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Abstract

Have you ever taken a picture only to find out that
an unimportant background object ended up being overly
salient? Or one of those team sports photos where your fa-
vorite player blends with the rest? Wouldn’t it be nice if you
could tweak these pictures just a little bit so that the dis-
tractor would be attenuated and your favorite player will
stand-out among her peers? Manipulating images in or-
der to control the saliency of objects is the goal of this pa-
per. We propose an approach that considers the internal
color and saliency properties of the image. It changes the
saliency map via an optimization framework that relies on
patch-based manipulation using only patches from within
the same image to maintain its appearance characteristics.
Comparing our method to previous ones shows significant
improvement, both in the achieved saliency manipulation
and in the realistic appearance of the resulting images.

1. Introduction
Saliency detection, the task of identifying the salient and

non-salient regions of an image, has drawn considerable
amount of research in recent years, e.g., [14, 18, 22, 33, 35].
Our interest is in manipulating an image in order to modify
its corresponding saliency map. This task has been named
before as attention retargeting [24] or re-attentionizing [27]
and has not been explored much, even though it could be
useful for various applications such as object enhancement
[25, 27], directing viewers attention in mixed reality [26]
or in computer games [3], distractor removal [13], back-
ground de-emphasis [30] and improving image aesthetics
[15, 31, 34]. Imagine being able to highlight your child
who stands in the chorus line, or making it easier for a per-
son with a visual impairment to find an object by making it
more salient. Such manipulations are the aim of this paper.

Image editors use complex manipulations to enhance a
particular object in a photo. They combine effects such as
increasing the object’s exposure, decreasing the background
exposure, changing hue, increasing saturation, or blurring
the background. More importantly, they adapt the manipu-

(a) Input image (b) Input saliency map

(c) Manipulated image (d) Manipulated saliency map

Figure 1: Our saliency driven image manipulation algo-
rithm can increase or decrease the saliency of a region. In
this example the manipulation highlighted the bird while
obscuring the leaf. This can be assessed both by viewing
the image before (a) and after (c) manipulation, and by the
corresponding saliency maps (b),(d) (computed using [22]).

lation to each photo – if the object is too dark they increase
its exposure, if its colors are too flat they increase its sat-
uration etc. Such complex manipulations are difficult for
novice users that often do not know what to change and
how. Instead, we provide the non-experts an intuitive way
to highlight objects. All they need to do is mark the target
region and tune a single parameter, that is directly linked to
the desired saliency contrast between the target region and
the rest of the image. An example manipulation is presented
in Figure 1.

The approach we propose makes four key contributions
over previous solutions. First, our approach handles mul-
tiple image regions and can either increase or decrease the
saliency of each region. This is essential in many cases to
achieve the desired enhancement effect. Second, we pro-
duce realistic and natural looking results by manipulating
the image in a way that is consistent with its internal char-
acteristics. This is different from many previous methods
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that enhance a region by recoloring it with a preeminent
color that is often very non-realistic (e.g., turning leaves to
cyan and goats to purple). Third, our approach provides the
user with an intuitive way for controlling the level of en-
hancement. This important feature is completely missing
from all previous methods. Last, but not least, we present
the first benchmark for object enhancement that consists of
over 650 images. This is at least an order of magnitude
larger than the test-sets of previous works, that were satis-
fied with testing on a very small number of cherry-picked
images.

