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Abstract

Recently, Convolution Neural Networks (CNNs) ob-
tained huge success in numerous vision tasks. In partic-
ular, DenseNets have demonstrated that feature reuse via
dense skip connections can effectively alleviate the diffi-
culty of training very deep networks and that reusing fea-
tures generated by the initial layers in all subsequent lay-
ers has strong impact on performance. To feed even richer
information into the network, a novel adaptive Multi-scale
Convolution Aggregation module is presented in this paper.
Composed of layers for multi-scale convolutions, trainable
cross-scale aggregation, maxout, and concatenation, this
module is highly non-linear and can boost the accuracy of
DenseNet while using much fewer parameters. In addition,
due to high model complexity, the network with extremely
dense feature reuse is prone to overfitting. To address this
problem, a regularization method named Stochastic Feature
Reuse is also presented. Through randomly dropping a set
of feature maps to be reused for each mini-batch during the
training phase, this regularization method reduces train-
ing costs and prevents co-adaptation. Experimental results
on CIFAR-10, CIFAR-100 and SVHN benchmarks demon-
strated the effectiveness of the proposed methods.

1. Introduction

Recently, deep learning became a dominant field of ma-
chine learning for various vision tasks, such as recogni-
tion and classification. In particular, Convolutional Neu-
ral Networks (CNNs) have achieved an unprecedented suc-
cess through AlexNet [14]], which has incurred a new line
of research concentrating on constructing better perform-
ing CNNs [28]]. Increasingly deeper architectures are being
created and trained based on the observation that, the deeper
the network is, the higher-level features it is able to extract.
AlexNets have 5 convolutional layers [14]], VGG Nets [23]
have 16 or 19, GoogLeNets [27] have 22, and ResNets [6]

feature over 1000 layers employing residual connections.

As the networks became very deep, two common issues
have emerged: gradients explosion and vanishing. To deal
with these problems, several creative architectures, such as
Highway networks [24]], Deeply-Supervised Nets [[16] and
ResNets [6], have been designed. The key ideas are pass-
ing information flow from one layer to another via shortcuts
or adding “companion” objective functions at each hidden
layer respectively. Stochastic depth [[10] trains an ensemble
of ResNets with different depth values by randomly drop-
ping a set of layers during the training phase. FractalNets
[15] repeatedly utilize a simple expansion rule to gener-
ate an ultra-deep network containing interacting subpaths
of different lengths. Based on the above work, DenseNet
[9] was introduced, which connects each layer to every sub-
sequent layer. As a result, a given layer in DenseNet takes
all feature maps extracted by preceding layers as input. This
new connection pattern allows DenseNets to obtain signif-
icant improvements over the state-of-the-art on several ob-
ject recognition benchmark tasks.

On another front, inception series [12, 23 26} 28] have
been shown to achieve remarkable performance at very low
memory costs. This module is composed by convolutions
with different kernel size (1x1, 3x3, 5x5) and a 3x3 max
pooling, and then concatenates results from the convolu-
tions and pooling. This design strengthens the regulariza-
tion and scale invariance of extracted features. Recently,
feature pyramid networks (FPN) [[19] and deep layer aggre-
gation [34] have been proposed, which aim at exploiting the
inherent multi-scale, pyramidal hierarchy of CNNs. Fea-
tures at different scale levels are merged together to achieve
higher accuracy with fewer parameters.

Inspired by the benefits of multi-scale convolutions [19}
34] and features fusion for training deep networks, we de-
sign a novel module, referred as Multi-scale Convolution
Aggregation (MCA) to work with DenseNets. As shown
in Fig. [Tl the MCA module consists of layers for multi-
scale convolutions, cross-scale aggregation, maxout, and
concatenation. We observe that DenseNets utilizing MCA
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Figure 1. DenseNets with Multi-scale Convolution Aggregation
(MCA) module. Given the raw image on the left, the first layer
generates four groups of feature maps using different kernel sizes.
These results pass through aggregation and maxout gates to pro-
duce two branches of compressed channels, which capture fine and
coarse scale features, respectively. The two channels are concate-
nated into a layer of feature maps, which is fed into the DenseNets
represented by with 3 composite layers on the right.

