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Abstract

We aim at predicting a complete and high-resolution
depth map from incomplete, sparse and noisy depth mea-
surements. Existing methods handle this problem either by
exploiting various regularizations on the depth maps di-
rectly or resorting to learning based methods. When the
corresponding color images are available, the correlation
between the depth maps and the color images are used to
improve the completion performance, assuming the color
images are clean and sharp. However, in real world dy-
namic scenes, color images are often blurry due to the cam-
era motion and the moving objects in the scene. In this pa-
per, we propose to tackle the problem of depth map comple-
tion by jointly exploiting the blurry color image sequences
and the sparse depth map measurements, and present an
energy minimization based formulation to simultaneously
complete the depth maps, estimate the scene flow and de-
blur the color images. Our experimental evaluations on
both outdoor and indoor scenarios demonstrate the state-
of-the-art performance of our approach.

1. Introduction
High-precision and high-resolution 3D information play

significant role in a variety of computer vision tasks includ-
ing autonomous navigation [10, 19], 3D reconstruction and
modeling [20, 35], and image deblurring [3, 13, 32, 37] just
to count a few. However, the acquisition of such accurate
depth maps is a challenging task. Although high-resolution
depth maps can be computed from stereo images, the qual-
ity of the depth map relies on the calibration process and the
apparent scene flow. Besides, stereoscopic depth estimation
is problematic in low texture areas. As an alternative, active
depth sensors provide depth information in a single shot.
Unfortunately, measurements from the best depth sensors
are still imperfect, which might be in low-resolution, noisy,
and contaminated with large holes due to reflective surfaces
and distant objects in the scene.

(a) Input sparse depth map (b) Input blurry image

(c) Park et al. [27] (d) Vogel et al. [36]

(e) Ferstl et al. [5] (f) Yang et al. [41]

(g) Ours: completed depth map and deblurred image

Figure 1. Qualitative comparisons on depth completion perfor-
mance. (a) Input: incomplete and noisy depth map. (b) Corre-
sponding blurry color image (with ground-truth complete depth
map overlaid in the corner). (c) Estimated depth by [27] (d) Es-
timated depth by [36]. (e) Estimated depth by [5]. (f) Estimated
depth by [41]. (g) Our depth completion and deblurring result.
Compared to the stereo method (i.e. [36]) that ranks as the 1st on
the KITTI dataset and the remaining three state-of-the-art depth
completion methods (i.e. [27, 5, 41]) shown above, our method
achieves the best performance. (Best viewed on screen).

Depth super-resolution and depth completion techniques
are designed to overcome these limitations by mainly lever-
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aging the information from high-resolution and sharp color
images [5, 41] to improve the quality of the depth map.
Nevertheless, in real world settings, the quality of color im-
ages could be significantly variable due to camera vibration
and relative motion of the dynamic objects in the scene.

Existing works use multiple-view blurry images to es-
timate the depth and deblur the image [3, 13, 32]. Even
though they demonstrate that the depth estimation would
also benefit image deblurring, their frameworks cannot be
directly adopted to solve our problem, since they make
strong assumptions that the scene is static, and the blur is
only due to camera shake. In outdoors scenarios, the blur is
also generated by the motion of dynamic objects and limited
field of depth of the camera. Ismael et al. [2] recently pro-
posed to adopt temporal information to super-resolve depth
videos. Their method is constrained to particular types of
3D motion between neighboring frames such as the motion
then can be decoupled into a lateral term and radial dis-
placements. Although they attempted depth improvement,
their method does not enhance the color image quality.

In Fig. 1(a), we provide a sample outdoor traffic scene
image depicting camera and object motions. The unde-
sired blur in the image causes the loss of details, which
further hinders depth completion results. As indicated in
Table 1, the performance of the state-of-the-art depth com-
pletion methods quickly deteriorate in the presence of blur
in color images. On the other hand, the quality of the depth
map has significant influence in deblurring color images. In
Fig. 2, we compare the deblurring results with different res-
olution depth maps using our method. We observe that the
deblurring performance improves with the increase of depth
map quality. Therefore, we conclude that depth map com-
pletion and image deblurring are interweaved and strongly
co-dependent where the solution of one benefits the other.

