term. The general idea be-
hind our model is that, when in an open space, a person
walks towards a destination point trying to avoid collisions
with other pedestrians and static objects. While doing this,
she/he prefers to move smoothly, i.e. limiting accelerations
both in terms of intensity and direction.

Our cost function has the general form:

C=wsq -Es+wy By +wp- Ep (1)

where w4, wy, and wp are weighting factors, and E4, Ey,
and E'p are the respective three energy terms discussed in
the following.

Let us consider a video sequence of 7" image frames as
S = {I;},_, p. Ateach frame ¢, a set of N pedestri-
ans are detected and their position on the ground plane is
P;(t) , i =1...N. For each individual, we define his/her
head orientation 6, (t). Finally, let us indicate with P;(t+1)
the predicted location of the individual ¢ at frame ¢ + 1.

In order to promote smooth trajectories, we define the ve-
locity term (Ey ) as the summation over all the individuals’
of the squared /2-norm of the acceleration vector:
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As for the destination term (E'p), we consider that a per-
son is consistently looking at his/her short-term destination
point while walking. Thus, this term is the additive inverse
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Figure 1. Graphical explanation on the selection of pedestrians to be taken into account for the avoidance term. The large blue dot represents
the target pedestrian, the green dots are the pedestrians he/she tries not to collide to, and the small red dots are the pedestrians he/she is not

aware of because out of the view frustum. (Best viewed in colors.)

of the cosine of the angle comprised between the gaze direc-
tion 6;, i.e. the head pose, and the direction of the predicted
velocity:

N
Ep =3 cos (@(t) — /Bt +1) - Pi(t)> )

where yv is the phasor angle of vector v.

For the avoidance term (E4), many different models
have been proposed in the literature, mostly based on the
concept of social force [15, 29, 35, 45]. The idea is that a
person would not allow another individual to enter his/her
personal space; thus, when walking, people adjust their ve-
locity in order to avoid this kind of situations to happen.
In this work we model the avoidance potential as a repul-
sion force that is exponential with respect with the dis-
tance between two predicted locations. Unlike many previ-
ous works, which consider the repulsion force only when 2
pedestrians are going to be closer than an isotropic comfort
area, our method is more biologically motivated, assuming
that the pedestrian reacts to what he senses in terms of sight,
which is modeled by the VFOA. More formally, this term
assumes the summation over all the individuals of the ex-
ponential of the minimum distance between the predicted
location of the individual itself and the closest predicted lo-
cation of another individual.

N
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where dj; = || P;(t + 1) — P;(t + 1)||*, and F;(t) is the set
of all the individuals inside the VFOA of person ¢ at time

t. While in theory the view frustum is related to the gaze,
we assume that in first approximation, in the scenario we
are facing, the gaze is equal to the head orientation. Thus,
we model the VFOA as a circular sector of angle 30°, where
this last angle has been found experimentally (see in Sec. 4):
surprisingly, this angle corresponds to the angle of the hu-
man focal attention [16], which can be likened to a “spot-
light” in the visual receptive field that triggers higher cog-
nitive processes like object recognition. A graphical expla-
nation of the VFOA is given in Fig. 1.

Thus, the cost function of Equation 1 can be minimized
with reference to P;(t + 1), Vi = 1... N. So at each step
we predict the positions of all the pedestrians in the scene
jointly. This optimization problem can be addressed with
a direct search method for n-dimensional unconstrained
spaces. The Nelder-Mead simplex method [20], adopted in
this work, uses an iterative approach that maintain at each
step a non-degenerate simplex of n+1 vertices, and updates
the simplex according to the function value in the vertices.
The method has a very low complexity, since it does not re-
quire to compute the gradient (as all the direct search meth-
ods) and typically requires the function evaluation on only
one or two sample points at each iteration step.

4. Experiments

We evaluated our approach on publicly available bench-
marks, UCY [22] and TownCentre [7] and compared it
against state of the art methods. The benchmark UCY
contains three sequences showing two different scenarios.
ZaraOl and Zara02 sequences show a public street with



Table 1. Dataset Statistics.

Table 2. Mean Average Displacement (MAD) error for all the

Sequences # frames # ped. # ped. per avg traj. methods on all the datasets.

frame Dataset Lin. LTA SF IGP [ SF-mc | Ours
UCY 5,405 434 32 404 UucYy 0.57 0.51 0.48 0.61 0.45 0.38
Zara01 8,670 148 6 339 Zara0Ol 0.47 0.37 0.40 0.39 0.35 0.30
Zara02 10,513 204 9 467 Zara02 0.45 0.40 0.40 0.41 0.39 0.26
TownCentre 4,500 230 16 310 Town Centre 1.3 1.8 2.1 - - 1.2

shops and cars, the number of pedestrians is quite limited
and the trajectories are somehow constrained since entry
and exit points are in a limited portion of the image border.
UCY sequence is taken in a university campus plaza and it
shows a dense crowd moving in several directions without
any physical constraint. Similarly, TownCentre dataset por-
trays a crowded real world city centre scenario. The four
datasets have in total of 29,088 frames with 1,016 pedestri-
ans. More details about each sequence are given in Table 1.

