
Context-Aware Single-Shot Detector

Wei Xiang2 Dong-Qing Zhang1 Heather Yu1 Vassilis Athitsos2
1Media Lab, Futurewei Technologies 2University of Texas at Arlington

wei.xiang@mavs.uta.edu, {dongqing.zhang, heatheryu}@huawei.com, athitsos@uta.edu

Abstract

SSD (Single Shot Detector) is one of the state-of-the-art
object detection algorithms, and it combines high detection
accuracy with real-time speed. However, it is widely rec-
ognized that SSD is less accurate in detecting small objects
compared to large objects, because it ignores the context
from outside the proposal boxes. In this paper, we present
CSSD–a shorthand for context-aware single-shot multibox
object detector. CSSD is built on top of SSD, with additional
layers modeling multi-scale contexts. We describe two vari-
ants of CSSD, which differ in their context layers, using di-
lated convolution layers (DiCSSD) and deconvolution lay-
ers (DeCSSD) respectively. The experimental results show
that the multi-scale context modeling significantly improves
the detection accuracy. In addition, we study the relation-
ship between effective receptive fields (ERFs) and the the-
oretical receptive fields (TRFs), particularly on a VGGNet.
The empirical results further strengthen our conclusion that
SSD coupled with context layers achieves better detection
results especially for small objects (+3.2%AP@0.5 on MS-
COCO compared to the newest SSD), while maintaining
comparable runtime performance.

1. Introduction
Deep learning approaches have shown some impressive

results in general object detection. However, there still re-
main fundamental challenges to be addressed, particularly
in detecting objects of dramatically different scales. In the
literature, many attempts have been made to overcome this
issue: from image pyramids-based approaches which have
often been combined with hand-crafted features [19, 3] to
feature map pyramid-based approaches [25, 17] within a
deep learning framework. In addition, the state of the art
has moved from the sliding-window paradigm to the much
more efficient alternative of feature maps scanning, thanks
to the representation and learning capabilities of Convolu-
tional Neural Networks (CNNs).

Within the deep learning paradigm, methods predict-
ing proposals from feature maps of the single highest-level

Figure 1: In SSD [17], conv4 3 of the VGG16 was used
to detect the smallest object. As the TRF of conv4 3 in-
cludes limited visual cues, integrating informative context
from different scales can help us detect very small objects.

scale [8, 10, 25] enable the most variance of scales, due
to the shared semantics. However, such methods also suf-
fer from slow inference time, given that the hypothesized
proposals at all scales need to go through the whole CNN,
leading to large computational cost and memory usage. Sin-
gle Shot Detector (SSD) [17] mitigated this issue by making
predictions from feature maps of multiple scales in a hier-
archical approach. This way, when hypothesizing proposals
at increasing scales, SSD goes deeper in CNNs with more
learnable parameters and thus takes longer time. Due to this
bottom-up design, SSD assumes that small object detection
only relies on fine-grained local features, and ignores con-
text outside those local features. In Fig. 1, we show, for an
SSD detector, the only conv4 3 Receptive Field (RF) that
was used to detect the smallest object. Within that RF, we
can hardly recognize the object of interest (green box). Af-
ter expanding the conv4 3 RF into multiple higher scales,
more visual cues (marked by red ellipses) become available.
With that contextual information, it is possible not only to
recognize the object as a sheep, but also to detect the pres-
ence of a herd in the given picture.

Both two dominant deep learning object detection meth-
ods: Faster R-CNN [25] and SSD [17], require pre-
computed grids (named anchors in [25] and default boxes
in [17])1 to either generate proposals or regress and clas-

1We use grid and default box interchangeably throughout this paper.

1784

2018 IEEE Winter Conference on Applications of Computer Vision

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00198

ar
X

iv
:1

70
7.

08
68

2v
2

 [
cs

.C
V

]
 2

4
M

ar
 2

01
8

Figure 2: Flow diagram of CSSD. We built CSSD directly upon SSD with two implementations of context layers using
1) multi-scale dilated convolution layers, 2) deconvolution layers. The former has an adjustable parameter controlling the
number of context layers, while the latter directly reuses the feature maps from upper layers fused specifically for smallest
object detection. Both implementations learn associated scaling parameters during fusion of feature maps.

sify directly upon them. Most of the previous work in deep
learning object detection focuses on architecture design of
networks, but there is relatively little work studying the un-
derlying instrument of generating grids and proposals. Con-
sequently, the hierarchical structures in networks and grid
scales have to be fine-tuned exhaustively in order to obtain
satisfactory results.

