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Abstract

Image compositing is a method used to generate realistic
vet fake imagery by inserting contents from one image to an-
other. Previous work in compositing has focused on improv-
ing appearance compatibility of a user selected foreground
segment and a background image (i.e. color and illumina-
tion consistency). In this work, we instead develop a fully
automated compositing model that additionally learns to
select and transform compatible foreground segments from
a large collection given only an input image background.
To simplify the task, we restrict our problem by focusing on
human instance composition, because human segments ex-
hibit strong correlations with their background and because
of the availability of large annotated data. We develop a
novel branching Convolutional Neural Network (CNN) that
jointly predicts candidate person locations given a back-
ground image. We then use pre-trained deep feature rep-
resentations to retrieve person instances from a large seg-
ment database. Experimental results show that our model
can generate composite images that look visually convinc-
ing. We also develop a user interface to demonstrate the
potential application of our method.

1. Introduction

Image compositing aims to produce images that can trick
humans into believing they are real, although they are not.
Image composites can also result in fantastic images that
are limited only by an artist’s imagination. However, the
process of creating composite images is challenging, and it
is not fully understood how to make realistic composites. A
typical compositing task proceeds in four steps: (1) choose
a foreground segment that is semantically compatible with
a given background scene; (2) place the segment at a proper
location with the right size; (3) perform operations such as
alpha matting [25] or Poisson blending [21] to adjust the
local appearance; (4) apply global refinements such as re-
lighting or harmonization [30]. The first two steps require
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semantic reasoning while the last two steps deal with ap-
pearance compatibility. Whether a human perceives a com-
posite image as real or fake depends on all these factors.
However, while existing compositing systems tackle the last
two steps automatically, most of them leave the semantic
tasks (steps 1 and 2) to the users.

In this work, we explore the semantic relationships be-
tween a collection of foreground segments and background
scenes using a data-driven method for automatic composi-
tion. We restrict the foreground category to “human” be-
cause humans play a central role in a large proportion of im-
age composites, and because we can easily collect enough
exemplar data for training and testing. For simplicity, we
also choose to ignore occlusion by assuming that human
segments are fully visible from the camera viewpoint.

This research is motivated by recent breakthroughs in
scene recognition [32] and object-level reasoning [22]
through deep neural networks, which have brought unprece-
dented levels of performance for similar semantic tasks.
Thus, we apply these techniques to estimate the semantic
compatibility between candidate foreground segments and
image backgrounds using a large scale visual dataset. Given
these observations, our method contains three components:
First, a location proposal step where we predict the loca-
tion and size of each potential person instance using a novel
Convolutional Neural Network (CNN) architecture. Sec-
ond, a retrieval step, where we find a specific segment that
semantically matches the local and global context of the
scene. Lastly, a final compositing step, where we lever-
age off-the-shelf alpha matting [6] to adjust the transition
between a composited segment and its surroundings so that
the segment appears compatible with the background.

To evaluate our method, we conduct quantitative and
qualitative experiments including a user study. We demon-
strate that our generation pipeline can be useful for interac-
tive layout design or storyboarding tasks which can not be
easily fulfilled using other tools.

We summarize here our technical contributions: (1) A
model that predicts probable locations for the presence of
a person instance for an arbitrary input background using



contextual cues. (3) A fully automatic person compositing
system which generates convincing composite images. To
the best of our knowledge, this is the first attempt towards
this task; (4) Conducting quantitative and qualitative eval-
uations, including a user study and a proof-of-concept user
interface.

2. Related work

Composite image generation. Early methods for com-
positing such as alpha matting [25] and gradient-domain
compositing [21]] can seamlessly stitch a foreground object
with a background image by blending a local transition re-
gion. To enforce global appearance compatibility, Lalonde
and Efros [17] proposed to model the co-occurrence prob-
ability of the foreground object and the background image
using a color distribution. Similarly, Xue et al. [34] pro-
posed to investigate the key statistical properties that control
the realism of an image composite. Recently, Zhu et al. [37]]
trained a single CNN-based model to distinguish composite
images from natural photographs and refine them by opti-
mizing the predicted scores. Furthermore, Tsai et al. [30]
developed an end-to-end deep CNN based model for im-
age harmonization. These methods give visually pleasing
results, but unlike our work, they all leave the semantic
tasks to the users, such as choosing foreground segments
and placing them at proper positions with the right size.