In this paper, we focus on handling realistic scenarios
and tackling the problem of joint depth map completion
and image deblurring by exploiting the spatio-temporal con-
straints in color images and depth map sequences. Our work
is motivated by the recent progress in image deblurring and
depth completion. It has been demonstrated [31] that scene
flow estimation from stereo pairs can significantly improve
the deblurring performance. This indicates that depth in-
formation can lead to a better deblurring in varying condi-
tions compared to solely image-based methods. Likewise,
deblurred images can support depth completion to estimate
high-quality depth maps [2, 43].

To this end, we introduce a new framework for joint
restoration of scene depth map and the latent clean im-
age from given sparse depth maps and their corresponding
blur color image sequences. Specifically, we use the piece-
wise planar assumption of the scene and represent the entire
scene as a collection of 3D local planes, which significantly
regularizes the problem. In this way, the joint restoration

Table 1. Comparisons with clean/blur images on KITTI dataset.

KITTI Flow Error(%) Depth Error(%)
Clean Blur Clean Blur

Vogel et al. [36] 2.83 13.62 4.27 8.20
Menze et al. [22] 3.28 14.77 4.70 6.72
Yang et al. [41] / / 3.43 4.67

D Ferstl et al. [5] / / 4.08 5.14
J Park et al. [27] / / 9.76 12.61

(a) r = 16 (b) r = 8

(c) r = 4 (d) r = 0

Figure 2. Performance of the image deblurring part of our method.
Depth maps at different resolutions where r is the downsampling
factor are shown (Best viewed on screen).

of scene depth map and latent clean image have been trans-
formed to the estimation of the 3D geometry for each local
plane, the rigid motion for each plane and the solution for
the latent clean image. Our main contributions can be sum-
marized as a comprehensive and efficient energy minimiza-
tion formulation and the state-of-the-art depth completion
performance using multiple images.

2. Related Work
Depth map completion has been widely studied in com-

puter vision and image processing, and the research topic
can be roughly divided into two categories, namely, depth
map only and color image guided.
Depth map only: A common way to improve the resolution
and quality of depth map is to fuse multiple depth maps into
one depth map. KinectFusion [16] uses depth maps from
neighboring frames to fill in the missing information dur-
ing real time 3D rigid reconstruction. Newcombe et al. [24]
took live depth data from a moving Kinect camera and cre-
ated a high-quality 3D model for a static scene. Ismaeil et
al. [2] proposed to complete low-resolution dynamic depth
videos containing non-rigidly moving objects with a dy-
namic multi-frame super-resolution approach. This is ob-
tained by accounting for nonrigid displacements in 3D, in
addition to 2D optical flow, and simultaneously correcting
the depth measurement by Kalman filtering. However, the
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real challenge that the research community has been facing
is extending the multi-frame depth completion concept to
dynamic scenes with moving objects.
Color image guided depth completion: This category
of methods use additional intensity image as guidance for
depth completion [7, 8, 25, 44]. Yang et al. [42] used bi-
lateral filtering of a depth cost volume and a RGB image
in an iterative refinement process. A more complex ap-
proach was proposed by Park et al. [28, 27] to use a com-
bination of different weighting terms of a least squares op-
timization including segmentation, image gradients, edge
saliency and non-local means for depth upsampling. Ferstl
et al. [5] modeled the smooth term as a second order total
generalized variation (TGV) regularization, and guided the
depth upsampling with an anisotropic diffusion tensor cal-
culated from a high-resolution intensity image. However,
this method suffers from the blurring problems, especially
areas around depth edges. Yang et al. [41] developed an
adaptive color-guided auto-regression model for depth re-
covery. Aodha et al. [21] focused on single image upsam-
pling as MRF labeling problem.
Deep CNN based depth completion: Recently, CNN has
shown its ability in image recognition and classification task
[33, 40] and has been extended to low-level vision tasks
such as depth map super-resolution or depth completion.
Riegler et al. [30] proposed a unified framework to effec-
tively combine DCNN with total variations to generate HR
depth maps. Riegler et al. [29] proposed to incorporate non-
local variation into DCNN based framework, where the cor-
responding color images were also utilized. Additionally,
Hui et al. [14] proposed a multi-scale guided convolutional
network (MSG-Net). All these deep CNN based methods
depend on the consistency between the training data and the
testing data.
Deblurring with depth : Blur removal is an ill-posed prob-
lem, thus certain assumptions or additional constraints are
required to regularize the solution space. As depth can
significantly simplify the deblurring problem, depth-aware
methods have been proposed to leverage the depth informa-
tion. Xu et al. [37] inferred depth from two blurry images
captured by a stereo camera and proposed a hierarchical es-
timation framework to remove motion blur caused by in-
plane translation. Hu et al. [13] solved it as a segment-wise
depth estimation problem by assuming a discrete-layered
scene where each segment corresponds to one layer. Arun et
al. [3] proposed a geometric algorithm to estimate the cam-
era motion from the blurry images themselves. However,
they all assume that the scene to be static and the camera
motion is the only source of motion blur. Recently, Sell-
ent et al. [31] proposed a stereo deblurring approach, where
3D scene flow is estimated from the blurry images using a
piecewise rigid 3D scene flow [36] representation. Very re-
cently Pan et al. [26] proposed a single framework to jointly