module can substantially reduce parameters number and
classification error than using other multi-scale designs.
The reduction in parameters results from the new design
of fusing pyramidal convolutions instead of simply con-
catenating them. The increase in accuracy is attributed to
the following factors: 1) strengthening scale-invariance be-
cause of the multi-scale convolutions with four kernels with
different receptive field sizes; 2) given a specific task, the
network automatically chooses the most suitable scales via
four trainable gating units to adaptively make use of multi-
scale information; 3) the use of two maxout activations
stimulates the competition among neural units of different
receptive fields and enhances the learning ability of the net-
work; 4) higher non-linearity; and 5) compared with tra-
ditional concatenation in GoogleNets, our module dramat-
ically reduces the number of parameters while preserving
sufficient multi-scale information by aggregation and max-
out functions.

In addition to various methods of architecture design,
difficulties in training deep networks motivated research
on optimization and initialization techniques. These in-
clude dropout [8]], maxout activation [4]], batch normaliza-
tion [114112], group normalization [31], Xavier initialization
[2], He initialization [5]], etc., which have been applied in a
wide range of networks as essential components.

To reduce the possibility of overfitting in DenseNets and
to further boost the generalization of networks, we also
develop a regularization method named Stochastic Feature
Reuse (SFR). Similar to stochastic depth [10], SFR con-
tains gates for dropping selected feature maps delivered
from preceding layers; see Fig.[d] During training step, each
layer randomly reuses different preceding feature maps for

different mini-batch, resulting each mini-batch is trained
under a sub-network with a unique connection scheme.
This approach effectively addresses overfitting problem of
DenseNet by substantially reducing the number of parame-
ters while improving the performance of DenseNets.

We evaluate the impacts of both MCA module and SFR
on three widely used benchmark datasets: CIFAR-10 [13],
CIFAR-100 [13] and Street View House Number (SVHN)
[21]. The comparisons show that our model can achieve
comparable test accuracy with relatively lower computa-
tion costs and outperform the state-of-the-art performance
of DenseNets.

2. Related Work

Deeper feed-forward neural networks tend to generate
larger dividends in performances of various vision tasks.
This leads to the recent resurgence of exploration in sophis-
ticated CNNGs architectures [9] with hugely increased classi-
fication accuracy on ImageNet [[1], e.g. from AlexNet [14]
to GoogLeNets [27], and ResNets [6]] to DenseNets [9].

Comparisons of layerwise performance, analysis [20,
32] and visualization of feature maps (33}, 37] show that
networks with deeper layers are able to extract more se-
mantic and higher-level representations. On the other hand,
very deep networks make training more difficult, especially
when using a first-order optimizer with purely random ini-
tialization and traditional activation functions (tanh, sig-
moid etc.), which often cause gradients vanishing and in-
ternal covariate shifts. To overcome these problems, a lot of
research has been carried out [15]].

To deeply dig into high-performance architectures, a
series of independent methods have been explored. One
of more dominative is to increase the network width.
GoogLeNets [12} 23| 26l 28] use the inception module to
build deep networks and this component concatenates fea-
ture maps produced by a set of filters with different re-
ceptive field size. Other well-known structures, such as
Resnet in Resnet [29] and Wide residual networks [35],
also demonstrate that simply increasing the number of fil-
ters in each layer can dramatically improve test accuracy.
More recently, FractalNets [15] obtained excellent results
using a wider block structure. In addition to increasing
depth and width of networks, there are a growing number
of research works focusing on aggregation or fusion. Deep
Layer Aggregation [34] provides a novel approach to fuse
features vertically across layers, which substantially im-
proves recognition accuracy with less computational cost.