The work of Lalonde et al. [18] took a step further by
building an interactive system to insert new objects into ex-
isting photographs by querying a vast image-based object
library. Chen et al. [7] developed a similar interactive sys-
tem but took user sketches as input. Hays et al. [10] pro-
posed an automatic patch retrieval and blending method for
scene completion using millions of photographs. Unlike
our work, these methods relied on hand-crafted features and
the composite regions were still indicated manually by the
users.

Context based scene reasoning. Using context for
scene reasoning has a long history [8]]. Pioneering works in-
clude Bar and Ullman [26] and Strat and Fischler [2[], which
incorporated contextual information for recognition. Con-
text based methods are also popular in object-level classifi-
cation. Bell et al. [4] proposed a Recurrent Neural Network
framework to detect objects in context. These works mod-
eled correlations among contents within the image, while
our method predicts contents that are not yet present. Re-
lated to our work, Torralba et al. [28] introduced a chal-
lenge to test to what extent can object detection succeed by
only contextual cues. More recently, Sun et al. [27] pro-
posed a siamese network to detect missing objects in an im-
age. While these methods predicted contents that were not
present in the images, they all focused on the binary deter-
mination of whether there should be any object at a specific
location or not. In contrast, our method attempts to predict

both the location and size of a potential foreground seg-
ment, and retrieve a segment with proper appearance that
is compatible with the surrounding context. Concurrently
to our research, Wang et al. [31]] proposed to model affor-
dances by predicting the skeletons of persons that were not
already present. This method achieves good results, but re-
quires matching of a similar indoor scene, and only pre-
dicts a skeleton, not a full color composite. Finally, Ker-
mani et al. [[15]] synthesized 3D scenes by learning factor
graph and arrangement models from an RGB-D dataset.

Context based image editing. By conditioning on the
local surroundings, Pathak et al. [20] performed seman-
tic inpainting by using a generative adversarial network.
Yang et al. [35] proposed a multi-scale CNN model for
high-resolution image inpainting via neural patch synthesis.
lizuka et al. [[13] developed a CNN based method for im-
age completion by enforcing global and local consistency.
Recently, Chen et al. [S]] presented a cascaded refinement
network to synthesize images conditioned on semantic lay-
outs. While these methods synthesize novel contents from
context at pixel level, the locations or layouts of the synthe-
sized regions were still provided by the users. Our method
predicts such regions and retrieves plausible segments.

3. Overview

Figure [T| shows an overview of our system. It has three
main components: bounding box prediction, person seg-
ment retrieval, and compositing. We now give a brief dis-
cussion of each of these.

In Section ] we introduce our proposed CNN based
model to predict a bounding box of the potential segment.
We formulate the bounding box prediction as a joint classifi-
cation problem by discretizing the spatial and size domains
of the bounding box space. Specifically, we design a novel
two branch network which can be trained end-to-end using
supervised learning, and tested in a cascade manner.

In Section [5] we introduce a candidate pool we built
for segment retrieval. A context based segment retrieval
scheme is devised to find a person segment from the candi-
date pool that semantically matches both local context and
the global scene. The key component for achieving this is a
hybrid deep feature representation. Finally, we use an alpha
matting technique to composite the retrieved segment with
the background at the predicted location and size.

In Section [6] we evaluate our bounding box prediction
model quantitatively by measuring the histogram correla-
tion between the ground truth bounding boxes distribution
and our prediction. We also evaluate the visual realism of
composite images with a human subject evaluation.
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Figure 1: Overview of our pipeline: our system consists of three computational stages, which are depicted above.

4. Bounding box prediction

In this section, we introduce our learning based method
to predict the bounding box of a potential person segment
given a single background image. Our key insight here is
that the correlation between the foreground segment and
the background scene can be learned directly from human-
annotated object layouts of natural images.

We first discuss how we collect and preprocess the data
(Section @) Next, we explain the input for the model
(Section [4.2)), and give the prediction target for the model
(Section[d.3). We then give the model itself (Section[.4).

4.1. Data preprocessing

The data we use for learning such layout correlation is
from MS-COCO [19]. This dataset contains tens of thou-
sands of images with both bounding box and segment an-
notations for each object instance in 80 different categories.