The algorithm we propose aims at globally optimizing
an overall objective that considers the image saliency map.
A key component to our solution is replacing properties of
image patches in the target regions with other patches from
the same image. This concept is a key ingredient in many
patch-bases synthesis and analysis methods, such as texture
synthesis [11], image completion [1], highlighting irregu-
larities [5], image summarization [29], image compositing
and harmonization [9] and recently highlighting non-local
variations [10]. Our method follows this line of work as
we replace patches in the target regions with similar ones
from other image regions. Differently from those methods,
our patch-to-patch similarity considers the saliency of the
patches with respect to the rest of the image. This is nec-
essary to optimize the saliency-based objective we propose.
A key observation we make is that these patch replacements
do not merely copy the saliency of the source patch to the
target location as saliency is a complex global phenomena
(similar idea was suggested in [7] for saliency detection).
Instead, we interleave saliency estimation within the patch
synthesis process. In addition, we do not limit the editing to
the target region but rather change (if necessary) the entire
image to obtain the desired global saliency goal.

we propose a new quantitative criteria to assess perfor-
mance of saliency editing algorithms by comparing two
properties to previous methods: (i) The ability to manip-
ulate an image such that the saliency map of the result
matches the user goal. (ii) The realism of the manipu-
lated image. These properties are evaluated via qualitative
means, quantitative measures and user studies. Our experi-
ments show a significant improvement over previous meth-
ods. We further show that our general framework is appli-
cable to two other applications: distractor attenuation and
background decluttering.

2. Related Work
Attention retargeting methods have a mutual goal – to

enhance a selected region. They differ, however, in the way
the image is manipulated [15, 25, 27, 30, 31]. We next
briefly describe the key ideas behind these methods. A more
thorough review and comparison is provided in [24].

Some approaches are based solely on color manipula-

tion [25, 27]. This usually suffices to enhance the ob-
ject of interest, but often results in non-realistic manip-
ulations, such as purple snakes or blue flamingos. Ap-
proaches that integrate also other saliency cues, such as
saturation, illumination and sharpness have also been pro-
posed [15, 26, 30, 31]. While attempting to produce realis-
tic and aesthetic results, they do not always succeed, as we
show empirically later on.

Recently Yan et al. [34] suggested a deep convolutional
network to learn transformations that adjust image aesthet-
ics. One of the effects they study is Foreground Pop-Out,
which is similar in spirit to object saliency enhancement.
Their method produces aesthetic results, however, it re-
quires intensive manual labeling by professional artists in
the training phase and it is limited to the labeled effect used
by the professional.

3. Problem Formulation
Our Object Enhancement formulation takes as input an

image I , a target region mask R and the desired saliency
contrast ∆S between the target region and the rest of the
image. It generates a manipulated image J whose corre-
sponding saliency map is denoted by SJ .

We pose this task as a patch-based optimization problem
over the image J . The objective we define distinguishes
between salient and non-salient patches and pushes for ma-
nipulation that matches the saliency contrast ∆S. To do this
we extract from the input image I two databases of patches
of size w×w: D+ = {p;SI(p) ≥ τ+} of patches p with
high saliency and D− = {p;SI(p) ≤ τ−} of patches p
with low saliency. The thresholds τ+ and τ− are found via
our optimization (explained below).

To increase the saliency of patches ∈ R and decrease
the saliency of patches /∈R we define the following energy
function:

E(J,D+,D−) = E+ + E− + λ · E∇ (1)

E+(J,D+) =
∑
q∈R

min
p∈D+

D(q, p)

E−(J,D−) =
∑
q/∈R

min
p∈D−

D(q, p)

E∇(J, I) = ‖∇J −∇I‖2

where D(q, p) is the sum of squared distances (SSD) over
{L, a, b} color channels between patches q and p. The role
of the third term, E∇, is to preserve the gradients of the
original image I . The balance between the color channels
and the gradient channels is controlled by λ.

Recall, that our goal in minimizing (1) is to generate
an image J with saliency map SJ , such that the contrast in
saliency between R and the rest of the image is ∆S. The
key to this lies in the construction of the patch sets D+ and



Algorithm 1 Saliency Manipulation

1: Input: Image I; object mask R; saliency contrast ∆S.
2: Output: Manipulated image J .