Inspired by these findings, we design a novel MCA mod-
ule, which first broadens the width of the initial convolution
layer of DenseNets through multi-scale convolutions, then
fuses the filters using cross-scale aggregation parameterised
by trainable weights. The idea of multi-scale convolutions
also follows a neuroscience model [22] suggesting that the



raw image should be processed at different scales and then
joined together for next layers, so that the deeper layers can
become robust to scale shift [27].

Another breakthrough in deep learning is the introduc-
tion of skip connections, which addresses the challenges
of training deep networks. Highway Networks [24] effi-
ciently train deep networks by introducing the bypassing
path, which is the primary factor that eases the training
pain. ResNets [6] further enhance this new connection pat-
tern through substituting bypassing paths with residual con-
nections, and achieve record-breaking performance on Im-
ageNet [1]. Recently, DenseNets [9] densely connect all
preceding layers with each layer to reuse all preceding fea-
ture maps and outperform the state-of-the-art results on sev-
eral competitive benchmarks. Moreover, stochastic depth
[LO] was proposed as a successful approach to train an over
1000-layer ResNet through randomly dropping a few lay-
ers during training. Analogous to dropout [8], this method
demonstrates that stochastically dropping is an extremely
powerful technique to regularize networks. Our SFR reg-
ularizer was motivated by the observations on Dropout,
Stochastic Depth and DenseNets. However, instead of drop-
ping layers as in Stochastic Depth, our regularizer drops
features by randomly blocking a set of bypassing paths.

3. Methodology

DenseNets. Both the MCA module and the SFR regu-
larizer proposed in this paper are based on DenseNets [9].
Assume that a single input image is represented by x and
is passed through a DenseNet that has L layers. Each layer
I comprises a composite function H;(-) that includes one
Batch Normalization layer [[12], one ReL.U layer [3], and
one 3 x 3 convolution layer. DenseNets introduce a new
connectivity scheme: the output of each layer is directly
connected to all subsequent layers. Consequently, the [*"
layer receives the outputs of all preceding layers. That is:

Z :Hl ([x07x15"'7'rl—1]) . (1)

where x; is the output of layer [, [xg,x1,...,2;—1] is the
concatenation of feature maps produced by layers 0, 1,2, ...,
I — 1. The total number of channels in a L-layer DenseNet,
N(L), can be approximatively computed as:

L(L - 1)

N(L)~ N(0) x L+ 7

xk. 2)

where N (0) represents the number of input channels into
first dense block and k is the growth rate of the DenseNet.

3.1. Multi-scale Convolution Aggregation Module

Through concatenating different groups of convolutions,
Inception [23]] module and its variant [[17] have shown that
multi-scale convolution filters can boost the performance of

deep networks. Inspired by their findings, we design a novel
MCA module to enhance the representative and learning ca-
pacity of DenseNets. The new module consists of layers for
multi-scale convolutions, cross-scale aggregation, maxout,
and concatenation. It is placed in front of the DenseNet as
initial layers so that abundant features extracted at different
scales can be fed into the network.

Multi-scale Convolutions. Given the input image x, the
multi-scale convolutions layer computes the following:

Mi(z, W) = Gix1(z, W1) o Gaxs(x, W3)

3)
oGsx5(x, Ws) o Grxr(z, Wr) ,

where G, x, (n = 1,3,5,7) are the results of convolutions
with 1 x 1,3 x 3,5 x 5, and 7 x 7 kernels respectively. W,
represents parameters of different kernels and “ o ” denotes
the concatenation operator.

Feeding the concatenation of four groups of convolu-
tions, M (z, W), into DenseNets directly helps to improve
the performance of the network since the network band-
width is increased. When evaluated on CIFAR-10 dataset, a
standard DenseNet with depth L = 40 and growth rate k =
24 achieves 93.45%, whereas the DenseNet with M (z, W)
as input achieves a test accuracy of 94.31%. However, since
and the number of initial channels for DenseNet, N (0) in
Equ. (2), equals to the length of M (z, W), the number of
parameters is increased from 4.2 millions to 5.7 millions.

