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Abstract

A group of persons can be analyzed at various seman-
tic levels such as individual actions, their interactions, and
the activity of the entire group. In this paper, we propose
a structural recurrent neural network (SRNN) that uses a
series of interconnected RNNs to jointly capture the actions
of individuals, their interactions, as well as the group ac-
tivity. While previous structural recurrent neural networks
assumed that the number of nodes and edges is constant, we
use a grid pooling layer to address the fact that the number
of individuals in a group can vary. We evaluate two variants
of the structural recurrent neural network on the Volleyball
Dataset.

1. Introduction
Activity analysis has been of great interest in computer

vision since decades. In recent years, deep learning ap-
proaches such as [4, 15, 24, 26, 16] have been proposed
to recognize activities in videos. Most of these approaches,
however, focus on single person activity analysis and esti-
mate only one activity per video clip. Similar to other recent
works [21, 8, 1, 23], the goal of this paper is to understand
and analyze the actions of individuals and their interactions,
and subsequently use them for predicting the group activity.

Recent deep learning approaches for group activity anal-
ysis such as [11, 23] use a multi-level hierarchy of recur-
rent neural networks (RNNs) for group activity recognition.
In these approaches, the lower level RNNs focus on under-
standing and modeling the actions of individuals and the
higher level RNNs in the architecture model the group ac-
tivity. These approaches are trained using a two-step pro-
cess. The first step focuses on improving the recognition of
the actions of each individual independently and the subse-
quent step focuses on recognizing the group activity given
the recognized actions of the individuals.

Apart from the hindrance of two-step training, these
methods lack the capability of capturing interactions be-
tween individual persons when present within a group. For
example, in a volleyball game as shown in Figure 1, a per-

Figure 1. A frame labeled as group activity “Left Spike” and
bounding boxes around each team player are annotated in the
dataset with individual actions [12].

son from the team on the left-hand side of the volleyball
court performs the individual action “spiking” whereas the
player from the opponent team performs a “blocking” ac-
tion. Looking only at the individuals makes it difficult to
distinguish between the individual actions, but there is a
strong correlation between the two activities. Similarly,
when walking in a crowd, people move and walk in various
directions just to avoid colliding with each other. In gen-
eral, the action of an individual in a group is influenced by
the actions of the other individuals in the group. This phe-
nomenon not only provides context that helps to recognize
the individual actions but also provides a key information
about the group level actions such as in the case of volley-
ball as shown in Figure 1. Thus, there is an imperative need
to analyze interactions between individuals and to capture
the influence over time when analyzing a group of humans.

The main focus of the paper is to harness such interac-
tions within a group to improve the recognition of the group
activity as well as the individual actions. To this end, we
build on the recently proposed structural recurrent neural
network (SRNN) [14] which has the unique capability of
capturing interactions as contextual information using an
interconnected set of RNNs. While in [14], the number of
nodes and edges and therefore the number of RNNs is con-
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stant, we extend the approach to handle a varying number
of nodes and edges as it is required for analyzing group ac-
tivities.

The rest of the paper is structured as follows. We start
with a brief discussion of the related work in Section 2, fol-
lowed by a short introduction of SRNNs in Section 3. In
Section 4, we introduce two variants of an SRNN. We then
evaluate the two variants in Section 5 and conclude with a
summary in Section 6.

2. Related Work
One of the earlier approaches for analyzing the activi-

ties of a group or crowd was proposed by [6]. They in-
troduce crowd context in recognizing the activity being
performed by each individual in the group. Traditionally
graphical models with key contextual features [5, 7] have
been deployed rigorously towards group analysis. However
these models with handcrafted features [22] were outper-
formed by newer deep neural network architectures such as
[8, 1, 23]. For group activity recognition, most of these
deep neural networks are inspired by [11] which uses a
multi-level cascade of recurrent neural networks for group
activity recognition. In this approach, humans are detected
and tracked to form multi-person tracklets. These tracklets
along with their deep visual features are fed to the lower
level RNNs. The focus of these lower level RNNs is to un-
derstand and model the actions of the individual persons.
The higher level RNNs in the architecture instead focus on
understanding the group activity. The individual actions
and group activity predictions are done using softmax in
a feed-forward way. However, each method tackles a very
different problem in the same framework. Shu et al. [23]
use a similar hierarchical architecture but the approach dif-
fers from previous work by proposing an energy based ap-
proach that works significantly better if the amount of data
is small. Furthermore, this approach also explores human
interaction, but holistically by convolutional features ex-
tracted from both humans. [3] propose a joint approach for
detecting humans and predicting their actions.