3: Initialize τ+, τ− and J = I .
4: while ‖ψ(SJ , R)−∆S‖ > ε * do
5: 1. Database Update
6: → Increase τ+ and decrease τ−.
7: 2. Image Update
8: →Minimize (1) w.r.t. J , holding D+,D− fixed.
9: end while

10: Fine-scale Refinement
* the iterations also stopped when the τ+ and τ− stop
changing between subsequent iterations.

D−. The higher the threshold τ+ the more salient will be
the patches in D+ and in return those in R. Similarly, the
lower the threshold τ− the less salient will be the patches
in D− and in return those outside of R. Our algorithm per-
forms an approximate greedy search over the thresholds to
determine their values.

To formulate mathematically the affect of the user con-
trol parameter ∆S we further define a function ψ(SJ , R)
that computes the saliency difference between pixels in the
target region R and those outside it:

ψ(SJ , R) = mean
βtop

{SJ ∈ R} −mean
βtop

{SJ /∈ R} (2)

and seek to minimize the saliency-based energy term:

Esal = ‖ψ(SJ , R)−∆S‖ (3)

For robustness to outliers we only consider the βtop (=
20%) most salient pixels in R and outside R in the mean
calculation.

4. Algorithm Overview
The optimization problem in (1) is non-convex with re-

spect to the databases D+, D−. To solve it, we perform an
approximate greedy search over the thresholds τ+, τ− to
determine their values. Given a choice of threshold val-
ues, we construct the corresponding databases and then
minimize the objective in (1) w.r.t. J , while keeping the
databases fixed. Pseudo-code is provided in Algorithm 1.

Image Update: Manipulate J to enhance the region R.
Patches ∈ R are replaced with similar ones fromD+, while,
patches /∈ R are replaced with similar ones from D−.

Database Update: Reassign the patches from the input
image I into two databases,D+ andD−, of salient and non-
salient patches, respectively. The databases are updated at
every iteration by shifting the thresholds τ+, τ−, in order to
find values that yield the desired foreground enhancement
and background demotion effects (according to ∆S).

Fine-scale Refinement: We observed that updating both
the image J and the databases D+,D−, at all scales, does
not contribute much to the results, as most changes happen
already at coarse scales. Similar behavior was observed by
[29] in retargeting and by [1] in reshuffling. Hence, the it-
erations of updating the image and databases are performed
only at coarse resolution. After convergence, we continue
and apply the Image Update step at finer scales, while the
databases are held fixed. Between scales, we down-sample
the input image I to be of the same size as J , and then re-
assign the patches from the scaled I into D+ and D− using
the current thresholds.

In our implementation we use a Gaussian pyramid with
0.5 scale gaps, and apply 5-20 iterations, more at coarse
scales and less at fine scales. The coarsest scale is set to be
150 pixels width.

5. Detailed Description of the Algorithm

Saliency Model Throughout the algorithm when a
saliency map is computed for either I or J we use a mod-
ification of [22]. Because we want the saliency map to be
as sharp as possible, we use a small patch size of 5× 5.
In addition, we omit the center prior which assumes higher
saliency for patches at the center of the image. We found
it to ambiguate the differences in saliency between patches,
which might be good when comparing prediction results to
smoothed ground-truth maps, but not for our purposes. We
selected the saliency estimation of [22] since its core is to
find what makes a patch distinct. It assigns a score∈[0, 1] to
each patch based on the inner statistics of the patches in the
image, which is a beneficial property to our method.

Image Update In this step we minimize (1) with respect
to J , while holding the databases fixed. This resembles the
optimization proposed by [9] for image synthesis. It differs,
however, in two important ways. First, [9] consider only lu-
minance gradients, while we consider gradients of all three
{L, a, b} color channels. This improves the smoothness of
the color manipulation, preventing generation of spurious
color edges, like those evident in Figure 2c. It guides the
optimization to abide to the color gradients of the original
image and often leads to improved results (Figure 2d).