The evaluation protocol follows the most recent litera-
ture. We first downsample the frame rate of the videos of a
factor of 10, resulting in a frame rate of 2.5 fps. Then, for
each pedestrian detected, we predict their trajectory for the
next 12 frames (4.8 seconds) by considering at every time
step the predicted location of the target pedestrian and the
ground truth positions of all the others. As for the evalua-
tion metrics, we use the standard Mean Average Displace-
ment (MAD) and the Final Average Displacement (FAD)
error. The MAD metric is given by the average over all the
pedestrians and all the frames of the Euclidean distance be-
tween the predicted location and the ground truth position.
The FAD error is given by the average displacement of the
12-th predicted frame over all the trajectories.

4.1. Quantitative results

We compare our method with four state-of-the-art
model-based approaches, namely Linear Trajectory Avoid-
ance (LTA) [29], Social Force model (SF) [45], Iterative
Gaussian Process (IGP) [40], and multi-class Social Force
model (SF-mc) [35]. We also provide results with a base-
line method (Lin.) that merely estimates the next locations
by using the previous velocity. For a fair evaluation, we
need to point out that all the methods use different ground
truth data and/or a priori information. All the approaches
require the knowledge of the ground truth pedestrian posi-
tion at each time step. In addition, IGP requires the exact
destination point of each pedestrian (i.e. the last point of
each trajectory, or the point where the pedestrian exits from
the scene); LTA, SF and SF-mc require a soft version of
the destination point, indeed they only need the direction
the individual is pointing (e.g. North, South, East or West);
SF and SF-mc also require to know which individuals are
forming groups.

Differently, our approach does not require the knowledge
of destination points or a direction but just the pedestrian
position (as the others) and the labelled head orientation of

Table 3. Final Average Displacement (FAD) after 12 frames (4.8
seconds) for all the methods on all the datasets.

Dataset Lin. LTA SF IGP SF-mc Ours
UCYy 1.14 0.95 0.78 1.82 0.76 0.78
Zara0l 0.89 0.66 0.60 0.39 0.60 0.59
Zara02 0.91 0.72 0.68 0.42 0.67 0.60
Town Centre 2.7 3.67 3.8 - - 2.28

each individual, no group membership is required. The des-
tination point of each pedestrian, as well as other terms in
the cost function Eq. 1 are then automatically estimated. We
report sample model parameter in Table 4. Since head pose
is crucial for forecasting, although people maintain a trajec-
tory to their final destination, there might be the need to take
short term deviations in order to avoid collision, obstacles
or to engage in human-human interactions (e.g. a subject
might take few steps in the complete opposite direction of
the given destination point). This short term divergence is
not addressed in any of the other methods and the head pose
seems to be an effective mean towards this end.

Table 4. Model parameters obtained from training sequences
wA | wV wD
0.1 | 1.16 | 1.0184

Table 2 and Table 3 show that our method outperforms
the state of the art methods in MAD, while it scores worst
against the SF-mc on FAD in the UCY sequence. Please
note that the comparison with IGP method with the FAD
metric is not fair by definition, since it requires the anno-
tation of the final point of each trajectory. Even with the
unfair advantage for IGP, in a more densely crowded sce-
nario like UCY, IGP performs poorly, since the short term
divergence of a subject is much more prominent and is not
addressed by the fixed destination point.

4.2. Ablation studies

It is worth noting that all approaches assume that a sub-
ject takes the next step accounting for all other pedestrians
in the scene. This assumption is far to be true since in nor-
mal situations most people are unaware of what is happen-
ing behind themselves, and this does not effect their future
movements. Thus, to prove the effectiveness of the the view
frustum information, we conducted two ablation studies.

First, we turned off the frustum in the avoidance term,
taking into account all the pedestrians in the scene. In such
a case performances decrease of 2% in MAD and 5% in
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Figure 2. © angle of the VFOA in relation with the Mean Average Displacement error

view frustum condition in the avoidance term.

Table 6. Final Average Displacement (FAD) with and without the

Dataset Ours (no Ours
frustum)

ucy 0.41 0.38

Zara01 0.31 0.30

Zara(02 0.29 0.26

view frustum condition in the avoidance term.