Spatio-temporal graphs have been used in computer vi-
sion for various applications such as predicting human
movements [13] or learning human activities and object
affordances [18]. The spatio-temporal graphs represent
in these works spatio-temporal relations between joints or
joints and objects in a video. The methods [19, 2] use hand-
crafted features along with graphical models, conditional
random field or random forest for the aforementioned ap-
plications. Recently, neural networks have been deployed
to solve spatio-temporal graph problems. For example, [9]
uses deep networks followed by inference using a proba-
bilistic graphical model to recognize the actions in a group.
Our approach builds on the work [14] where a set of cou-
pled RNNs are used to represent spatio-temporal graphs.

edgeRNNij edgeRNNjk

feij fejk

nodeRNNi nodeRNNj nodeRNNk

fvi fvj fvk

Figure 2. Feedforward network of a Structural RNN (SRNN) when
trained with respect to node labels.

3. Structural RNN

Recurrent neural networks are very effective in model-
ing temporal sequences. In case of a single person, fea-
tures f t are extracted at each frame and used as input for
an RNN to predict the action classes yt over time. How-
ever when in a group, a person performs an action based on
its interaction with other persons and the group objective.
So, a single recurrent neural network is incapable of cap-
turing the interactions and group dynamics, thus reducing
its effectiveness. For solving similar problems, Jain et al.
[14] proposed an interconnected set of recurrent neural net-
works that not only captures the individual behavior over
time but also integrates the interactions between the indi-
viduals through edges.

An example of an SRNN is illustrated in Figure 2. It
consists of three nodes vi, vj , and vk and the goal is to
predict for each node the class labels over time, which are
denoted by ytvi , y

t
vj , and ytvk , respectively. Each node is

modeled by an RNN, termed nodeRNN. It takes as input
some features f tvi , which are extracted for a node vi, but
also the output of RNNs that model the interactions with
other nodes. The second type of RNN is termed edgeRNN.
The edgeRNNs take as input some features f teij based on
the spatio-temporal relation between two nodes vi and vj
and predicts a latent representation hteij , which is forwarded
to the corresponding nodeRNNs. The advantage of such
an SRNN is that the nodeRNNs and the edgeRNNs can be
trained jointly such that the prediction of the node labels
depends not only on the features that are extracted for each
node but also on the interactions between the nodes.

4. Group Activity Analysis

In this section, we will first briefly introduce the problem
in Section 4.1. This is followed by introducing two differ-
ent variants of an SRNN for group activity recognition in
Section 4.2.



4.1. Problem Formulation

Our objective is to predict jointly the group activity la-
bel ytg of a group as well as the action label ytvi for each
individual vi of the group over time. We assume that the
bounding box for each person has been already extracted
and we compute features for each individual person f tvi and
for each edge f teij between two individuals. The features
are described in Section 5.2 and we denote the set of all
node and edge features for a frame by F t. In order to learn
the parameters θ of the models which are described in Sec-
tion 4.2, we minimize the loss

argmin
θ

[
L
(
ψg
(
F t; θ

)
, ytg
)

+
1

n

n∑
i=1

L
(
ψv
(
F t; θ

)
, ytvi

)]
, (1)

whereL denotes the cross-entropy loss, ψg(.) the prediction
function of the model for the group activity, and ψv(.) the
prediction function for the actions of the individuals.