In the VGG16 version2 of SSD, prescribed grid scales
associated with each RF size were specifically designed at
different prediction layers, to ensure that every point on the
feature maps of prediction layers sees a sufficiently large
area from input image. Take as an example a 300 × 300
input: the grid scales versus RF sizes at all SSD’s 6 predic-
tion layers are 30/92, 60/420, 114/452, 168/516, 222/644
and 276/644 respectively. However, according to [33, 20],
the effective receptive fields (ERFs) are 2D-gaussian dis-
tributed and proved to be significantly smaller than the cor-
responding theoretical receptive fields (TRFs).

Following [33], our analysis (Fig. 5(c)) shows that the
ERF of conv4 3 in SSD is only ×1.9 larger than the corre-
sponding grid scale θp (not exceeding ×2.5 across all pre-
diction layers), which motivates the need for more contexts
to be integrated into the existing framework. In this paper,
we present a context-aware framework for SSD (Fig. 2),
and give two different implementations, which either ex-
pands RF sizes with multiple scales and then fuses to form
new prediction layers, or reuses directly feature maps from
higher layers to integrate complex structure features. Be-
cause the scale parameters are automatically learned during

2We compare the performance of ResNet50/101/152 versions of SSD
as well in our experiments. Considering that the runtime performance of
SSD is dramatically reduced with ResNet101/152, in this paper we mainly
investigate context layers for the VGG16 version of SSD.

fusion of contextual feature maps, the proposed network en-
ables the trade-off between fine-grained features and richer
features encompassing more context.

In summary, this paper makes the following main contri-
butions:

(1) To our best knowledge, we are the first to analyze
ERFs within the framework of object detection. Using
our analysis, we provide the ERF sizes of a standard
VGG16 network [27]. These sizes can be utilized as a
reference to design more effective CNNs for example
in object detection.

(2) We present a new framework based on SSD, by in-
troducing multi-scale dilated convolution layers in a
hierarchical approach, named Dilation-based Context-
aware SSD (DiCSSD). Moreover, we alternatively
propose a VGG16-based, deconvolutional version of
context-aware SSD (DeCSSD). Both were designed
specifically for small-scale object detection with scal-
ing parameters learned automatically during feature
map fusions. Our experimental results on VOC
[5], MS-COCO [16] and DETRAC [30] show that
both DiCSSD and DeCSSD outperform SSD while
maintaining real-time speed, in addition to producing
promising detection results on small objects. The eval-
uation code and trained models are publicly available.3

2. Related Work
Early object detectors in CNNs. Until a few years ago,
the sliding-window paradigm [4, 29] was commonly used.
With the emerging technology of deep learning, G. Ross

3https://github.com/xw1120/CSSD

1785

Figure 3: Visualization of ERFs vs. TRFs in a VGG16 network.

et al. [9] proposed an object detection framework based
on deep neural networks named R-CNN, which performs a
forward pass for every object proposal and then classifies.
Its followers, SPPnet [10] and Fast R-CNN [8] have been
shown to largely reduce the training and inference time by
sharing computation upon convolutional feature maps for
the entire input image.

Faster R-CNN. With the introduction of Region Proposal
Network (RPN), the seminal work Faster R-CNN [25] un-
blocked the bottleneck imposed by hypothesizing region
proposals that took a large amount of processing time in
Fast R-CNN. Despite their crucial dependency on the pro-
posal generation methods/networks, variants of Fast(er) R-
CNN4[32, 14] advanced the performance to a great extent
in a majority of open datasets like vehicle detection datasets
KITTI [7], DETRAC [30], and some general object detec-
tion datasets like PASCAL VOC [5] and MS-COCO [16].

More recent methods based on Faster R-CNN frame-
work include Feature Pyramid Network (FPN) [15] which
designs a generic architecture with lateral connections
between low-resolution feature maps and higher, and
Region-based Fully Convolutional Networks (R-FCN) [14]
which focuses on translation-invariance detections.

Single-shot detectors. Most Fast(er) R-CNN methods are
able to classify ROIs in 200ms, however, proposal genera-
tion takes much longer than that and becomes a major bot-
tleneck in deploying the trained model into real-time sys-
tems. Therefore, by directly sampling grids upon the in-
put image, and then training a CNN to directly regress and
classify (namely single-shot prediction), method You Look
Only Once (YOLO) [23] accelerated the runtime perfor-
mance to 45fps. However, YOLO incurred a non-negligible
penalty in accuracy, due to the coarseness of the features
that were learned. One of the state-of-the-art single-shot
prediction methods, SSD [17], alleviated this problem with
an extension of VGG16 network used to predict multi-scale
grids (default boxes named in [17]) in a hierarchical struc-
ture. Despite having distinct advantages over Fast(er) R-

4In this paper, we refer to Fast(er) R-CNN as the CNNs that require
region proposals using either RPN or external proposal methods.