As was shown in [9], the energy terms in (1) can be opti-
mized by combining a patch search-and-vote scheme and a
discrete Screened Poisson equation that was originally sug-
gested by [4] for gradient domain problems. At each scale,
every iteration starts with a search-and-vote scheme that re-
places patches of color with similar ones from the appro-
priate patch database. For each patch q ∈ J we search for
the Nearest Neighbor patch p. Note, that we perform two
separate searches, for the target region in D+ and for the
background in D−. This is the second difference from [9]
where a single search is performed over one source region.



(a) Input image I (b) Mask R

(c) Without color gradients (d) With color gradients

Figure 2: Chromatic gradients. A demonstration of the
importance of chromatic gradients. (c) When not using
color gradients - artifacts appear: orange regions on the
flutist’ hat, hands and face. (d) By solving the screened
Poisson equation on all three channels we improve the
smoothness of the color manipulation, stopping it from gen-
erating spurious color edges, and the color of the flute is
more natural looking.

To reduce computation time the databases are repre-
sented as two images: ID+ = I ∩ (SI ≥ τ+) and
ID− = I ∩ (SI ≤ τ−). The search is performed using
PatchMatch [1] with patch size 7×7 and translation trans-
formation only (we found that rotation and scale were not
beneficial). In the vote step, every target pixel is assigned
the mean color of all the patches that overlap with it. The
voted color image is then combined with the original gradi-
ents of image I using a Screened Poisson solver to obtain
the final colors of that iteration. We fixed λ = 5 as the
gradients weight.

Having constructed a new image J , we compute its
saliency map SJ to be used in the database update step ex-
plained next.

Database Update The purpose of the database update
step is to search for the appropriate thresholds that split the
patches of I into salient D+ and non-salient D− databases.
Our underlying assumption is that there exist threshold val-
ues that result in minimizing the objective Esal of (3).

Recall that the databases are constructed using two
thresholds on the saliency map SI such that D+ =
{p;SI(p) ≥ τ+} and D− = {p;SI(p) ≤ τ−}. An ex-
haustive search over all possible threshold values is non-
tractable. Instead, we perform an approximate search that
starts from a low value for τ+ and a high value for τ− and
then gradually increases the first and reduces the second un-
til satisfactory values are found. Note, that D+ and D−
could be overlapping if τ+ < τ−.

The naive thresholds τ+ ≈ 1, τ− ≈ 0, would leave only

the most salient patches in D+ and the most non-salient in
D−. This, however, could lead to non-realistic results and
might not match the user’s input for a specific saliency con-
trast ∆S. To find a solution which considers realism and
the user’s input we seek the maximal τ− and minimal τ+

that minimize the saliency term Esal.
At each iteration we continue the search over the thresh-

olds by gradually updating them:

τ+n+1 = τ+n + η · ‖ψ(SJ , R)−∆S‖ (4)

τ−n+1 = τ−n − η · ‖ψ(SJ , R)−∆S‖ (5)

where R is the inverse of the target region R. Since the
values of the thresholds are not bounded, we trim them to
be in the range of [0, 1]. Convergence is declared when
Esal = ‖ψ − ∆S‖ < ε, i.e., when the desired contrast
is reached. If convergence fails the iterations are stopped
when the thresholds stop changing between subsequent it-
erations. In our implementation η = 0.1 and ε = 0.05.

An important property of our method is that if τ− = 1
(or very high) and τ+ = 0 (or very low) the image would be
left unchanged as the solution where all patches are replaced
by themselves will lead to a zero error of our objective en-
ergy function (1).

Robustness to parameters The only parameter we re-
quest the user to provide is ∆S which determines the en-
hancement level. We argue that this parameter is easy and
intuitive to tune as it directly relates to the desired saliency
contrast between the target region and the background. We
used a default value of ∆S = 0.6, for which convergence
was achieved for 95% of the images. In only a few cases
the result was not aesthetically pleasing and we used other
values in the range [0.4, 0.8]. Throughout the paper, if not
mentioned otherwise, ∆S = 0.6.