Cross-scale Aggregation. In order to reduce the com-
plexity of the model while maintaining a high test accu-
racy and maximizing effective information flow of the net-
work, an adaptive aggregation function is applied. Here we
aggregate convolution results under four kernels into two
branches that represent fine and coarse scales, respectively;
see Fig. 2] Since trainable gating weights are introduced,
the unit is similar to a small-scale voting system. For each
mini-batch, proper weights are automatically assigned to
different scales via our voting mechanism. This helps to
preserve most contributive multi-scale information and sup-
press flows with lower importance. Specifically, the cross-
scale aggregation layer performs the following operation:

Mo (z, W) = (w1Gix1(z, W1) + wsGsxs(z, Ws))

4)
o (wsGsxs(x, Ws) + wrGrxr(x, Wr)) ,

where “ 4 7 represents pixelwise summation aggregation.
w1, W3, Ws, wy are learnable gating weights for convolution
results at different scales. Their values indicate the im-
portance of respective scales. In practice, we also found
that trainable aggregation works much better than equal-
weighted fusion, since the voting system in the former ap-
proach makes the module more adaptive on a variety of
datasets. As shown in Fig.[6] the finally converged weights
on different datasets vary widely, which indicates that dif-
ferent datasets favor the contributions from different scales.
Fig. 3] visually compares the results obtained through the
two versions of the aggregation.
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Figure 2. Illustration on fine-scale and coarse-scale aggregations.
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Figure 3. Visualization on results obtained using the proposed
adaptive aggregation (top row) and simple equal-weighted aggre-
gation (bottom row): (a) results of 1 X 1 convolutions; (b) results
of 3 x 3 convolutions; (c) aggregation of 1 x 1 and 3 X 3 convo-
lutions; and (d) zoomed in view of dashed-box areas in (c), which
shows that trainable aggregation can extract more abundant and
detailed texture features.

Compared to the Inception module that simply concate-
nates different groups of convolutions, the aggregation layer
we used can significantly reduces the number of parameters.
On CIFAR-10 dataset, the number of parameters is reduced
from 5.7 millions to 4.2 millions in DenseNet with depth =
40 and growth rate k = 24.

Maxout. Previous work have shown that: 1) maxout ex-
ploits the model averaging behavior as the approximation is
more accurate; 2) back-forward flow of maxout can avoid
pitfalls such as failing to use a large set of filters [4]; and
3) grouping is important in deep networks [31]]. Hence, to
better regularize our fusion results, here two maxout oper-
ations are independently performed after cross-scale aggre-
gation layer, one for the two fines scale channels and the
other for the two coarser scale channels. That is, we have
the final output of MCA module M C(z, W):

Maxout (lelxl(m, Wl) + w3G3><3(a:, W3))

5
o Mazout (wsGsxs(x, Ws) + wrGrx7(x, Wr)) . ©

With maxout layer introduced, the whole MCA module
can be viewed as a highly non-linear transformation be-
tween original input and the first dense block of DenseNets.
It includes four gating units parametrized by w; (i =
1,3,5,7) controlling the flow of multi-scale information.

Backward Propagation. The process of gradients

back-propagation is the same as the traditional back-
propagation. Here, we present the derivation formula in
terms of weights of multi-scale convolutions; see Equ. (6).
r1, T3, Ts5, 7 represent the outputs of multi-scale convolu-
tions and Wy, W3, W5, Wy are kernel weights. We define
the maxout function as M (z) and Hp(z) denotes its first-
order derivative. The input image is x( and by, b3, bs, by are
bias vectors.

r1 = Wizo + b1,x3 = Wz + bs
x5 = Wsxo + bs, 27 = Wrzo + br
z = M(wi(z1) +ws(z3)) o M(ws(xs) + wr(z7))

%_1%_ INTsl _ <0
abl_é’aa:_(W) 9 =9
al ol ax al

= =22 = Hy(z)w: 6, o = Hr(2)ws3d°

Qi ar axy
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where L is the loss function of the whole network and
W1, bt are the weight and bias of the first layer in the first
dense block. §' is the sensitivity of [*" layer.