CNN, SSD suffers in accuracy at the task of detecting small
objects, because it cannot integrate context for the features
learned in bottom layers. We note that context has been
shown crucial in recognizing tiny objects [13]. Further-
more, as the input size of SSD is limited below ∼512 (oth-
erwise its number of default boxes grows exponentially,
incurring overwhelming computational and memory cost),
its performance on small object detection is greatly con-
strained.

More recently, YOLO9000 [24] improves accuracy by
integrating dataset-specific data augmentation techniques,
which brings the need for more hyper-parameters. DSSD
[6] is also built directly on the existing SSD framework,
and therefore is the most similar to our proposed method.
However, DSSD opts for ResNet101 as its base network,
and therefore its runtime performance has dropped from
46fps to 10fps. Both the proposed CSSD and DSSD were
designed to improve small object detection. The proposed
CSSD method achieves real-time speed and has been
shown to perform significantly better than SSD, in both
MS-COCO [16] and vehicle detection dataset DETRAC
[30].

Effective Receptive Fields. Receptive field (RF), also
called field of view, refers to a region that a unit neuron in a
certain layer of the network sees/depends on in the original
input image. Most previous work utilized the theoretical re-
ceptive field sizes to guide their network designs [28, 21].
However, those designs have not considered whether each
pixel in the TRF contributes equally to the output of a cer-
tain unit neuron. Zhou et al. [33] were the first to introduce
the concept of empirical receptive fields, and showed via
a data-driven approach that the actual size of RF is much
smaller than TRF. Nevertheless, a solid mathematical model
of how the empirical receptive fields relate to their theo-
retical counterparts was offered only recently, by Luo et
al. [20], who pointed out that not all pixels in the effec-
tive receptive fields5 contributes equally to a unit neuron’s
response. Instead, the centers of RFs have much larger
impacts on the output leading to an obvious 2D-gaussian

5Empirical receptive fields and effective receptive fields are used inter-
changeably in this paper.

1786

shape. This is because in the forward pass the central pixels
can reach the output with many more different paths than
the pixels in outer area, while in the backward pass gradi-
ents are back-propagated across all paths equally [20].

Inspired by [33], we calculate the ERF sizes across all
VGG16 layers in SSD with associated TRF sizes (Fig. 3).
To our best knowledge, we are the first to provide the ERF
sizes of a standard VGG16 Network [27]. In addition, we
compare our computed results against the fitted ERF sizes
(Table 1) with

√
TRF, whose finding suggests us to intro-

duce the proposed context layers, which are fused so as
to enable the trade-off between fine-grained features and
richer features encompassing more context.

3. Context-Aware Single-Shot Detector

We show the framework of our proposed CSSD in Fig. 2.
Both CSSD and SSD6 utilize a standard VGG16 [27] as its
base network. However, CSSD uses the feature maps of
prediction layers after fusion of context layers, rather than
using them directly as in SSD.

To integrate context for small object detection, intu-
itively we reuse the feature maps from top layers and merge
them into the bottom one. However, as the feature map sizes
differ a lot (for e.g. by a factor of 1/2 after every pooling
layer with stride = 2), we need to upsample maps from top
layers first and ensure all sizes are the same. We can con-
sider the convolutional part of the network as an encoding
step, and deconvolution layers can be treated as a decoding
processing step. The encode-decode structure is known as
an hourglass and has been shown to be particularly useful in
segmentation [22]. As SSD branches out into different pre-
diction layers, in our design of DeCSSD (option 2 in Fig. 2),
we make hourglasses from all prediction layers except the
first one (where the hourglass is essentially the layer itself)
and fuse them with learnable scaling parameters across all
maps. Subsequently, the fused feature map becomes the
new prediction layer used for small object detection only.

Using deconvolution layers to integrate multi-scale con-
texts has one obvious drawback, namely that the memory
usage of network increases significantly, because the co-
efficients of bilinear filters and the following conv layers
(which have been verified to be especially useful in our ex-
periments) take many more weight parameters. Besides,
DeSSD does not always work out of the box. Due to that,
the training error during fusion of conv4 3’s context layers
is prone to drifting. To address that issue, we additionally
add one batch normalization layer that allows for more sta-
ble learning after each context layer.

6In the newest implementation of SSD [18], its additional conv layers
have been extended further with more parameters, but the number of pre-
diction layers is unchanged. Also note that any similar extensions to SSD
can easily be incorporated into CSSD.

We alternatively propose a more lightweight, finetuning-
friendly method to integrate contextual information into
SSD’s framework, i.e., DiCSSD which uses multi-scale di-
lated convolution layers [31] shown as option 1 in Fig. 2.
In DiCSSD, the context layers are fused via weighted sums
(implemented as element-wise summations with learnable
scaling parameters following a batch normalization layer)
of multi-scale dilated convolution layers, where every orig-
inal prediction layer is used individually, unlike DeCSSD
that has explicit messaging between them.