An additional parameter is λ, which was fixed to λ = 5
in our implementation. In practice, we found that for any
value λ > 1 we got approximately the same results, while
for λ < 1 the manipulated images tend to be blurry (math-
ematical analysis can be found in [4], since our λ is equiva-
lent to that of the screened Poisson).

Convergence and speed Our algorithm is not guaranteed
to reach a global minima. However we found that typically
the manipulated image is visually plausible, and pertains a
good match to the desired saliency.

It takes around 2 minutes to run our algorithm on a
1000 × 1000 image – the most time demanding step of our
method is solving the screened Poisson equation at each it-
eration. Since our main focus was on quality we did not op-
timize the implementation for speed. Significant speed-up
could be achieved by adopting the method of [12]. As was
shown by [9] replacing these fast pyramidal convolutions
with our current solver, will reduce run-time from minutes
to several seconds.



6. Empirical Evaluation
To evaluate object enhancement one must consider two

properties of the manipulated image: (i) the similarity of its
saliency map to the user-provided target, and, (ii) whether
it looks realistic. Through these two properties we compare
our algorithm to HAG [15], OHA [25], and WSR [31], that
were identified as top performers in [24]. 1.

We start by providing a qualitative sense of what our al-
gorithm can achieve in Figure 9. Many more results are pro-
vided in the supplementary, and we encourage the reader to
view them. Comparing to OHA, it is evident that our results
are more realistic. OHA changes the hue of the selected ob-
ject such that its new color is unique with respect to the
color histogram of the rest of the image. This often results
in unrealistic colors. The results of WSR and HAG, on the
other hand, are typically realistic since their manipulation is
restricted not to deviate too much from the original image in
order to achieve realistic outcomes. This, however, comes
at the expense of often failing to achieve the desired object
enhancement altogether.

The ability of our approach to simultaneously reduce and
increase saliency of different regions is essential in some
cases, e.g. Figure 9, rows 1 and 4. In addition, it is impor-
tant to note that our manipulation latches onto the internal
statistics of the image and emphasizes the objects via a com-
bination of different saliency cues, such as color, saturation
and illumination. Examples of these complex effects are
presented in Figure 9, rows 2, 6 and 7, respectively.

A new benchmark: To perform quantitative evaluation
we built a corpus of 667 images gathered from previous pa-
pers on object enhancement and saliency [2, 8, 13, 16, 20,
25] as well as images from MS COCO [19]. Our dataset is
the largest ever built and tested for this task and sets a new
benchmark in this area. Our dataset, code and results are
publicly available 2.

Enhancement evaluation: To measure how successful
a manipulated image is, we do the following. We take the
user provided mask as the ground-truth saliency map. We
then compute the saliency map of the manipulated image
and compare it to the ground-truth. To provide a reliable
assessment we use five different salient object detection
methods: MBS [35], HSL [33], DSR [18], PCA [22] and
MDP[17], each based on different principles (patch based,
CNN, geodesic distance etc.). The computed saliency maps
are compared to the ground-truth using two commonly-used
metrics for saliency evaluation: (i) Pearsons-Correlation-
Coefficient (CC) which was recommended by [6] as the best
option for assessing saliency maps, and, (ii) Weighted F-

1Code for WSR and HAG is not publicly available, hence we used our
own implementation that led to similar results on examples from their pa-
pers. This code publicly available for future comparisons in our webpage.
For OHA we used the original code.

2http://cgm.technion.ac.il/people/Roey/

Figure 3: Enhancement evaluation: The bars represent the
(right) Correlation-Coefficient (CC) and (left) the Weighted
F-beta (WFB) [23] scores obtained when comparing the
ground-truth masks with saliency maps computed using five
different saliency estimation algorithms (see text). The
longer the bar, the more similar the saliency maps are to
the ground-truth. It can be seen that the saliency maps of
our manipulated images are consistently more similar to the
ground-truth.