4.2. SRNN for Group Activity Analysis

The proposed group activity recognition approach is for-
mulated as a two-level hierarchy of recurrent neural net-
works similar to [11, 23]. The lower level predicts indi-
vidual actions followed by the higher level recurrent net-
work that estimates the group activity. In Sections 4.2.1 and
4.2.2, we discuss two SRNN variants that jointly estimate
the group activity and the individual actions by modeling
the interactions between individuals. The two SRNNs are
shown in Figures 3 and 4.

4.2.1 SRNN-MaxNode

As shown in Figure 1, when a person on the left hand side
jumps to perform the action “spiking”, the opponents jump
to block the spike, resulting in the action “blocking” across
the volleyball net. This is an example where persons in a
group perform contextual actions. Structural RNNs are an
efficient approach to model such relations.

As discussed in Section 3, SRNNs are a hierarchy of
RNNs consisting of edgeRNNs and nodeRNNs. The first
variant that we propose for group activity analysis is shown
in Figure 3. The lowest level consists of edgeRNNs that
model interactions between two individuals based on their
relative position, which is encoded by the feature vector
f teij . The output of the edgeRNNs is feedforwarded to the
nodeRNNs. The number of individuals, however, varies in a
group and each individual might have a different number of
neighbors and in very dense crowds the number of neigh-
bors could be very high. The approach proposed in [14]
cannot handle such cases since it concatenates the features,
assuming that the number of edges and nodes is constant.

To address this problem, we propose a grid pooling layer
that combines for a node vi the output from all edgeRNNs
eij based on the position of the neighboring persons vj in a
prescribed grid. The prescribed grid regions are arranged as
shown in Figure 5. If several neighbors are in the same grid
cell, we sum the output of the edgeRNNs instead of averag-
ing them. This means that the values are usually larger when
more persons are in a cell. The grid pooling provides for
each node vi features for 8 cells that are then concatenated
with additional CNN features f tvi , which are extracted from
the frame t for each person. The output of the nodeRNNs is
used in two ways. First, the action class ytvi of the person vi
is predicted using an additional softmax layer. Second, the
group activity is estimated similar to [11] by max-pooling
the outputs of the nodeRNNs of a group at a time instant
t, which is then used as input for an RNN that predicts the
group activity ytg over time.

In summary, the SRNN-MaxNode model is defined as
follows:

hteij = RNNe(ht−1eij , f
t
eij )

htCi
=

∑
j∈SCi

hteij

htei = [htLi . . . htQi
4
]

htvi = RNNv(ht−1vi , htei , f
t
vi). (2)

While hteij denotes the output from the edgeRNN for
the nodes vi and vj at frame t, SCi

denotes the
set of neighboring nodes of vi in the cell Ci ∈
{Li, Ri, Ai, Bi, Qi1, Qi2, Qi3, Qi4}, which are the grid re-
gions for vi as shown in Figure 5. The accumulated values
for each cell htCi

are then concatenated to the vector htei and
the output of the nodeRNN is denoted by htvi .

The full architecture can thus be defined as:

htvi = SRNN(f tvi , f
t
eij )

ytvi = φv(h
t
vi ,Wv)

htp = max (htv1 . . . h
t
vn)

htg = RNNg(ht−1g , htp)

ytg = φ(htg,Wg), (3)

where htvi denotes the output after the SRNN (2) and Wv

denotes the weights used in the softmax function φv(.) to
predict the individual actions ytvi . htp denotes the max-
pooled representation over the complete group and htg de-
notes the output of the group RNN, which is then used by a
softmax function φ(.) with weights Wg to predict the group
activity ytg .

4.2.2 SRNN-MaxEdge

While the SRNN in Figure 3 uses the edgeRNNs to provide
contextual information for the nodeRNNs, we also compare
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Figure 3. SRNN-MaxNode: Feedforward SRNN where max
pooling is performed over the nodeRNNs. The nodeRNNs are
enriched using the output of the edgeRNNs using a novel grid
pooling approach.
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Figure 4. SRNN-MaxEdge: Feedforward SRNN where max pooling is per-
formed over the edgeRNNs. The edgeRNNs are enriched using the output
of the nodeRNNs.