DiCSSD rapidly expands the TRF sizes of each predic-
tion layer, thus ensuring that every feature point within sees
sufficiently large areas. If we choose a setting of 4 context
layers in total for every prediction layer, then the TRF size
in individual prediction layers will be ×2, ×3, ×4 and ×5
larger (Fig. 1). Intuitively, during feature map fusion the
network collects a full set of visual cues that performs best
in recognizing the object of interest. Note that the number
of context layers is a hyper-parameter. In Sec. 6.1. we have
set the value of that hyper-parameter to 4, based on cross-
validation experiments.

4. Effective Receptive Fields
4.1. A Data-Driven Approach

We show how to obtain ERFs in Alg. 1 and Alg. 2 re-
spectively. While inspired by [33], our algorithm differs
from that [33] in that: 1) We evaluate our algorithms within
an object detection framework, instead of a classification
framework in [33]. Therefore, our algorithm selects ROIs
with the highest activations over K images for the given
neuron, rather than top-K images in [33]; 2) We visual-
ize and validate ERF sizes of all conv layers in a VGG16
network (16 layers in total), which has been widely used
in object detection methods, while [33] only provides ERF
sizes of Places-CNN and ImageNet-CNN (5 layers in total),
which have not been used much in object detection; 3) We
further calculate ERF sizes of SSD additional conv layers
using [20], based on the curve fitted from values of VGG16.
Our result justifies why SSD has to extend its backbone
from VGG16 with many conv layers and even more in its
newest implementation [18]: If we take SSD300 as an ex-
ample, the TRF size of pool5 (VGG16’s last layer) is 196
but its ERF is only about 104, which fills merely about 1/9
area of the original image. Therefore, the network is unable
to learn fully the complex structures of very large objects.

Before running Alg. 1, we need to calculate the TRF size
at the i-th layer, denoted as Ht×Wt. After assigning Hi =
1 and W i = 1 (according to the definition of RF), TRF
size is calculated in reverse order of feature map size , i.e.
recursively from i-th layer to the 1st layer:

Hi−1 = (Hi − 1) · si + li · (ki − 1) + 1

W i−1 = (W i − 1) · si + li · (ki − 1) + 1,
(1)

1787

conv2 1 conv2 2 pool2 conv3 1 conv3 2 conv3 3 pool3 conv4 1 conv4 2 conv4 3 pool4 conv5 1 conv5 2 conv5 3
TRF 10 14 16 24 32 40 44 60 76 92 100 132 164 196
ERF (Fitted [20]) 5.1 9.9 12.0 19.5 25.8 31.4 34.0 43.3 51.4 58.6 62.1 74.5 85.4 95.4
ERF (Data-Driven) 6.9±0.1 9.8±0.2 11.1±0.2 16.4±0.3 21.4±0.4 25.4±0.6 27.2±0.8 36.8±0.8 45.7±1.0 54.1±1.6 56.9±1.8 77.6±2.9 94.4±4.4 104.2±7.8

Table 1: Comparison of sizes of ERFs and TRFs in a VGG16 network. Results of both a data-driven approach inspired by
[33] and the fitted values based on theoretic O(

√
TRF) [20] are given.

Algorithm 1 Discrepancy maps

Input: A pre-trained model Z, input image set U ∈
{In|n = 1, . . . , N}, In ∈ RHI×WI , occluder o ∈
Rd×d, stride s, layer x with output size Hf ×Wf × l

Output: Discrepancy maps D ∈ RHI×WI×l

1: Compute TRF size Ht ×Wt at layer x using Eqn. (1)
2: Locate only fully responsive ROI Q ∈ RHQ×WQ

within area of rows ∈ [Ht

2 , HI− Ht

2], cols ∈ [Wt

2 ,WI−
Wt

2] /*To speed-up computation*/
3: Create empty discrepancy maps D
4: while i ≤ N do
5: In Q ∈ Ui, create occluded image set V ∈ {Im|m =

1, . . . ,M}, Im ∈ RHI×WI using o with stride s
6: Record coordinates of each occluded area P ∈
{Pm|m = 1, . . . ,M}, Pm ∈ Rd×d

7: while j ≤M do
8: Feedforward Ui and Vj through Z. At layer x,

obtain activation maps respectively Ax
Ui

and Ax
Vj

, both
∈ RHf×Wf×l

9: while k ≤ l do
10: Dk

Pj
← Dk

Pj
+

∑
|Axk

Ui
−Axk

Vj
|

11: end while
12: end while
13: end while

Algorithm 2 ERF

Input: Discrepancy maps D ∈ RHI×WI×l, TRF size Ht×
Wt at layer x, threshold σ

Output: ERF size He ×We

1: while i ≤ l do
2: Pi ← argmax

(m,n)