estimate the scene flow and deblur the images, where the
motion cues from scene flow estimation and blur informa-
tion could reinforce each other. Inspired by this stereo de-
blurring work, we aim to use a single view image sequence
and its sparse and noisy depth map to complete the depth
map and estimate the latent clean images.

3. Problem Formulation
Our goal is to complete the given incomplete and noisy

depth maps D̃ with the help of blurry color images B by
exploiting the spatial-temporal constraints. Blur is caused
by the motion of camera, objects, and limited depth-of-field
of the camera (for large depth variations in the scene).

Towards this goal, we formulate our problem as a joint
depth map completion and color image deblurring under dy-
namic scene settings. Since there are more variables (la-
tent clean color images and target completed depth maps)
to infer than the available measurements (blurry color im-
ages and incomplete and noisy depth measurements), we
regularize this under-determined problem with the assump-
tion that the scene can be well approximated by a collection
of 3D planes [38] belonging to a finite number of objects
performing rigid motions [22], i.e. a piecewise planar rigid
motion representation. In this way, the original problem is
transformed to the estimation of the geometric parameters
ni, the local rigid motion (Ri, ti) for each 3D planar and
the latent clean images I.

In the following sections, we describe how to combine
the geometric parameters, the motion parameters and the
latent clean images together in the same objective where
the solution of one variable will benefit the other variables.
Our model relates to [26] and [22] in estimating the scene
flow. However, our problem setting is very different where
we have to exploit the sparse depth measurement constraint
and blurry image constraint in a joint framework. We have
introduced two new depth constraints to evaluate the con-
sistency and the discrepancy between the sparse depth mea-
surements and the completed depth maps.

3.1. Blur Image Formation

For complex dynamic settings such as outdoor traffic
scenes, the blurry image is generated by spatially-variant
per-pixel motion (optical flow). The blurry images are
formed by the integration of light intensity emitted from the
dynamic scene over the aperture time interval of the camera,

Bm(x) =
1

2N + 1

N∑
n=−N

In(x + un) = Ax
mIm(x), (1)

where B is the blurry frame, x denotes pixel location on im-
age domain, In is the successive latent neighboring frames
as frame m, un is the optical flow to frame n, Ax

m is the
blur kernel vector for the image at location x. We obtain
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the blur kernel matrix A by stacking Ax. This leads to the
blur model for the image as Bm = AmIm. Please refer to
[15] and [31] for more details.

3.2. Formation Statement

In our setup, the incomplete and noisy depth measure-
ments provide the depth information for each frame. Based
on our piece-wise rigid planar assumption of the scene, opti-
cal flows for pixels lying on the same plane are constrained
by the same homography. In particular, we represent the
scene in terms of superpixels and finite number of objects
with rigid motions. We denote S and O as the set of super-
pixels and moving objects, respectively. Each superpixel
i ∈ S is associated with a region Ri in the image and a
plane variable ni,k ∈ R3 in 3D (nTi,kX = 1 for X ∈ R3),
where k ∈ {1, · · · , |O|} denotes superpixel i is associated
with the k-th rigid motion ok = (Rk, tk) ∈ SE(3), where
Rk ∈ R3×3 is the rotation matrix and tk ∈ R3 is the trans-
lation vector. Given the motion parameters ok and geomet-
ric parameters ni,k, we can obtain the homography defined
for superpixel i as