Figure 5. Grid pooling. Left: 1, 2, 3 and 4 denote four persons
in the neighborhood of the person •. Right: We define three grid
structures (top) and we sum the outputs of the edgeRNNs where
the neighbors of • are in the same cell. We then concatenate the
features of the eight cells. If a cell is empty, the feature vector is
set to zero.

it to an SRNN where the nodeRNNs are at the lowest level
of the hierarchy. In this case, the max pooling is not per-
formed over the nodeRNNs but over the edgeRNNs and an
additional grid pooling is not required since each edge con-
sists of two nodes. We denote the second variant, which is
shown in Figure 4, SRNN-MaxEdge.

For SRNN-MaxEdge, the lower level of the hierarchy
consists of nodeRNNs that predict the individual actions
based on the individual CNN features f tvi . The output

from the nodeRNNs is forwarded to the corresponding
edgeRNNs, which also take the edge features f teij as in-
put. The output of the edgeRNNs at a time instant t is max
pooled and then used as input for an RNN that predicts the
group activity ytg over time.

In summary, the SRNN-MaxEdge model is defined as
follows:

htvi = RNNv(ht−1vi , f tvi)

ytvi = φv(h
t
vi ,Wv)

hteij = RNNe(ht−1eij , h
t
vi , h

t
vj , f

t
eij ), (4)

where htvi denotes the output of the nodeRNN for person
vi at a given time t and Wv are the weights used in the
softmax function φv(.) to predict the individual action ytvi .
hteij denotes the output of the edgeRNNs.

The full architecture can thus be defined as:

hteij = SRNN(f tvi , f
t
eij )

htp = max (hte12 . . . h
t
emn

)

htg = RNNg(ht−1g , htp)

ytg = φ(htg,Wg), (5)

where hteij denotes the output from the SRNN (4). While
htp denotes the max pooled representation over all edges in



the group, htg denotes the output of the group RNN, which
is then used by a softmax function φ(.) with weights Wg to
predict the group activity ytg .

5. Experiments
5.1. Datasets

We evaluate our framework on the recently introduced
volleyball dataset [12]. This dataset has 55 volleyball
game video sequences with 4830 labeled frames, where
each player is labeled and subsequently annotated with the
bounding box. Each player performs one of the 9 individual
actions resulting in one of the 8 group activity labels. Fur-
thermore, the whole dataset is divided into non-overlapping
sets of 24 sequences for training, 15 sequences for valida-
tion and the remaining sequences are used for testing. Sim-
ilar to [11, 23], we have used both training and validation
sequences for training. Since not all frames are annotated
by bounding boxes, the Dlib tracker [17] is used to prop-
agate the ground-truth bounding boxes to the unannotated
frames.

5.2. Implementation Details

For the RNNs, we use standard LSTMs [10] and the im-
plementation is done using the Tensorflow library. At the
node level, each LSTM is connected with a deep convo-
lutional network such as Alexnet [20] or VGG 16 [25] to
compute the visual features fvi based on the annotated and
tracked bounding boxes of the persons. Similar to [11, 23],
we initialize the CNNs by a model that has been pre-trained
on ImageNet. During training, we fine-tune only the last
two fully connected layers of the CNNs.

The edge features f teij model spatio-temporal relations
between the bounding boxes of two persons. We take the
center of each bound box and compute the difference vector
(dx, dy). We then compute the basic distance values (|dx|,
|dy|, |dx + dy|,

√
(dx)2 + (dy)2) and add the direction of

the translational vector (arctan(dy, dx), arctan2(dy, dx)).
To further enhance these simple 6 interaction features, we
also compute the difference of the 6 features between two
consecutive time frames, which results in 6 additional fea-
tures. We finally compute the 12 features not only for frame
t, but also for the neighboring frames t − 1 and t + 1 to
capture some short temporal information. All features are
concatenated to obtain a 36 dimensional feature vector.