Di /*Calibration*/

3: Ei ← ROI centered at Pi in Di, Ei ∈ RHf×Wf

4: Si ←
√∑

[Ei ≥ σ ∗ μ(vec(Ei))] /*[. . .] are the
Iverson brackets*/

5: end while
6: He ← μ(S)
7: We ← μ(S)

where si, li, ki denote convolution stride, dilation stride and
kernel size at the i-th layer respectively. Finally, we have
Ht = H1, Wt = W 1.

The ERF sizes of VGG16 are shown in Table 1. We

compute ERF (Alg. 2) with a total of K = 300 images and
threshold σ = 1.0. With K = 100, the computed ERF val-
ues across all layers show at most ±0.1 difference from the
corresponding values computed with K = 300, therefore it
is safe to use only 100 images.

4.2. Analysis and Visualization

Figure 4: Example discrepancy maps of conv4 3. Each neu-
ron responses differently with semantics from input image.
The raster effects on discrepancy maps are due to conv4 3’s
limited ERF size around 54.

We show some example discrepancy maps of conv4 3
in Fig. 4. Each discrepancy map shows regions to which
certain neuron are most responsive. Those regions are se-
mantic (car roofs/shields, highway shrubs, lanes, etc.) and
thus can offer us more insights into how neurons respond to
our input image (similar to emergence of detectors in [33]).

After obtaining K discrepancy maps, for all neurons
in a certain layer we extract ROIs centered at the points
with max activation (named Calibration in Alg. 2). Sub-
sequently, ROIs are averaged over all neurons, after which
we will see a typical 2D-Gaussian shape in accordance with
[20], as shown in Fig. 3.

Fig. 5 demonstrates our findings about ERF: In Fig. 5(a),
ERF
TRF becomes smaller at top layers which is again in ac-
cordance to [20]. In addition, we fit a linear curve of ERF
vs.

√
TRF sizes in Fig. 5(b), where the variations of two

lines are mainly due to the pooling layers interleaved be-
fore conv5 3 in VGG16 network, as well as the data noise
introduced when calculating ERFs. Last but not least, we
compare ERF sizes against grid scales of SSD at different
prediction layers in Fig. 5(c), from which we realize that
the sizes of SSD’s default boxes are not sufficiently large to

1788

(a) (b) (c)

Figure 5: (a) As the network goes deeper, ERF retains more
intensity, and surprisingly has lower ratio against its TRF
counterpart. (b) A likely-linear relationship between ERF
and

√
TRF sizes. (c) Fitted ERF sizes to corresponding

grid scales θp at different prediction layers.

include context, especially for small objects (conv4 3).

5. Training
We follow the same training process as [17]: After gen-

erating default boxes, we match each of the ground truth
boxes to the best overlapped default boxes with Jaccard
overlap higher than 0.5. For the rest of default boxes, which
have been left unmatched, we select a subset of them based
on confidence loss while keeping the ratio of matched to
unmatched boxes to 1:3, which keeps a balance between
number of positive and negative proposals. Afterwards, our
objective function minimizes regression loss using Smooth
�1 and classification loss using Softmax. Note that SSD was
updated with a new expansion data augmentation trick that
has been shown to boost the performance a lot in small ob-
ject detection [18]. In this paper, we follow the newest data
augmentation expansion trick in our experiments on VOC,
while keep using the original data augmentation technique
[17] on DETRAC.

Both implementations [17, 18] use the entire original im-
age as input, and then randomly sample patches that have
the minimum Jaccard overlap with one of the ground truth
objects. Multiple minimum Jaccard overlap thresholds have
been used, including 0.1, 0.3, 0.5, 0.7 and 0.9, each with 50
maximum trials. After doing so, the statistical distribution
of training sample scales fed into the network is expected to
be more equalized.

6. Experiments
6.1. Ablation Study

In Fig. 6(a), we study how mAP changes with different
number of context layers for DiCSSD, as measured on the
DETRAC dataset. Note that the overall mAP score is not
necessarily indicative of the mAP value for small object de-
tection. We note that with higher number of context lay-
ers, the overall mAP score of DiCSSD drops dramatically
while memory requirements increase. We set the number of
context layers equal to 4, based on cross-validation on the

DETRAC dataset, and we used the same number (4 context
layers) for the VOC 2007 dataset. In addition, we conducted
experiments under different settings of batch normalization,
scaling, and context layer fusion method and show the re-
sults in Fig. 6(b). The golden model compared in Fig. 6(b)
has been trained with a full combination of batch normal-
ization + scaling + sum.