H(ni,ok) = K(Rk − tkn
T
i,k)K−1, (2)

where K ∈ R3×3 is the intrinsic calibration matrix. H
for each superpixel can be obtained when relates correspon-
dences across frames n,o are confirmed.This shows that the
optical flows for pixels in a same superpixel are constrained
by the corresponding homography, thus the optical flows are
structured as opposed to [15].

We aim at completing the incomplete and noisy depth
maps by exploiting both the spatial-temporal information in
constraining the motion and the availability of correspond-
ing blurry color images. To this end, we formulate the prob-
lem in a single framework as a discrete-continuous opti-
mization problem to jointly complete the depth maps and
deblur the color images. We explain all the constraints in
the following sections.

3.3. Depth Constraint

3.3.1 Depth Consistency

The first depth term is to encourage the consistency between
the sparse depth measurements and the completed depth es-
timation based on the piecewise planar models, which are
evaluated across multiple frames. For the reference frame,
the depth consistency is defined as:

ψ1
i (ni,k) = w1

∑
x∈Ω

|D̃(x)−D(ni,k,x)|1, (3)

where D̃(x) denotes the sparse and noisy depth measure-
ments from sensors such as Kinect and LiDAR, Ω denotes
the image pixels with depth measurements available and

D(ni,k,x) represents the depth estimation under the piece-
wise planar model.

For other frames besides the reference frame, the second
depth consistency is evaluated as the discrepancy between
the measured depth and the corresponding depth generated
with the piecewise rigid planar motion,

ψ2
i (ni,k,ok) = w2

∑
x∈Ω

|D(x,ni,k,ok)− D̃(H∗x)|1, (4)

where the superscript ∗ denotes the warping direction to
other color frames and the subscript of H is to index the
corresponding homography for position x.

3.3.2 Motion Sensitive Depth Discontinuity

Our model exploits a smoothness potential that enforcing
the depth maps to be smooth and continuous, which in-
volves both discrete and continuous variables. It is similar
to the ones used in [22]. The third depth term for depth map
is to enforce the motion boundaries to be co-aligned with
the depth discontinuities, which is expressed as

ψ3
i,j(ni,k,nj,k′)

= w3

 exp
(
− λ
|Bi,j |

∑
x∈Bi,j

ωi,j(ni,nj ,x)2
|nT

i nj |
‖ni‖‖nj‖

)
if k 6= k′,

0 else.

x ∈ Bi,j evaluated with i-th superpixel parameter and j-th
superpixel parameter, where |Bi,j | denotes the number of
pixels belongs to the boundary between superpixels i and j.

3.3.3 Geometry Sensitive Depth Smoothness

The fourth depth term is to enforce the compatibility of two
superpixels that share a common boundary by respecting
the depth discontinuities. We define our potential function
for continuous boundary as

ψ4
i,j(ni,k,nj,k′) =

∑
x∈Bi,j

ρα1(d(ni,k,x)− d(nj,k′ ,x))

+ ρα3

(
1−

|nTi,knj,k′ |
‖ni,k‖ ‖nj,k′‖

)
,

(5)

where ρα(·) = min(|·|, α) denotes the truncated `1 penalty
function.

3.4. Image Constraint

3.4.1 Brightness Consistency

Our image term involves mixed discrete and continuous
variables, and are of three different kinds. The first image
term encourages the corresponding pixels across the latent
clean images should own similar appearance,

θ1
i (ni,o, I) = c1|I(x)− I∗(H∗x)|1, (6)

where I∗ ∈ In denotes the frame which H∗ warping to.
We use the `1 norm due to its robustness against noise and
occlusions.
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Blur image

m-1 m m+1

Input Output

...

Sparse Depth Map

...

Deblurred image

Dense Depth Map

Figure 3. Illustration of our method. We simultaneously complete the depth maps and deblur the color images.