Because a large proportion of object instances are oc-
cluded, we automatically filter out heavily occluded person
instances using three passes of filtering: (1) We filter the
person instances whose bounding boxes have large overlap-
ping areas with other objects. Specifically, we exclude in-
stances whose Intersection over Union (IoU) with any other
instance is larger than 0.3. (2) We also exclude person in-
stances that are close to the edge of the images as they are
probably incomplete. In particular, we filter the instance
if the distance between its bounding box and the edge of
the image is less than 18 pixels. (3) Finally, we remove
instances whose areas are less than 2500 square pixels.

After applying the filtering routines, we obtain 36,636
person instances from the training split of MS-COCO, and
16,962 from the validation split.

4.2. Input imagery

For each person instance in the dataset, we attempt to
learn the mapping from its background context to the per-
son’s bounding box. Learning such a mapping function re-
quires us having an input image in which the person is not

already present. However, to do this, we have to “erase” the
person instances from the source images. Our solution is
to remove the person instances automatically by using the
human-annotated segments from MS-COCO. We remove
each person via the inpainting method of Barnes et al. [3],
implemented as Content Aware Fill from Adobe Photo-
shop. The resulting inpainted results sometimes exhibit ar-
tifacts such as repetitive patches. To prevent the model from
over-fitting on these artifacts, the inpainted image is further
blurred using a Gaussian with a sigma of 3.2. We denote
the blurred image as Ip.

Given the recent breakthroughs in CNN-based object de-
tection systems [22] 4], in addition to using our inpainted
(and blurred) images directly as input, we also incorporate
the informative output from an object detector. We use the
Faster RCNN object detector to obtain object detec-
tions in the inpainted images. The bounding boxes of the
detected objects in different categories are then rendered
using a randomly generated color palette, with each color
corresponding to a category. The color values within an
overlapping region are set to the mean color value. We find
that using different color palettes achieves similar perfor-
mance. The layout image (indicated as I} ) represents the
object layout of the image, as shown in Figure[T]

4.3. Prediction target

The target of our prediction model is the bounding box
of a person. We first discuss how we represent the bounding
box using normalized coordinates, and then explain how we
discretize these coordinates for use in classification.

The bounding box representation from a ground truth an-
notation in the dataset is a four dimensional vector: (min,
Ymins Tmaxs Ymax)> Where (Zmin, Ymin) represents the top-
left coordinate and (2 ax, Ymax) Tepresents the bottom-right
coordinate. For images of different resolutions, a normal-
ized bounding box representation is required for consistent
prediction. To do this, our system pads each rectangular
image by the minimum amount so a square image is ob-
tained, using a padding color that is the mean color for the
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Figure 2: Overview of the prediction model: the proposed
network exploits a two branch architecture: the first branch
predicts location and the second branch predicts size.

ImageNet dataset [23]. The bounding box is first shifted to
account for the square padding, then transformed into nor-
malized coordinates (Zstand, Ystand, W, ) € [0, 1], where
Tstand = i(mmin + Tmax)s Ystand = éymax, s is the width
of the square image, and w, h are the width and height of
the box relative to the square image. Thus, (Zstand, Ystand)
is the lowest center (standing) point of the bounding box.

Direct regression in a four dimensional continuous space
is challenging. To facilitate the bounding box prediction,
our system discretizes the (z,y) location domain into a
15 x 15 grid board, and then represents (Zstand, Ystand ) aS
the index of the grid g, where it is located. Similarly, the
(w, h) size domain is also discretized so that (w, h) is repre-
sented as another grid index g,,;. By doing this, we formu-
late the bounding box prediction as two classification prob-
lems with 225 (15 x 15) different classes for each.

4.4. Prediction model

Given I, I, as inputs and gy, g, as targets, our next
challenge is to learn the underlying mapping between them.
Our approach is to learn the location (g.y) and size (g.n)
simultaneously as they are highly correlated. In particular,
we develop a novel CNN-based model which can be trained
in an end-to-end manner.

In our model, the images (I, I,) are first concatenated
along the depth channel, and fed through a shared front-end
network, as shown in Figure This network is shared in
the sense that the same weights are used before the split
into the location and size branches. The shared network
contains three residual bottleneck modules with projection
shortcuts, similarly as in He et al. [L1]]. Starting from the
output feature map of the shared network, the model is then
separated into two smaller branches, with the first branch
predicting the location (g,,), and the second branch pre-
dicting the size (g, ). These two branches also incorporate
dilated convolutional layers introduced in [36]] in order to
use larger receptive fields without using an additional num-
ber of parameters. Table 1 lists the layer-by-layer details of
the proposed network architecture.