Figure 4: Realism evaluation. Realism scores obtained via
a user survey (see text for details). The curves show the
fraction of images with average score greater than Realism
score. The Area-Under-Curve (AUC) values are presented
in the legend. Our manipulated images are ranked as more
realistic than those of OHA and similar to those of WSR
and HAG. this is while our enhancement effects are more
robust, as shown in Figure 9.

beta (WFB) [23] which was shown to be a preferred choice
for evaluation of foreground maps.

The bar plots in Figure 3 show that the saliency maps
of our manipulated images are more similar to the ground-
truth than those of OHA, WSR and HAG. This is true for
both saliency measures and for all five methods for saliency
estimation.

Realism: As mentioned earlier, being able to enhance a
region does not suffice. We must also verify that the ma-
nipulated images look plausible and realistic. We measure
this via a user survey. Each image was presented to human
participants who were asked a simple question: “Does the
image look realistic?” The scores were given on a scale
of [1-9], where 9 is ’definitely realistic’ and 1 is ’definitely

http://cgm.technion.ac.il/people/Roey/


(a) Input Image (b) ∆S = 0.4 (c) ∆S = 0.6 (d) ∆S = 0.8

Figure 5: Controlling the level of enhancement. (Top) (a) Input image. (b,c,d) The manipulated image J with ∆S =
0.4, 0.6, 0.8, respectively. (Bottom) the corresponding saliency maps. As ∆S is increased, so does the saliency contrast
between the foreground and the background. As mask, the user marked the rightmost house and its reflection on the water.

unrealistic’. We used Amazon Mechanical Turk to collect
20 annotations per image, where each worker viewed only
one version of each image out of five. The survey was per-
formed on a random subset of 20% of the data-set.

Figure 4 shows for each enhancement method the frac-
tion of images with average score larger than a realism score
∈ [1, 9] and the overall AUC values. OHA results are often
non-realistic, which is not surprising given their approach
uses colors far from those in the original image. Our manip-
ulated images are mostly realistic and similar to WSR and
HAG in the level of realism. Recall, that this is achieved
while our success in obtaining the desired enhancement ef-
fect is much better.

Controlling the Level of Enhancement: One of the ad-
vantages of our approach over previous ones is the control
we provide the user over the degree of the manipulation
effect. Our algorithm accepts a single parameter from the
user, ∆S, which determines the level of enhancement. The
higher ∆S is, the more salient will the region of interest
become, since our algorithm minimizes Esal, i.e., it aims
to achieve ψ(SJ , R) = ∆S. While we chose ∆S = 0.6
for most images, another user could prefer other values to
get more or less prominent effects. Figure 5 illustrates the
influence ∆S on the manipulation results.

The user-provided mask: In our dataset, the mask was
marked by users to define a salient object in the scene. In
order to use our method on a new image the user is required
to mark the region that input region. Note that similarly
to other imaging tasks, such as, image completion, com-
positing, recoloring and warping, the definition of the tar-
get region is up to the user to determine and is not part of
the method. To facilitate the selection the user can utilize
interactive methods such as [21, 28, 32] to easily generate
region-of-interest masks.

6.1. Other Applications
Since our framework allows both increasing and decreas-

ing of saliency it enables two additional applications: (i)
Distractor Attenuation, where the target’s saliency is de-
creased, and (ii) Background Decluttering, where the target
is unchanged while salient pixels in the background are de-
moted. A nice property of our approach is that all that is
required for these is using a different mask setup, as illus-
trated in Figure 6.

(a) (b) (c)

Figure 6: Mask setups. Illustration of the setups used for:
(a) object enhancement, (b) distractor attenuation and (c)
decluttering. We increase the saliency in red, decrease it in
blue and apply no change in gray.

Distractor Attenuation: The task of getting rid of dis-
tractors was recently defined by Fried et al. [13]. Distractors
are small localized regions that turned out salient against
the photographer’s intentions. In [13] distractors were re-
moved entirely from the image and the holes were filled by
inpainting. This approach has two main limitations. First, it
completely removes objects from the image thus changing
the scene in an obtrusive manner that might not be desired
by the user. Second, hole-filling methods hallucinate data
and sometimes produce weird effects.