3.4.2 Anchor Point Constraint

While the above brightness consistency term provides dense
constraint across image frames, we could also exploit the
sparse and reliable feature correspondences (such as SIFT)
to constrain the correspondences, which work as anchor
points. Therefore our second image term is defined as

θ2i (ni,o) =

{
c2ρα2(||H∗x− x

′
||2) if x ∈ Π

0 otherwise.

More specifically, it encodes the information that the warp-
ing of feature points x ∈ Π based on H∗ should match its
extracted correspondences x

′
in the target view.

3.4.3 Deblurring Constraint

The third image term relates the observed blurry images
with the latent clean images with the spatial-variant blur
kernels,

θ3i (ni,o, I) = c3
∑
m

∑
∂

‖∂Am(ni,o)Im − ∂Bm‖22

where ∂(·) denotes the Toeplitz matrices corresponding to
the horizontal, vertical derivative filters and the identity ma-
trix. This term encourages the intensity changes and the in-
tensity in the estimated blurry images to be close to that of
the observed blurry images.

3.5. Regularization Term for Latent Clean Images

Natural images of typical real-world scenes generally
obey sparse spatial gradient distributions [17, 18]. The
distribution of a latent clean image can often be modeled
as a generalized Laplace distribution [39], i.e. P (I) =∏

x∈X exp(−|∇xI(x)|p), where the power of p is a pa-
rameter usually within [0.0, 1.0]. This prior can be
equivalently represented in energy minimization form, i.e.
‖∇xI(X)‖p → min . We let p = 1 in the paper. In our
model, this corresponds to a total variation term to suppress
the noise in the latent image while preserving edges, and
penalize spatial fluctuations.

ψm = |∇Im| = ‖Im‖TV. (7)

3.6. Energy Minimization
Our energy minimization is defined as

E =
∑
i∈S

ψ1,2
i (ni,o) +

∑
i,j∈S

ψ3,4
i,j (ni,nj ,o)

︸ ︷︷ ︸
depth map

+
∑
i∈S

θ1,2,3i (ni,o, I)︸ ︷︷ ︸
image term

+
∑
m

ψm(Im)︸ ︷︷ ︸
clean image

regularisation

,
(8)

which consists of data terms evaluated on the color images
and depth maps respectively, a smoothness term for the de-
sired completed depth map, and a spatial regularization term
for the latent clean images. Our model has been defined on
three consecutive frames of RGB-D sequences. It can also
allow the input with two pairs of RGB-D frames. Details
are provided in section 5. In Section 4, we perform the opti-
mization in an alternating manner to handle mixed discrete
and continuous variables, thus allowing us to jointly com-
plete the depth maps, and deblur the color images.

4. Solution of Energy Function
The optimization of our energy function defined in Eq.-

(8) involves both discrete and continuous variables, which
is challenging to solve. Therefore we resort to the alter-
native optimization manner, i.e., optimizing one variable
while fixing all the remaining ones. Note that our energy
minimization formulation involves three set of variables,
namely completed depth map D as indexed by n, piecewise
planar rigid motion o and latent clean image I. We propose
to handle the energy minimization by alternating between
the following two steps,

• Fix the latent clean image I, solve for scene geometry
n and motion o (completed depth map and motion) by
optimizing Eq.(9) (See Section 4.1).

• Fix the scene geometry and motion n and o, solve for
the latent clean image I by Eq.(10) (See Section 4.2).
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4.1. Depth Completion and Motion Estimation

When the latent clean images are fixed as I = Ĩ, the joint
optimization in Eq.(8) reduces to

min
n,o

∑
i∈S

ψ1,2
i (ni,o) +

∑
i,j∈S

ψ3,4
i,j (ni,nj ,o) + θi,j(ni,nj ,o, Ĩ),

(9)
which is a discrete-continuous CRF optimization prob-

lem. We use the sequential tree-reweighted message pass-
ing (TRW-S) method in [22] to find an approximate solu-
tion.