(a) (b)

Figure 6: We perform our ablation study on DETRAC
(Sec. 6.2) to test, for our DiCSSD method: (a) mAP under
different number of context layers. (b) Effects of different
settings with batch normalization, scaling and context lay-
ers fusion.

6.2. Our Results

Similar to SSD, we load a pre-trained model of VGG16
on the ILSVRC CLS-LOC dataset [26] and use the átrous
algorithm [12] to convert fc6 and fc7 into conv layers. In
addition, we use SGD with initial learning rate 10−3, 0.9
momentum, 0.0005 weight decay and 32 batch size. The
learning rate decay policy, however, is different depending
on the dataset used in experiments: for DETRAC, we use
an initial learning rate 10−3 at the first 40k iterations, then
continue training with learning rate 10−5 until the model
is fully converged at iteration 60k. For PASCAL VOC
2007, we use the same training policy with the newest
implementation of SSD [18], which uses initial learning
rate 10−3 at first 80k iterations and continues training two
rounds of 20k iterations with learning rate 10−4, 10−5

respectively. For MS-COCO, we train our model with
learning rate 10−3 for the first 160k iterations, followed by
two rounds of 40k iterations with learning rate 10−4 and
10−5 respectively.

DETRAC. DETRAC is a challenging real-world vehicle
detection dataset [30], with a total of 10 hours of videos.
It consists of 60 sequences in train set and 40 in test set,
which include significant differences in vehicle categories,
weather, scales, occlusion ratios, and truncation ratios.

We note that ground truth for the DETRAC test set has
not been released yet. Since we needed ground truth for
our quantitative experiments, we opted to split the original
60 sequences of the DETRAC train set into 48 sequences

1789

Method Network Overall Category Difficulty Occlusion Scale Weather
Car Van Bus Others Easy Normal Hard No Partial Heavy Small Medium Large Sunny Rainy Night Cloudy

DiCSSD533 VGG16 55.6 63.2 52.1 81.2 46.3 63.2 41.0 12.2 57.5 47.4 26.7 35.6 79.9 84.4 61.8 70.6 53.9 69.8
DeCSSD533 VGG16 51.5 64.3 47.9 71.9 14.3 60.6 40.9 10.2 59.2 44.2 24.3 39.2 76.5 68.5 64.0 64.8 52.8 72.2
SSD533 [17] VGG16 50.3 58.7 45.6 75.8 37.0 61.3 34.1 7.1 56.5 38.9 17.4 31.1 74.2 81.7 55.6 64.0 52.5 63.8
DiCSSD300 VGG16 45.3 53.0 39.5 71.5 19.4 61.9 25.0 9.8 50.9 32.5 24.0 19.6 72.5 78.7 48.5 60.7 48.1 54.6
DeCSSD300 VGG16 40.2 47.8 37.4 64.6 11.4 57.3 21.1 7.2 47.8 30.3 17.6 14.7 67.8 63.3 41.2 55.1 45.7 53.0
SSD300 [17] VGG16 35.1 43.5 24.8 50.2 4.5 53.2 19.0 6.5 42.8 26.6 16.2 14.2 60.2 59.4 42.0 42.3 39.4 51.6
SSD300 [17] ResNet152 35.2 42.3 33.5 54.3 4.5 52.8 17.5 7.1 41.1 34.7 17.6 6.8 62.9 60.2 36.8 50.8 30.5 44.4
SSD300 [17] ResNet101 39.1 42.8 32.6 69.5 30.2 55.4 16.4 7.1 43.2 30.4 17.5 8.1 63.1 69.5 40.0 48.0 44.2 46.5
SSD300 [17] ResNet50 25.1 42.4 30.5 59.8 26.9 46.1 4.8 0.0 35.9 0.4 0.0 7.4 63.2 63.8 44.7 0.0 0.0 0.0

Table 2: Evaluation of the proposed networks on DETRAC dataset.

Method Network mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
DiCSSD300* VGG16 78.1 82.2 85.4 76.5 69.8 51.1 86.4 86.4 88.0 61.6 82.7 76.4 86.5 87.9 85.7 78.8 54.2 76.9 77.6 88.9 78.2
DeCSSD300* VGG16 77.6 79.9 84.7 76.4 70.2 48.2 86.5 86.1 88.9 61.7 83.1 76.8 86.1 87.4 85.3 78.8 52.0 77.0 79.1 87.0 77.2
SSD300* [18] VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8
DSSD321 [6] ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4
ION [1] VGG16 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
R-FCN [14] ResNet101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
Faster [11] ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
Fast [8] VGG16 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
Faster [25] VGG16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Table 3: Detection results on PASCAL VOC2007 test set. All models were trained with VOC2007 trainval set + VOC2012
trainval set. (C)SSD300* and SSD512* are the latest SSD models with the new expansion data augmentation trick [18].