3.2. Stochastic Feature Reuse

Dropout [8], Drop-connect [30] and Maxout [4] provide
excellent regularization methods through modifying inter-
actions among neural units or connections between differ-
ent layers in order to break co-adaptation. These techniques
have been supported by subsequent research and applied
in a wide range of network architectures, such as ResNets
[6] and FractalNets [15]. Recent stochastic depth [10] and
drop-path [13] successfully extend dropout and make im-
pressive progress in vision tasks.

Motivated by these structures, we propose “Stochas-
tic Feature Reuse” (SFR) as an effective regularizer in
DenseNets to promote the generalization of networks and
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Figure 4. At a given layer of a dense block, the original DenseNets concatenate of all feature maps produced by preceding layers as input.
The presented Stochastic Feature Reuse uses a mask to drop features from some of these layers but guarantees at least one set of feature
maps from previous layers will be reused. The mask is randomly generated and changes for different mini-batches during training.

to overcome overfitting especially when the growth rate is
high. Fig. |4 illustrates the model of SFR. For each mini-
batch, a new mask tensor M; obeying Bernoulli distribution
is randomly generated for each layer [ and the input of [ + 1
layer is modified as follows:

Il-‘rl = Mlitl = Ml . Hl ([:Co,xl, ...,Il_l]) . (7)

During the training time, when a set of skip connections are
blocked, there is no need to perform forward and backward
computations trough those. Hence, these dropped features
are not reused by the current layer. Since a large amount of
computation is saved, SFR can speed up the convergence of
the network. When testing, all features are reused in order
to make use of the full-width network [[10].

As a regularizer, SFR can enhance the performance of
DenseNets and deal with the overfitting issue [9] through
discouraging co-adaptation. In addition, SFR also implic-
itly trains an ensemble of DenseNets, which helps to im-
prove the performance. For a L-layer DenseNet, there are
9 #5 possible combinations and the final network used
at the testing stage can be viewed as the average of these
sub-networks.

4. Experiments

The presented MCA module and SFR regularizer are
evaluated using three widely adopted benchmarks: CIFAR-
10 [13], CIFAR-100 [13] and SVHN [21]. The results show
that the performance of DenseNets with MCA modules is
superior to the original DenseNets and that the SFR regu-
larizer can effectively prevent overfitting.

4.1. Implementation and Training Details

In our experiments, we report test error from the epoch
with the lowest validation error and we use the same con-
struction and training scheme as introduced in DenseNet
[9]. When evaluating the MCA module, the DenseNet part

has three dense blocks, all have equal numbers of layers and
the same growth rate. When evaluating SFR regularizer, an
additional dense block with SFR is added so that the per-
formance of the original DenseNet is not affected. Each
composite function of dense block uses a 3 x 3 convolution
layer with zero-padding to keep the feature maps fixed. Be-
tween two dense blocks, there are bottleneck layers with a
compression factor. In this paper, we set compression factor
as 1.0 in standard DenseNet while set as 0.5 in the structure
of DenseNet with bottleneck and compression (DenseNet-
BC). At the end of the last dense block, a global average
pooling layer, followed by a softmax layer, is attached. The
sizes of feature maps in each of the three dense blocks are
32 x 32,16 x 16 and 8 x 8, respectively.

Similar to the standard DenseNet [9]], DenseNets in our
experiments are optimized through the first-order SGD op-
timizer. We train 350 epochs for CIFAR and 40 epochs
for SVHN. Initial learning rate is 0.1 and divided by 10 at
epochs 150, 225 and 300 for CIFAR and epochs 20 and 30
for SVHN. We also add weight decay (0.0001) term into our
loss function and use Nesterov momentum [25] of 0.9 for
optimization. Hinton’s Dropout [8]] layer with drop proba-
bility p = 0.2, Batch Normalization [12] layer and He Ini-
tialization of weights [3]] are applied as well.