4.2. Debblurring
Given the scene geometry ñ and motion parameters õ,

the blur kernel matrix Am is derived based on Eq.(1). The
objective function in Eq. (8) becomes convex w.r.t. I

min
I

∑
i∈S

θ1i (ñi, õ, I) + θ3i (ñi, õ, I) +
∑
m

ψm(I). (10)

In order to obtain the latent clean image I, we adopt the
conventional convex optimization method [4] and derive the
primal-dual updating scheme as follows

pr+1 =
pr + γ∇Ir

max(1,abs(pr + γ∇Ir))

qr+1 =
qr + µ(Ir − I∗r)

max(1,abs(qr + µ(Ir − I∗r))

Ir+1 = arg min
I

∑
i

c3
∑
∂

‖∂AI− ∂B‖22 +

∥∥[I− η((∇pr+1)T + η(qr+1 − q∗r+1)T )]− Ir
∥∥2

2η

(11)

where p, q are the dual variables, γ,µ and η are the step
variants which can be modified at each iteration, and r is
the iteration number.

5. Experiments
We evaluate the performance of our method on both out-

doors settings and indoors environments. For outdoors eval-
uation, we use the KITTI [9] autonomous driving bench-
mark dataset that provides monocular color images along
with sparse depth maps from the LiDAR for validation. For
indoors scenarios, we use the TUM RGB-D dataset [34]
captured with a Kinect sensor. We present and discuss our
results on both datasets in the following sections.

5.1. Experimental Setup

Initialization. Our model in Section 3 is formulated on
three consecutive RGB-D images. In particular, we treat the
middle frame as the reference image. We adopt the simple
linear iterative clustering (SLIC) [1] to generate the super-
pixels, where each superpixel corresponds to a local planar
in 3D. We use the penalized least squares method [6] to fast
smooth the given sparse depth map for initialization. The

Table 2. Quantitative depth completion errors and deblur results.
Depth Error(%) Flow Error(%) PSNR (dB)
KITTI TUM KITTI KITTI

Kim and Lee [15] / / 38.89 28.25
Sellent et al. [31] 8.20 / 13.62 [36] 27.75
Yang et al. [41] 4.67 0.43 / /

D Ferstl et al. [5] 5.14 0.47 / /
J Park et al. [27] 12.61 0.29 / /

Ours(no depth term) 5.53 0.26 17.16 29.85
Ours 3.91 0.22 13.01 29.83

motion hypothesis are then generated using RANSAC al-
gorithm as suggested in [11].
Evaluations. Since our method could simultaneously com-
plete the depth map and deblur the given images, we eval-
uate these two subtasks individually. We evaluate the depth
completion results by counting the number of bad pixels
having errors more than 3 pixels and 5% of its ground-truth.
We adopt the PSNR to evaluate the deblurring performance.
Thus, for each sequence, we report three performance met-
rics: depth errors (geometry), flow errors (motion), and
PSNR (latent images) values for the reference images.
Baselines Methods. As for our depth completion results,
we compare both passive and active RGB-D methods sep-
arately. For multi-view cameras system, we compare with
piece-wise rigid scene flow method (PRSF) [36], which is
ranked the firston the KITTI scene flow estimation bench-
mark and is used as the flow initialization for [31]. For
active depth sensors, we compare with TGV [5], [27] and
[41] which are also three applicable state-of-the-art meth-
ods. We compare our deblurring results with the state-of-
the-art deblurring approach for monocular images [15], and
the approach for stereo images [31]. The results are shown
in Table 2.

5.2. Experimental Results

Results on KITTI. To the best of our knowledge, currently
there is no realistic benchmark datasets that provide blurry
images and corresponding ground-truth depth maps and the
latent clean images. In this paper, we take advantage of
the KITTI visual odometry dataset [9] to create a synthetic
blurry image dataset on realistic scenery, where each se-
quence includes 6 images (375× 1242). Then we obtained
the depth sequence with a down-sample factor r = 4. The
blurry images are generated by using the piecewise linear
kernel, where frame rate is set as τ = 0.23 and the number
of frame is N = 20. Therefore, the image blur is caused by
both objects motion and camera motion with occlusion and
shadow. We perform block-coordinate-descent on a subset
of 30 randomly selected training images to obtain the opti-
mal model parameters {w, c} and {α} in cross-validation.