Dataset Ours (no Ours
frustum)

ucy 0.83 0.78

Zara0O1l 0.65 0.59

Zara(02 0.64 0.60

Table 7. Mean Average Displacement (MAD) for state of the art
methods with destination point estimated from the head orienta-
tion.

Dataset LTA SF Our
Ucy 0.44 0.42 0.38
Zara01 0.33 0.32 0.30
Zara02 0.35 0.35 0.26
Town Centre 1.2 14 1.2

FAD, showing that the view frustum is beneficial for both
metrics in all the sequences. (Table 5 and Table 6)

As a second experiment, we provided to the state-of-the-
art approaches the destination points estimated frame-by-
frame from the head pose. Results of Table 7, compared
with the ones reported in Table 2, demonstrate how the use
of head pose is beneficial also for other approaches, improv-
ing performances of LTA and SF of 5% and 6% on average
respectively.

Fig. 2 shows the study on the span of the © angle of the
VFOA in relation with the MAD error, when the ground-
truth head orientation is known. For this sake, we ran-
domly sample 25 pedestrians per dataset (ZaraOl, Zara02
and UCY) and we compute the error while modulating ©
from 10 to 75 degrees with a step of 5. As visible in the
figure, the range from 10 to 30 gives the best score, with
30 being the best absolute value. Actually, this does corre-

Table 8. Mean Average Displacement error with quantized anno-
tated head pose and with real head pose estimator.

Dataset GT GT®4) GT(8) | HPE(4) | HPE(8)
ucy 0.38 0.44 0.43 0.52 0.50
Zara(1 0.30 0.39 0.37 0.44 0.42
Zara02 0.26 0.35 0.34 0.39 0.38
Town Centre 1.2 1.3 1.2 1.3 1.2

spond to the angle defining the focal attention area [16].

4.3. Experiments with HPE

Once we have shown the theoretical advantages of our
approach, we replace the oracle head orientation with the
one estimated from a real head pose estimator [14]. As
most of the head pose estimators, the one used in this pa-
per outputs the head pose in a quantized format: dividing
the 360° into 4 or 8 classes, thereby we also quantized the
ground truth into the same format in order to understand the
theoretical bounds that one could reach with the detector.

Looking at the results in table 8 we illustrate that even
with the real head pose estimator, we could get competi-
tive results with all the state-of-the-art approaches, which
relies on strong ground truth information, highlighting the
pragmatism of our approach. Additionally, by quantizating
the ground truth we further illustrates that given an accurate
pose estimator one could outperform the current state-of-
the-art approaches. Moreover, as it can be noticed, finer
granularity for head pose estimation proves to be more suit-
able in trajectory forecasting.

4.4. Qualitative results

Besides these quantitative results and ablation studies,
we report a qualitative illustration of our predictions in
Fig. 3. Along with the proposed approach, we also show
trajectories predicted with LTA [29] and SF [45]. Notably,
our model is able to better forecast trajectories with highly
non-linear avoidance turns, such as to avoid static (3rd row,
3rd column) and moving objects (3rd row, 2nd column), as
well as in case a person has to avoid collision with other
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Figure 3. Examples of predicted trajectories on UCY (first two rows) and ZaraOl, Zara02 (last two rows). Our proposed model is very
precise in the prediction of highly non-linear trajectories, where the other approaches such as LTA [29] and SF [45] are less accurate due
to the fixed destination points. In particular, our method is able to easily capture short term deviations from the desired path.



pedestrians in the scene (1st, 2nd and 4th rows).

5. Conclusion

We have proposed the use of head pose for forecasting
the people trajectories, justified the choice from a socio-
psychological perspective, introduced a model to exploit
the head-pose and a resulted social context, and proved
its efficacy with respect to state-of-the-art techniques. The
head pose provides the visual frustum of attention (VFOA),
which yields the short-term future path of pedestrians, a
proxy for their intention.

By means of a simple and intuitive energy-based model,
we have proved that having a perfect head pose estimation
outperforms the state-of-the-art forecasting performance by
in average 8% as (mean average displacement); this can be
better appreciated if one considers that, on the same bench-
marks, the improvement across 8 years of research has
summed to 2.7%. Performance decreases when we adopt
real head pose detectors, but it remains at the level of the
other forecasting alternatives, which however use ground
truth information.

Our proposed system is suitable for real application sce-
narios, since it does not require information from the future
frames. We believe that this direction would potentially mo-
tivate more researcher to look into this topic. In addition,
we currently ignore grouping activities of the pedestrians,
which we would expect to boost performance even more.
Further to this topic, we will dedicate future work to eval-
uating the scaling properties of our system, analyzing sce-
narios with an increasing crowd density, looking forward to
longer time horizons.
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