4.2. Datasets

The CIFAR-10 dataset [13] consists of 60,000 (50,000
for training + 10,000 for testing) natural color images of
3232 resolution. Objects from ten classes (e.g. vehicles,
flowers etc.) have equal volume of training and test images
and are centered in these images. The CIFAR-100 dataset
extends the number of classes in CIFAR-10 to 100, but each
class only consists of 600 images. Due to more classes and
fewer samples for each class, the classification for CIFAR-
100 is considered as more challenging. Street View House
Number (SVHN) dataset is also a well-known benchmark
in computer vision, which consists of color images of dig-



Model Depth | Params. | C10(%) | C100(%) | SVHN(%)
Stochastic Pooling [36] - - 15.13 42.51 2.80
Maxout Networks [4] - - 11.68 38.57 2.47
Network in Network [[18]] - - 10.41 35.68 2.35
Deeply Supervised Net [[16] - - 9.69 34.57+ 1.92
Competitive Multi-scale [[17]] - 4.48M 6.87 27.56 1.76
Highway Network [24]] - - 772+ 32.39+ -
Fractal Network [15]] 21 38.6M 10.18 35.34 2.01
FractalNet with Drop-path [15]] 21 38.6M 7.33 28.20 1.87
ResNet [6] 110 1.7M 6.61T - -
Stochastic Depth [10] 110 1.7M 11.66 37.80 1.75
ResNet(pre-activation) [7]] 164 1.7M 11.26 35.58 -
1001 10.2M 10.56 33.47 -
DenseNet(k = 12) [9] 40 1.0M 7.00 27.55 1.79
DenseNet(k = 24) [9] 100 27.2M 5.83 23.42 1.59
DenseNet(k = 24)[9]] 53 7.8M 6.45 24.32 1.78
DenseNet with SFR(k = 24) 53 7.8M 6.08 23.82 1.66
DenseNet-BC(k = 12)[9] 100 0.8M 5.92 24.15 1.76
DenseNet-BC with MCA(k = 12) 100 0.8M 5.41 24.07 -
DenseNet with MCA(k = 12) 40 1.0M 6.44 27.44 1.77
DenseNet with MCA(k = 24) 40 4.2M 5.38" 23.78 1.66
DenseNet with MCA(k = 40) 40 11.6M 5.76 22.65% 1.61*

Table 1.

Test error on CIFAR and SVHN datasets. Contents in boldface are our competitive results.

“ + 7 indicates that the error

rate is based on datasets with data augmentations. DenseNet with MCA achieves better performance than the original under the same
configuration. Particularly, when growth rate, depth are set as 24 and 40, the network obtains an excellent result (5.38%) on CIFAR-10
which is better than the original DenseNet with 100 and 53 layers. On CIFAR-100 and SVHN, our model with k& = 40 achieves more
remarkable results (22.65% and 1.61%). In the structure of DenseNet-BC, our MCA also has positive impacts on the performance.

its 0 to 9 of 32x32 resolution. There are 73,257 training,
26,032 testing, and 531,131 additional training images re-
spectively.

In our experiments, we apply the same normalization
methods on input images as the original DenseNet. For
CIFAR dataset, we subtract mean values and divide stan-
dard deviations, whereas for SVHN images, the pixel values
were divided by 255. We do not use any data augmentation
in the experiments, and only focus on comparing our ap-
proaches with other network models on original datasets.

4.3. Results and Discussion

We train our networks with different depths (40, 53,
100) and growth rates k (kK = 12,24,40) and compare
our approach with other well-known models on CIFAR-10,
CIFAR-100, SVHN; see Table 1.