We evaluated results on the reference image and our
method consistently outperforms all baselines as illustrated
in Table 2. We achieve the minimum bad pixel ratio of
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(a) Input sparse depth map (b) Input blurry image

(c) Ferstl et al. [5] (d) Park et al. [27]

(e) Yang et al. [41] (f) Sellent et al. [31]

(g) Our completion depth map and deblurred image

Figure 4. Depth completion and image deblurring results on the KITTI dataset. (a) Input: sparse depth map. (b) Corresponding blurry
color image (with ground-truth depth map in the corner). (c) Estimated depth map by [5]. (d) Estimated depth by map [27]. (e) Estimated
depth map by [41]. (f) Deblurring result of [31]. (g) Our depth completion and deblurring result. Compared to the recent stereo deblurring
method (i.e. [31]) and the remaining three state-of-the-art depth completion methods (i.e. [5, 27, 41]) shown above, our method achieves
the best performance for both depth completion and deblurring. Best viewed on screen.

3.91% for depth completion and a PSNR of 29.83 for image
deblurring. Fig. 4 shows qualitative depth completion re-
sults and deblurring results of of our method and other com-
peting methods on the sample sequences from the KITTI
dataset.

Fig. 6 shows the performance of our depth completion
and image deblurring method with respect to the number of
iterations, where the performance of both depth completion
and image deblurring improves with the increase of itera-
tions. While we use 6 iterations for all our experiments, the
experiments indicate that 3 iterations are sufficient in most
cases to reach an optimal performance for our formulation.

Results on TUM. In order to evaluate the performance of
our method on real dataset, we also use the TUM RGB-
D dataset [34] which included motion blur. The captured
depth maps and color images are of size 640 × 480. Then
we down-sample the obtained depth maps with rate r = 16
to simulate sparse depth maps. We evaluated our results on

the reference image and achieve the minimum bad pixel ra-
tio of 0.22% for depth completion, consistently outperforms
all baseline methods. Fig. 5 shows the visually completed
depth map and deblurring results of our method compar-
ing with other methods on sample sequences from the TUM
dataset.

Table 3. Quantitative evaluation on the KITTI dataset where the
blur images are generated by averaging three consecutive frames.

PSNR(dB) SSIM(%) Depth Error(%)
Yang et al. [41] / / 6.15

D Ferstl et al. [5] / / 3.22
J Park et al. [27] / / 9.63

Kim and Lee [15] 23.21 0.781 /
Sellent et al. [31] 23.31 0.764 /

Ours 23.89 0.786 2.77

Results on Another Blur Model. Even though the TUM
dataset contains blurry images, they cannot be used for
quantitative evaluation since no ground truth clean images

7



(a) Input incomplete and noisy depth map (b) Input blurry image

(c) Ferstl et al. [5] (d) Park et al. [27]

(e) Yang et al. [41] (f) Kim and Lee [15]

(g) Our completion depth map and deblurred image

Figure 5. Depth completion and image deblurring results on the TUM dataset. (a) Input: incomplete and noisy depth map (with ground-
truth depth map in the corner). (b) Corresponding blurry color image. (c) Estimated depth map by [5]. (d) Estimated depth map by [27].
(e) Estimated depth map by [41]. (f) Deblurring result of [15]. (g) Our depth completion and deblurring result. Compared to the monocular
deblurring method (i.e. [15]) and the remaining three state-of-the-art depth completion methods (i.e. [5, 27, 41]) shown above, our method
achieves the best performance for both depth completion and deblurring. Best viewed on screen.

are available. To perform such quantitative evaluation, syn-
thetic images have been widely used [15, 23, 12]. We have
evaluated our method under the spatial-variant blur gener-

Figure 6. Performance of our method on KITTI (flow error, depth
error, PSNR) with the respect to the number of iterations.

ation model. Here we tested our method on another blur
generation model (the blur image is simply an average of
consecutive three frames). The results are shown in Table
3, where our method again achieves the best performance.

6. Conclusion

In this paper, we present a joint optimization framework
to tackle the challenging task of depth map completion with
the guidance of blurry color images, where depth comple-
tion and sequence images deblurring are solved in a coupled
manner. Under our formulation, the motion cues from depth
completion and blurry images could benefit each other, and
produce superior results than conventional depth comple-
tion or deblurring methods. The performance of our method
has been evaluated on both outdoor and indoor scenarios.
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