The training is performed in two stages. In the first
stage, the nodeRNNs are trained independently using in-
dividual actions and the cross-entropy as loss function. For
this stage, we have used a batch size of 36 for our exper-
iments. In the next step, we train the whole architecture
by minimizing the loss (1). We use Adam as optimizer
with a learning rate of 0.00001. During training, the pa-
rameters of the nodeRNNs and the last two layers of the

CNN are updated as well. The nodeRNNs have 3000 hidden
units and the group RNN has 2000 hidden units. The num-
ber of nodes for the edgeRNNs differs between the SRNN-
MaxNode and the SRNN-MaxEdge due to differences of
the input features. While the edgeRNNs in the SRNN-
MaxNode take as input the low dimensional features f teij ,
the edgeRNNs in the SRNN-MaxEdge use the additional
output of two nodeRNNs as input. For the edgeRNNs in
the SRNN-MaxNode, we use therefore only 30 hidden units
whereas 1000 hidden units are used for the edgeRNNs in
the SRNN-MaxEdge. Since the two variants differ in mem-
ory consumption and the GPU memory is limited, we use a
batch size of 30 for SRNN-MaxNode and a batch size of 16
is used for SRNN-MaxEdge.

In accordance with other approaches [11, 23, 3], we have
also performed experiments where we divide the individuals
in two groups. For this, we use the same approach as in
Ibrahim et al. [12].

5.3. Experimental Evaluation

5.3.1 Variation of Hierarchical LSTM

As the proposed approaches are inspired by Hierarchical
LSTMs [12], we have first performed a few baseline exper-
iments to evaluate versions of the Hierarchical LSTM [12]:

• 2-layer LSTMs (V1): This is similar to [12] with a
two-step training for person level RNNs followed by
training of the group level RNN given the pre-trained
person RNNs. Unlike [11], the group level takes as
input only the output of person RNNs and does not use
any additional CNN features.

• 2-layer LSTMs (V2): Reimplementation of [12].

• 2-layer LSTMs (V3): This is similar to V1 but person
RNNs and group RNN are jointly trained using the loss
(1). As described in Section 5.2, the last two layers of
the Alexnet are fine-tuned.

The accuracy of recognizing the group activity as well
as the actions of the individuals is reported in Table 1. The
results show that training the person RNNs and the group
RNN jointly (V3) using the loss (1) improves the accuracy
of the group activity also for the Hierarchical LSTM [12],
but it slightly decreases the individual action recognition re-
sults. Dividing the individuals into two groups as in [12]
improves the accuracy by a large margin due to the volley-
ball scenario where two teams play against each other.

5.3.2 Comparison to state-of-the-art

Table 2 compares the proposed SRNN approaches with the
Hierarchical LSTM V3 that is trained with the same loss
function and uses the same Alexnet CNN. While SRNN-
MaxNode outperforms the Hierarchical LSTM both for



Method Group Activity Accuracy Individual Action Recognition Accuracy
Hierarchical LSTM [12] (1 group) 70.3% -
Hierarchical LSTM V1 (1 group) 68.37% 76.32%
Hierarchical LSTM V2 (1 group) 73.89% 76.32%
Hierarchical LSTM V3 (1 group) 74.01% 75.96%

Hierarchical LSTM [12] (2 groups) 81.9% -
Hierarchical LSTM V1 (2 groups) 78.37% 76.32%
Hierarchical LSTM V2 (2 groups) 81.33% 76.32%
Hierarchical LSTM V3 (2 groups) 83.12% 75.96%

Table 1. Comparison of various variations of the Hierarchical LSTM [12] using Alexnet features.

Method Group Activity Accuracy Individual Action Recognition Accuracy
Hierarchical LSTM [12] (1 group) 70.3% -
Hierarchical LSTM V3 (1 group) 74.01% 75.96%

CERN [23] (1 group) 73.5% 69%
SRNN-MaxNode (1 group) 74.39% 76.65%
SRNN-MaxEdge (1 group) 68.39% 76.03%

Hierarchical LSTM[12] (2 groups) 81.9% -
Hierarchical LSTM V3 (2 groups) 83.12% 75.96%

CERN [23] (2 groups) 83.3% 69%
SRNN-MaxNode (2 groups) 83.47% 76.65%
SRNN-MaxEdge (2 groups) 79.86% 76.03%
Social Scene [3] (2 groups) 89.9% 82.4%