Note that the size of the predicted box should be consis-
tent with the local context. For instance, person segments
should not be larger than instances of larger objects appear-

Layers Activation Size
Shared layers
Input 6 x 480 x 480
Conv: 64 x 7 x 7, stride 2 64 x 237 x 237
Max pool 3 x 3, stride 2 64x118x 118
Conv block, (64, 64, 128) filters* 128 x 59 x 59
Conv block, (64, 64, 128) filters* 128 x 30 x 30
Conv block, (128, 128, 512) filters* 512x15x 15
Location prediction branch
Conv: 64 x 3 x 3, dilation 2 64x15x 15
Conv: 1 x 3 x 3, dilation 2 15x 15
Size prediction branch
Conv: 512 x 3 x 3, dilation 2 512x 15x 15
ROI slicing 512x3x3
Global maxpooling 512
Two fully connected layers 225

Table 1. Architecture of our prediction model.
* The last layer has stride 2 and a projection shortcut [11].

ing in their surroundings, such as buses or cars. Therefore,
in the size prediction branch, after a small 3 x 3 dilated
convolution, our system first remaps the normalized coor-
dinates (Zstand, Ystand) into the spatial coordinates of the
output activations, to obtain grid coordinates (Zgrid, Ygrid)-
A (512 x 3 x 3) activation slice is then extracted along the
depth channel. This is done by extracting activations from a
box with 3x3 spatial size, such that the lowest center coordi-
nate of the box is (Zarid, Yeria). We call this process Region
of Interest (ROI) slicing. This smaller activation map is then
fed through the rest of the layers of the size branch. By do-
ing this, the size prediction network attends to a sub-region
of the feature map that captures the local context.

One subtle point for this design is that, during training,
the normalized coordinates (Zstand, Ystana) We use for ROI
slicing come from the ground truth bounding box. However,
during testing, (Zstand, Ystand ) are generated from the loca-
tion we predict. Therefore, during inference our network
runs in two stages: the first stage predicts only location; the
second stage predicts the size based on the location. Please
see our supplemental for additional implementation details.

5. Person segment retrieval and compositing.

In this section, we introduce a simple context-based per-
son segment retrieval and compositing scheme based on a
hybrid deep feature representation. We first discuss how we
create the pool of candidate person segments and perform
retrieval. Then we describe how we perform compositing.

5.1. Creating the candidate pool of person segments

To build a candidate pool for person segment retrieval,
we use the annotated data from the validation split of the
MS-COCO dataset. We chose this split because these im-
ages are also held out from the training of the bounding
box prediction. We apply the same filtering routines as in



Figure 3: Person segment retrieval: given the input image
(A) and the predicted bounding box (the green box in (A)),
the proposed system incorporates features from both the
global scene and the local context (covered by the yellow
box in (A)) to retrieve a favorable person segment (within
the yellow box in (B)) and composite it on the input image.

Section 4.1 to exclude segments that are heavily occluded,
small or incomplete. Finally, we manually filter the remain-
ing segments to remove partially occluded instances. In to-
tal, our candidate pool contains 4100 person segments.

Although these segments come with ground truth seg-
mentation annotations, most of the annotations are not ac-
curate enough for compositing applications. Therefore, we
also perform manual segmentation using the lasso tool from
Adobe Photoshop for the segments we present and used in
the human subject study (see Section 6).

To demonstrate the generalization of our system, all the
background testing images we present in the paper are from
the YFCC100M split of the VisualGenome dataset [[16] and
the SUN dataset [33]].

5.2. Context based person segment retrieval

Given a background image and a predicted bounding
box, our goal is to retrieve a person segment from the candi-
date pool that not only matches the global scene semantics
but also appears compatible with the local context. Vari-
ous hand-crafted feature descriptors [29]][12]] have been pro-
posed to facilitate image retrieval. Recently, using interme-
diate neural network activations as feature representations
has shown to perform competitively for various semantic
retrieval tasks even when the underlying network has been
pre-trained in an unrelated classification task [1]]. However,
previous methods mostly aim to retrieve images that “look
similar” with respect to a query image, while our goal is to
retrieve segments which are not present but “look natural”
when composited on a background scene.