that we used for training, and 12 sequences that we used
as our test set. Our test set consisted of the 12 sequences
numbered by 20034, 20063, 39851, 40131, 40191, 40243,
40871, 40962, 40992, 41063, 63521, 63562. Moreover, we
subsampled frames with step size 10 in all sequences, lead-
ing to a total of 6349 training images and 1880 test images.
To have a comprehensive evaluation of the proposed net-
works, we also assign to each ground truth bounding box
new annotations for scale, occlusion and three difficulty lev-
els, as shown in Table 4.

We compare the performance of CSSD with SSD in Ta-
ble 2. In that table, (C)SSD533 indicate models trained with
input size 533×300, which keeps the same aspect ratio with
the original input size 940 × 540, and has been found to
greatly boost the mAP of (C)SSD300 (50.3% vs. 35.1% for
SSD300). Our results show that both DiCSSD and DeCSSD
outperform SSD with two different input resolutions, while
DiCSSD significantly improves SSD with higher mAP than
DeCSSD (+10.2% vs. +5.1% to SSD300, +5.3% vs.
+1.2% to SSD533). In small object detection, DiCSSD300
has been found particularly effective, with mAP increase
> 5% over both DeSSD300 and SSD300. Note that, al-
though DeCSSD533 achieves the highest mAP in small ob-
ject detection among the three, its performance on large
object is down to the lowest 68.5%. This happens be-
cause, given high resolution images, top prediction layers
may contain much richer feature maps, but directly reusing
and fusing those maps into a single map may overweigh
the training loss at the first prediction layer. Consequently,
while DeCSSD outperforms the other methods in small ob-
ject detection, its discriminative capabilities for large ob-
jects have been greatly constrained.

Scale Small Medium Large
0-50 pixels 50-150 pixels > 150 pixels

Occlusion No Partial Heavy
< 1% 1%− 50% > 50%

Difficulty

Easy Normal Hard
Medium or large object,
no occlusion,
0% ≤ truncation < 15%

Partial occlusion, or
15% ≤ truncation < 30%

Heavy occlusion, or
truncation ≥ 50%.

Table 4: New annotations created for DETRAC, where each
of them has been evaluated in Table 2. Bounding boxes with
undefined conditions in difficulty are defaulted to Normal.

Method mAP Network FPS Input
Resolution

K40 GTX 980
Titan X
(Pascal)

SSD300* [18] 77.5 VGG16 16.2 36.2 46 300x300
DiSSD300* 78.1 VGG16 12.2 24.3 40.8 300x300
DeSSD300* 77.6 VGG16 8.7 18.4 39.8 300x300
DSSD [6] 78.6 ResNet101 - - 9.5 321x321
YOLO [23] 66.4 VGG16 - - 21 448x448
Faster R-CNN [8] 73.2 VGG16 - - 7 ∼1000x600
Faster R-CNN [11] 76.4 ResNet101 - - 2.4 ∼1000x600
R-FCN [14] 80.5 ResNet101 - - 9 ∼1000x600

Table 5: Speed and accuracy comparisons on VOC2007.

In summary, DiCSSD was found to be the most effective
compared to others in DETRAC, with both low and
high-resolution input size. Later on, we will see that the
run-time speed of DiCSSD is comparable to SSD, which
proves the efficiency of our proposed method.

PASCAL VOC 2007. In this dataset, we train each model
with a union of VOC2007 trainval set and VOC 2012
trainval sets, and evaluate on VOC 2007 test set. Again,
our results in Table 3 indicate that both DiCSSD and
DeCSSD outperform SSD (+0.6% vs. +0.1%). We note

1790

Figure 7: Curated examples of DiCSSD (left) and SSD (right) on VOC07 test set.

Method Train Set Network FPS Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

DiCSSD300* trainval35k VGG16 40.8 26.9 46.3 27.7 8.2 27.5 43.4 25.0 37.3 39.8 15.4 43.1 60.0
SSD300* [18] trainval35k VGG16 46 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4
SSD300 [17] trainval35k VGG16 46 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5
DSSD321 [6] trainval35k ResNet101 9.5 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6
R-FCN [14] trainval ResNet101 9 29.9 51.9 - 10.8 32.8 45.0 - - - - - -
ION [1] train VGG16 - 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6
Faster [25] trainval VGG16 7 21.9 42.7 - - - - - - - - - -
Fast [8] train VGG16 - 19.7 35.9 - - - - - - - - - -

Table 6: MS-COCO test-dev2015 detection results.

that the performance of SSD has been improved greatly
with its new expansion data augmentation trick [18].
Still, our proposed context layers, applied on top of this
improved SSD, further boost performance and take little
memory consumption. It is noteworthy that among all the
20 categories evaluated, mAPs of DiCSSD are higher than
those of SSD in 15 categories.