Table 2. Comparison to the state-of-the-art.

group activity recognition as well as the recognition of the
individual actions, SRNN-MaxEdge achieves a lower group
activity accuracy than SRNN-MaxNode and Hierarchical
LSTM. It shows that the max pooling over the nodeRNNs
is better than pooling over the edgeRNNs on this dataset
since the max pooling over the nodeRNNs forwards the fea-
tures of the most important individual to the group RNN.
This works for group activities as shown in Figure 1 very
well since the group activity can be well inferred from the
“spiking” person. Our proposed approach SRNN-MaxNode
also outperforms the approach CERN [23], which also uses
Alexnet features. However, the recent approach [3], which
builds on the Inception-V3 CNN [27], achieves the highest
accuracy on this dataset.

5.3.3 Impact of CNN architecture

We have also analyzed the impact of the CNN architecture
and compare the used Alexnet CNN with the larger VGG 16
network. The results are reported in Table 3. The accuracy
of the VGG 16 network decreases the accuracy of the Hi-
erarchical LSTM as well as the proposed SRNN-MaxNode.
For SRNN-MaxEdge the accuracy remains nearly the same.
The decrease in accuracy might be due to overfitting, but it
needs further investigation to analyze the impact of the used

CNN model in more detail.

5.3.4 Impact of deep edge features

For the model SRNN-MaxNode, we use a low dimensional
feature vector f teij that encodes simple spatio-temporal rela-
tions between two bounding boxes. We also investigated if
the accuracy can be improved when the edgeRNNs not only
take f teij as input feature but also f tvi and f tvj . Since this
increases the dimensionality of the input feature from 36
to 8228 (4096+4096+36), we also increase the number of
hidden units of the EdgeRNNs from 30 to 1000 to address
the higher dimensionality. As shown in Table 4, adding f tvi
and f tvj does not improve the accuracy. This is expected
since the features f tvi are already added to the nodeRNNs
and adding them twice does not provide additional infor-
mation for the model.

6. Conclusions
In this work, we have proposed two variants of struc-

tural recurrent neural networks (SRNN) to recognize the ac-
tions of individuals as well as the activity of the entire group
jointly. The advantage of the SRNN approach is that it ex-
plicitly models relations between individuals and all RNNs
can be trained together using a single loss function. We



Feature Method Group Activity Accuracy Individual Action Recognition Accuracy

Alexnet
H. LSTM V3 - (1 group) 74.01% 75.96%

SRNN-MaxNode - (1 group) 74.39% 76.65%
SRNN-MaxEdge - (1 group) 68.39% 76.03%

VGG 16
H. LSTM V3 - (1 group) 70.34% 75.30%

SRNN-MaxNode - (1 group) 71.20% 74.85%
SRNN-MaxEdge - (1 group) 68.29% 75.96%

Alexnet
H. LSTM V3 - (2 groups) 83.12% 75.96%

SRNN-MaxNode - (2 groups) 83.47% 76.65%
SRNN-MaxEdge - (2 groups) 79.86% 76.03%

VGG 16
H. LSTM V3 - (2 groups) 81.34% 75.30%

SRNN-MaxNode - (2 groups) 82.86% 74.85%
SRNN-MaxEdge - (2 groups) 79.92% 75.96%

Table 3. Comparison of the proposed SRNN approaches with Hierarchical LSTM V3 using Alexnet or VGG 16 as CNN.

Edge feature Group Activity Accuracy Individual Action Recognition Accuracy
f teij (1 group) 74.39% 76.65%

(f teij , f
t
vi , f

t
vj ) (1 group) 74.48% 75.89%

f teij (2 groups) 83.47% 76.65%
(f teij , f

t
vi , f

t
vj ) (2 groups) 83.27% 75.89%

Table 4. Comparison of edge features using SRNN-MaxNode.

evaluated the models on the Volleyball Dataset and showed
that the SRNN model outperforms hierarchical LSTMs.
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