Multi-scale Convolution Aggregation. To better evalu-
ate our novel module, we train different patterns of aggre-
gation on CIFAR-10 and test the best model on CIFAR-10,
CIFAR-100 and SVHN. The performance of our structure
with different setting on three benchmarks are shown in the
bottom of Table 1. With relatively fewer parameters (4.2M),

it obtains the lowest classification error rate on CIFAR-10
(5.38%) and CIFAR-100 (23.78%), and second best results
on SVHN (1.66%). In the case of £ = 40, depth = 40, our
model gets impressive results (22.65%) on CIFAR-100 and
(1.61%) on SVHN. This demonstrates that our MCA mod-
ule has much higher representative capacity and is able to
preserves abundant information of multi-scale convolutions.
This is crucial for preventing overfitting and promoting gen-
eralization ability.

Fig. [fright) compares different aggregation patterns for
fussing multi-scale convolutions information (k = 24,
depth = 40). The aggregation parameterized by gating
weights gains the best performance with only four param-
eters added. Its success may be attributed to the following
factors:

Factor 1: Aggregating different scales with trainable
weights is more flexible and representative than aggregating
with hand-crafted weights. During the process of SGD, the
weights of different kernel sizes are treated independently
and adaptively. Since pixels at different distances from the
central point should have different importance, this strategy
can preserve richer multi-scale information (texture, edges,
corners, etc.) while using much fewer parameters than sim-
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Figure 5. Test accuracy on CIFAR-10. All structures consist of the MCA module. Left: comparison between DenseNets with and without
SFR regularizer. Our dropout has a constant drop rate of 20%. Right: comparison of three aggregation patterns, which shows that adaptive

fusion is more powerful and representative.

ply concatenating them.

More importantly, for vision tasks with different com-
plexity, weights of gating units may vary under similar
trends during training, but often converge to different final
values; see Figure [§] This suggests that the optimal scale
for convolutions can be different for different datasets. For
instance, in CIFAR tasks, the module assigns high weights
(w1 and w3) to fine-scale features, whereas less coarse-scale
information is delivered to subsequent DenseNet. On the
other hand, for the SVHN dataset, the weight w7 has much
higher relative value than for the other two dataset, whereas
the weight w; is almost 0. This observation suggests that,
for simple digits classification tasks, coarse-scale features
extracted by 7 x 7 convolution is more important than in
other more complicated tasks. To further demonstrate this
point, we also run our module on another simple dataset
MNIST and obtain the similar observation (w7 = 0.5456
for MNIST vs. w7 = 0.1706 for CIFAR-10).

Factor 2: The combination of three dominant joining
methods (summation, maxout and concatenation) makes
our model highly non-linear and capable of effectively ag-
gregating multi-scale representations. Each joining method
has its own advantages. The combination of different ap-
proaches is also studied in [26], which shows a better per-
formance. By utilizing two maxout, the units of the aggre-
gation layer have strong competition which is beneficial for
training and optimizing deep networks. The two branches
of the fine-scale and coarse-scale aggregations enhance the
scale invariance property.

Stochastic Feature Reuse. We evaluate SFR on the same
three datasets and compare it with the original DensNet
with depth = 53 and growth rate k = 24. The additional
dense block with SFR is placed at the front or at the end
of the original DenseNet; see Table 2] for details. The com-
parison shows that placing the additional dense block with
SFR at the end of the DenseNet generates lower error rates
on all three datasets. We attribute the accuracy improve-

Block index | Error(%) Dataset
DenseNet [9] None 6.45 CIFAR-10
SFR 4th 6.08 CIFAR-10
SFR 1%t 8.99 CIFAR-10
SFR(No Dropout) 45t 10.00 CIFAR-10
DenseNet [9] None 24.32 CIFAR-100
SFR 45t 23.82 CIFAR-100
SFR 15t 26.54 CIFAR-100
SFR(No Dropout) 45t 27.15 CIFAR-100
DenseNet [9] None 1.78 SVHN
SFR 45t 1.66 SVHN
SFR 15 2.12 SVHN
SFR(No Dropout) 45t 3.02 SVHN

Table 2. Test error of DenseNets trained with stochastic fea-
ture reuse on different datasets without data augmentation. SFR
is more powerful when placed at the end of DenseNets.

ment to the fact that SFR randomly generates a new sub-
network with different propagation path for each mini-batch
and implicitly train an ensemble of different networks. This
kind of dropout can disorganize the co-adaptation among
reused features and prevent overfitting. On the other hand,
adding the additional dense block with SFR to the front of
DenseNet actually hurt the performance since this will lead
that shallow layers are too narrow to pass sufficient infor-
mation flow. In addition, we observe that SFR should work
with Hinton’s Dropout, without which the accuracy also de-
generates.