MS-COCO 2015. In order to evaluate CSSD on a more
general, large-scale object detection dataset, we compare
our proposed model with both SSD , DSSD and many oth-
ers on MS-COCO 2015 dataset. To directly compare CSSD
with SSD, we use the same trainval35k training set [1] and
follow the same training policy to SSD300* [18]. In Ta-
ble 6, we show our detection results on MS-COCO [16]
test-dev2015 set. Both DiSSD300* and SSD300* use the
new expansion data augmentation trick [18], while SSD300
is with the original SSD implementation [17].

Our proposed network DiCSSD has been shown to
greatly boost the performance of SSD (+3.2% given
IoU=0.5), and even better than DSSD (+0.1% given
IoU=0.5) which uses ResNet101 as its base network but
only achieves 9.5fps (compared to 40.8 fps of ours). We
also note that for small object, DiCSSD achieves better
precision than the newest SSD (8.2% vs. 6.6%), in addition
to the highest recall (15.4%) among all the benchmarked
methods.

Inference time. In Table 5, we compare the speed and accu-
racy of benchmarked models on PASCAL VOC 2007. The
proposed DiCSSD network achieves the highest mAP, while
maintaining a real-time speed of 40.8 fps. Therefore, DiC-
SSD has been the most effective model among all models
compared. Note that we calculate fps with batch size = 1,
preprocessing time counted and cuDNN [2] enabled (v5.1
for Titan X, v4 for K40 and GTX 980).

7. Conclusion
We have presented a new deep learning based object de-

tection algorithm, called context-aware single-shot detector
(CSSD). CSSD incorporates object context modeling by in-
tegrating dilated convolution layers or deconvolution layers
into the state-of-the-art SSD algorithm. Our experiments
show significant improvement in object detection accuracy
compared to SSD on the MS-COCO and DETRAC dataset,
where the improvement is much more pronounced for small
scale objects. Algorithms for obtaining effective receptive
fields (ERFs) are also presented, with the empirical study
results further supporting our hypothesis that the context
layers are important for achieving superior detection accu-
racy, especially for small objects.

Acknowledgement
This work was partially supported by National Science

Foundation grants IIS 1565328 and IIP 1719031.

1791

References
[1] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick.

Inside-outside net: Detecting objects in context with skip
pooling and recurrent neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2874–2883, 2016.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005.

[4] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature
pyramids for object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(8):1532–1545, 2014.

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303–
338, 2010.

[6] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.
Dssd: Deconvolutional single shot detector. arXiv preprint
arXiv:1701.06659, 2017.

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3354–3361. IEEE, 2012.

[8] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 37(9):1904–1916, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[12] M. Holschneider, R. Kronland-Martinet, J. Morlet, and
P. Tchamitchian. A real-time algorithm for signal analysis
with the help of the wavelet transform. In Wavelets, pages
286–297. Springer, 1990.

[13] P. Hu and D. Ramanan. Finding tiny faces. arXiv preprint
arXiv:1612.04402, 2016.

[14] Y. Li, K. He, J. Sun, et al. R-fcn: Object detection via region-
based fully convolutional networks. In Advances in Neural
Information Processing Systems, pages 379–387, 2016.

[15] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
arXiv preprint arXiv:1612.03144, 2016.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European Conference on Com-
puter Vision, pages 740–755. Springer, 2014.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European Conference on Computer Vision, pages 21–37.
Springer, 2016.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,
C. Fu, and A. C. Berg. SSD: single shot multibox detector.
CoRR, abs/1512.02325, 2015.

[19] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[20] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding
the effective receptive field in deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 4898–4906, 2016.

[21] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-
ing for stereo matching. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5695–5703, 2016.

[22] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1520–
1528, 2015.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 779–788, 2016.

[24] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
arXiv preprint arXiv:1612.08242, 2016.

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, pages
91–99, 2015.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[27] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[29] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. Interna-
tional journal of computer vision, 104(2):154–171, 2013.

[30] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim,
M. Yang, and S. Lyu. DETRAC: A new benchmark and pro-
tocol for multi-object detection and tracking. arXiv CoRR,
abs/1511.04136, 2015.

[31] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

1792

[32] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross,
S. Chintala, and P. Dollár. A multipath network for object
detection. arXiv preprint arXiv:1604.02135, 2016.

[33] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Object detectors emerge in deep scene cnns. International
Conference on Learning Representations, 2015.

1793