Our key insight here is that, by incorporating the con-
textual information of both the query background image
and the candidate person segments, we could adapt and ex-
tend feature-based methods to retrieve segments from im-
ages which share similar global scene semantics and local
context with the background image. Specifically, for each
input image, our system first extracts deep features which
describe global scene semantics of the background image.
We adopt the activation map from the mean pooling layer
of ResNet50 [[11]]. Similarly, for each candidate person seg-
ment, we extract the same feature descriptor for its back-

ground image. Measuring the distance between the input
image and the candidate images in feature space can help
retrieve segments appearing in similar scenes. However,
the retrieved segment does not necessarily look natural in
the local context if only global compatibility is considered.

To further enforce the local compatibility, given the pre-
dicted bounding box, our system crops a local image patch
which shares the same center with the bounding box but is
twice as large in both width and height, as shown in Fig-
ure 3] The same feature descriptor (activations of the mean
pooling layer of ResNet50) of this local patch is then ex-
tracted. For each candidate person segment, our system
extracts similar local feature descriptors. Measuring the
distance between these local features can help retrieve seg-
ments appearing in similar local contexts as in the target
location.

In our implementation, the segment retrieval proceeds in
two steps: (1) Our system first filters the segments whose
bounding box sizes are quite different from the query box
size. To do this, our system aligns the centers of the query
and target bounding boxes and computes their Intersection
over Union (IoU). Segments with IoUs smaller than 0.4 are
excluded. (2) From the remaining candidate segments in
our collection, the system retrieves the top one segment that
is “closest” to the query input in feature space. Specifically,
we use cosine distance between the query and the target seg-
ment, each represented by a concatenation of the global and
local feature descriptors. To accelerate the retrieval process,
we also build a kd-tree structure of the candidate segments.

5.2.1 Selection of features

For the retrieval task, we experimented with a few differ-
ent feature descriptors (e.g. GIST feature [29]], unsuper-
vised learned feature from the Context Encoder work [20],
deep activation maps from VGG16 [24] and ResNet50). We
adopted the mean pooling feature from ResNet50 based on
several observations: (1) Compared with GIST and context
encoder features [20], the superiority of deep features was
demonstrated by a pilot user study we conducted on Ama-
zon Mechanical Turk. The setup of the pilot study was simi-
lar with the one we are going to introduce in Section[6.2] (2)
Different from VGG16, ResNet50 incorporated Batch Nor-
malization layers [14], which produce activation maps with
similar magnitude scales for different dimensions. This is
important when measuring the distance between features.
Because the feature maps from VGG16 exhibited various
magnitude scales for different dimensions, our experiments
showed that they usually resulted in poor retrieved seg-
ments. (3) Compared with other layers in ResNet50, the
activation map from the mean pooling layer encodes much
semantic information (it is one layer before the final clas-
sifier) in smaller dimensions (2048), which makes it both



Figure 4: Composites automatically generated from our system. The first row shows the input images, the second row shows
the composite results. We include additional results in the supplemental.

effective and efficient for our retrieval task.

5.3. Compositing

With the retrieved segment in hand, our system scales
and composites it onto the background such that the seg-
ment has the same center and height as the predicted bound-
ing box. Although the segment already has a clean binary
mask produced from the Photoshop magnetic lasso tool we
discussed in Section [5.1] we apply an off-the-shelf alpha
matting method [6] to obtain smooth natural transitions
over the composite region. Figure 4 shows example com-
posites produced by our method covering various scenes.
As our current pipeline has not considered relighting explic-
itly, the composites may suffer from lighting inconsistency
problems. We leave relighting to future work.

6. Evaluation
6.1. Quantitative evaluation of box prediction

During training of the bounding box prediction model,
we use the ground truth bounding boxes as the target for su-
pervised learning. At first glance, it may seem reasonable to
use evaluation metrics from object detection systems, such
as average precision or precision-recall (PR) curve. How-
ever, for each specific background image, there may be mul-
tiple locations suitable for composing person instances with
various sizes. The goal of the prediction model is to learn
the distribution of feasible object layouts instead of overfit-
ting toward the exact ground truth boxes in the dataset. In
fact, we try to avoid this situation by blurring the input im-
age so that the system can not overfit to inpainting artifacts.