Another observation is that our method is more effec-
tive on wider DenseNets, as narrow networks in general do
not have serious co-adaptation issue or long training time.
The ways of widening DenseNet mainly includes using a
larger growth rate k or increasing channels of the first ini-
tial layer. Hence, to illustrate the impact of different growth
rate on the performance of our SFR, we firstly evaluate on
CIFAR-10 based on three growth rates 12, 24 and 40. More-
over, the case of wider initial layer also be considered. Here
we expand the first initial convolution layer four times via
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Figure 6. The variation of aggregation weights during the training under different datasets. The optimal weights for different tasks are
different. Under the Stochastic Gradient Descend (SGD) , the model adaptively controls the flow of multi-scale information so that the
scales with high discrimination power are preserved whereas the redundant ones are suppressed.

Width | w.o. SFR | w. SFR | Improve
SFR(k = 12) | 17196 6.93 6.80 0.13
SFR(k = 24) | 34392 6.45 6.08 0.37
SFR(WIL) 34536 6.09 5.76 0.33
SFR(k = 40) | 57320 6.53 6.32 0.21

Table 3. Test error with or without SFR under different growth
rates k and wider initial layer on CIFAR-10. WIL means “Wider
Initial Layer”. Width is the maximal number of channels of all
layers in DenseNet. When growth rate is set as 24, our SFR is
more beneficial for improvements of performance on CIFAR-10.

four-scale convolutions and the training results are shown in
Fig. B[left). Table [3|shows the results under different cases.
SFR test error increases to 6.32% when growth rate adds
up to 40 as a very large bandwidth causes slight overfitting.
Using SRF with high drop probability addresses this issue.

5. Conclusions

A novel network module, referred as Multi-scale Con-
volution Aggregation, is presented in this paper. It con-
sists of 4 groups of multi-scale convolutions, cross-scale
aggregation parametrized by 4 trainable weights and 2 max-
out that produces 2 branches of feature maps representing
smaller and larger receptive fields respectively. In our ex-
periments, Densenets with our new model obtain excellent
performance while requiring substantially fewer parameters
than utilizing traditional inception module. Instead of sim-
ple equal-weighted aggregation, our aggregation employs
self-adaptive strategy to control the information flow of

convolution filters. It automatically optimizes these weights
according to different vision tasks. Trainable aggregation
guarantees the maximum use of multi-scale convolutions
and is the key for reducing parameters, whereas maxout
strengthens the competitions among units in fine-scale and
coarse-scale branches. The combination of three joining
methods: concatenation, summation and maxout makes the
networks highly non-linear.

In addition, a Stochastic Feature Reuse strategy is also
presented for training deep DenseNets effectively and ef-
ficiently. This regularizer downsamples a new subnets of
the basic DenseNet for each mini-batch during training but
reuses all feature maps produced by preceding layers at test
stage. Our method enhances the performance of DenseNets
through breaking the co-adaptation among reused features
and implicitly training an ensemble of multi-subnets with
different widths. Being a simple and easy-to-apply ap-
proach, SFR is more useful for wider DenseNets with a
larger growth rate and can effectively alleviate the difficul-
ties of training wide networks.

For future work, we would like to explore the applica-
tions of the MCA module in other prominent deep architec-
tures, as we felt MCA can be beneficial through introducing
scale-invariance information without adding feature redun-
dancy. In addition, when evaluating SFR, we empirically
use a constant drop probability. It is interesting and mean-
ingful to explore other configurations of the drop probabil-
ity in future experiments.
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