Instead, we propose to keep the distractors in the image
while reducing their saliency. Figure 7 presents some of our
results and comparisons to those obtained by inpainting. We
succeed to attenuate the saliency of the distractors, without
having to remove them from the image.



(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4 (e) Inpainting 1 (f) Inpainting 2

Figure 7: Distractor Attenuation. (a)-(d) Top: Input images. The distractors were the balloon, the red flag, the shiny lamp
and the red roof. Bottom: our manipulated images after reducing the saliency of the distractors. (e)-(f) Top: Zoom in on our
result. Bottom: Zoom in on the inpainting result by Adobe Photoshop showing typical artifacts of inpainting methods.

(a) Input image (b) Manipulated image (c) Input image (d) Manipulated image (e) Masks

Figure 8: Background DeCluttering. Often in cluttered scenes one would like to reduce the saliency of background regions
to get a less noisy image. In such cases it suffices to loosely mark the foreground region as shown in (e), since the entire
background is manipulated. In (a,b) saliency was reduced for the boxes on the left and red sari on the right. In (c,d) the signs
in the background were demoted thus drawing attention to the bride and groom.

Background Decluttering: Reducing saliency is also
useful for images of cluttered scenes where one’s gaze dy-
namically shifts across the image to spurious salient loca-
tions in the background. Some examples of this phenomena
and how we attenuate it are presented in Figure 8. This sce-
nario resembles that of removing distractors, with one main
difference. Distractors are usually small localized objects,
therefore, one could potentially use inpainting to remove
them. Differently, when the background is cluttered, mark-
ing all the distractors could be tedious and removing them
would result in a completely different image.

Our approach easily deals with cluttered background.
The user is requested to loosely mark the foreground re-
gion. We then leave the foreground unchanged and manip-
ulate only the background, using D− to automatically de-
crease the saliency of clutter pixels. The optimization mod-
ifies only background pixels with high saliency, since those
with low saliency are represented in D− and therefore are
matched to themselves.

7. Conclusions and Limitations
We propose a general visual saliency retargeting frame-

work that manipulates an image to achieve a saliency

change, while providing the user control over the level of
change. Our results outperform the state of the art in object
enhancement, while maintaining realistic appearance. Our
framework is also applicable to other image editing tasks
such as distractors attenuation and background decluttering.
Moreover, We establish a benchmark for measuring the ef-
fectiveness of algorithms for saliency manipulation.

Our method is not without limitations. First, since we
rely on internal patch statistics, and do not augment the
patch database with external images, the color transforma-
tions are limited to the color set of the image. Second, since
our method is not provided with semantic information, in
some cases the manipulated image may be non-realistic.
For example, in Figure 7, the balloon is colored in gray,
which is an unlikely color in that context. Despite its lim-
itations, our technique often produces visually appealing
results that adhere to the user’s wish.
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(7)
(a) Input image (b) OHA (c) HAG (d) WSR (e) Ours

Figure 9: Object Enhancement In these examples the user selected a target region to be enhanced (top row). To qualitatively
assess the enhancement effect one should compare the input images in (a) to the manipulated images in (b,c,d,e), while con-
sidering the input mask (top). The results of OHA in (b) are often non realistic as they use arbitrary colors for enhancement.
HAG (c) and WSR (d) produce realistic results, but sometimes (e.g., rows 1,2,6 and 7) they completely fail at enhancing the
object and leave the image almost unchanged. Our manipulation, on the other hand, consistently succeeds in enhancement
while maintaining realism. Our enhancement combines multiple saliency effects: emphasis by illumination (rows 1 and 7),
emphasis by saturation (rows 2, 3 and 4) and emphasis by color (rows 1, 4-7).
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