Therefore, to evaluate the performance of the bounding
box prediction model, we measure the correlation between
the distributions of the predicted boxes and the ground truth
boxes. In particular, we represent the distribution of bound-
ing boxes as two 2D histograms: A position histogram for
the (Zstand, Ystana) coordinates, and a size histogram for
the (w, h) sizes. The bin sizes we use for histograms are
15 x 15, the same as for the prediction model.

For this experiment, the ground truth bounding boxes we

Position histogram Size histogram

.E .Il
. I()

Ground truth Prediction Ground truth Prediction

Figure 5: Ground truth bounding box statistics and statis-
tics measured from our prediction model. For the position
distribution, the correlation between ground truth and pre-
diction is 0.9458. For the size distribution, the correlation
between ground truth and prediction is 0.9378.

use are from the validation split of the MS-COCO dataset,
which are held out from the training stage. The generated
boxes are predicted from the same set of images but with
the person segments erased and inpainted. To measure the
histogram correlation, we use the metric:

VA = A2 (B - B)?

where A and B represent the histograms of the ground truth
and the predictions respectively, A and B are means of A
and B, and N is the bin count, which is 225 in our case.

Under this proposed metric, the correlation between the
ground truth and the prediction is 0.9458 for the position
histograms, and 0.9378 for the size histograms. As judged
by these high correlation scores, our prediction model can
mimic real person layouts in natural images. Figure[5|shows
the 2D histograms we use for this evaluation.

In Figure [6] we also visualize example heatmaps of the
predicted locations (the softmax layer of the location pre-
diction network). We can see that although our network is
trained to predict a fixed unique location, it can approximate
the location distribution reasonably well. We include addi-
tional heatmaps of predicted locations in the supplemental.

6.2. Qualitative evaluation via user study

To evaluate the visual realism of the composite images,
we conduct a human subject study using Amazon Mechan-



Figure 6: Example heatmaps of predicted locations. The
green boxes show top 1 bounding boxes from our system.

Model Percent real Percent real
for textured for silhouette
Baseline 1 0.176 £+ 0.054 0.402 £+ 0.100
Baseline 2 0.200 £ 0.059 0.442 +£0.117
Baseline 3 0.276 £+ 0.064 0.505 4+ 0.109
Top 1 0.440 £+ 0.078 0.567 £ 0.110
Best of top 8 0.517 £ 0.075 0.742 + 0.107
Real 0.898 4+ 0.041 0.864 + 0.075

Table 1: Results from the user study. Shown are mean and
standard deviations for the percent of images marked real.

ical Turk (AMT). For purposes of comparison, three strong
baseline methods are also evaluated, as described below.

e Baseline 1: the bounding box is sampled from the
ground truth distribution, and the segment is retrieved
using our segment retrieval method. This allows us to
determine the impact of our bounding box predictions;

e Baseline 2: the bounding box is predicted by our sys-
tem, then a segment is randomly sampled from the can-
didate pool. The purpose of this baseline is to evaluate
the impact of our segment retrieval method;

e Baseline 3: the bounding box is predicted by our sys-
tem but the segment is retrieved using a global GIST
feature [29] under Euclidean distance, resembling the
work of [10]. This allows us to evaluate the effect of
deep feature representations on this problem.

For our method, we evaluate the top 1 composite from
our system. We also include a manually chosen “best” im-
ages of the top 8 outputs based on the following criteria:
combinations of the top 2 location predictions, top 2 size
predictions and top 2 retrieved segments. For each back-
ground image we evaluate five composite images. Addi-
tionally, we believe that future work with larger retrieval
datasets or better relighting algorithms could potentially im-
prove results. Thus, to assess the effects of texture and light-
ing, we also constructed “silhouette” images where the per-
son’s matte is simply filled with a uniform white color.

6.2.1 User study setup

During the study, the participants were presented with a se-
quence of images and told to press R if an image appears
real or F if it appears fake. For the silhouettes we cali-
brated users by showing them what “real” silhouettes look
like. For each image, the user had to respond in 10 seconds,
otherwise the data was ignored. To avoid interference ef-
fects, we showed each participant examples from only one
method. For each model, we evaluate 80 composite images.
Composite images for different models share the same set
of backgrounds. For quality control, we also included equal
numbers of real images and obviously fake composites. We
discarded responses from users who obtained less than 80%
accuracy on the quality control. For textured images, we
collected 25 opinions per image, whereas for the silhouette
images, we collected 11 opinions.

6.2.2 Quantitative results

Table [T] shows the mean “realism” scores of each image.
Standard errors for the scores were computed by applying
bootstrapping to the means. For the textured images, we
notice that both the top 1 and “best” of top 8 composites
outperform all baseline methods. The “best” of top 8 com-
posites performs slightly better than top 1. However, there
is still a performance gap between the “best” of top 8 com-
posites and real images. One explanation is that our current
system has not considered shadows and lighting explicitly.
For the silhouette images, the performances are in the same
order but with higher scores of realism. In particular, the
score of the “’best of top 8” composites is much closer to
that of the real images. This indicates that texture and light-
ing cues are more frequently responsible for “giving away”
that a composite is not real, as opposed to location, size, and
silhouette cues, which give results similar to real images.
For the mean scores, we also tested for significance using
a two-sided Student’s t-test. The Holm-Bonferroni method
was adopted to control the familywise error rate at the sig-
nificance level of 0.05. For the textured images, our method
is significantly better than the baselines (p < 0.0002). How-
ever, top 1 and “best” of top 8 are not significantly different
(p = 0.0972). For the silhouette images, the best of top 8
method is significantly better than the baseline methods and
top 1 (p < 0.00005). Top 1 is significantly better than base-
lines 1 and 2 (p < 0.0076), but not significantly different
than baseline 3 (p = 0.2). For textured and silhouette, real
is significantly better than all other models (p < 0.00002).

7. Prototype user interface

We have also developed a proof-of-concept user inter-
face for composite image generation and interactive layout
refinement. Existing compositing tools typically require in-
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Figure 7: Examples of the comparison for different methods: (A) input images; (B) baseline 1; (C) baseline 2; (D) baseline
3; (E) top 1; (F) “best” of top 8. Note that for the last row, the top 1 composite is also the “best” of the top 8 composites.

Figure 8: In our proof-of-concept user interface, given the
input image in column (A), users are asked how many peo-
ple to add to the scene. Column (B) shows results of our
automatic compositing. Column (C) shows the refinement
results of (B) via user interactions.

tensive user interactions, such as finding compatible fore-
ground and background pairs, and finding suitable locations
and sizes for composition. We allow users to create and
refine composite images with automatic guidance and less
manual searching for segments, positions, and sizes.

In our current interface, given an input image, the user is
asked how many people should be composited on the back-
ground. The top 1 automatic composite is then returned.
For each predicted bounding box, 9 candidate segments are
also displayed. The user can then refine the composite by
replacing, translating or scaling each person segment. Fig-
ure [§] shows example results of automatic compositing and
user refinement. Please refer to the supplementary video for
more such examples.

8. Limitations and conclusion

Our current compositing system, however effective, still
has a few limitations. (1) Although there is no underly-
ing assumption, the outputs from our system tends to bias
towards similar positions (e.g. the central region of the im-
age) with similar focal lengths. As all our training and test-

ing images are from standard datasets, we conjecture that
the similarity is from the datasets, as people tend to appear
in the central regions in natural images. (2) Our bound-
ing box prediction model depends on the performance of
an object detector. There are situations where the results of
the detection may hinder the predictions of our model. (3)
While combining the global and local contexts helps retriev-
ing segments that are compatible with the background, the
retrieved segments still may not “interact” correctly with
each object in the scene. Figure [0 shows two examples
when such interactions are important. (4) Our system may
potentially benefit from recent success of Generative Ad-
versarial Nets [9] by building an end-to-end matting sys-
tem with adversarial loss. (5) Our system has not explicitly
integrated lighting and shadow consistency with the back-
ground. Global relighting methods such as [30] may further
improve photo-realism. (6) Our system has not considered
categories other than person and is not trained end-to-end.

In conclusion, we propose a fully automatic system for
semantic-aware person composition. The system accom-
plishes compositing by first predicting the bounding box of
the potential instance and then retrieving a segment that ap-
pears compatible with the local context and global scene ap-
pearance. Quantitative and qualitative evaluations show that
our system predicts person layouts for a given background
scene and outperforms robust baselines.
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