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Abstract

With the large scale explosion of images and videos over
the internet, efficient hashing methods have been developed
to facilitate memory and time efficient retrieval of similar
images. However, none of the existing works use hashing to
address texture image retrieval mostly because of the lack
of sufficiently large texture image databases. Our work ad-
dresses this problem by developing a novel deep learning
architecture that generates binary hash codes for input tex-
ture images. For this, we first pre-train a Texture Synthe-
sis Network (TSN) which takes a texture patch as input and
outputs an enlarged view of the texture by injecting newer
texture content. Thus it signifies that the TSN encodes the
learnt texture specific information in its intermediate layers.
In the next stage, a second network gathers the multi-scale
feature representations from the TSN’s intermediate layers
using channel-wise attention, combines them in a progres-
sive manner to a dense continuous representation which is
finally converted into a binary hash code with the help of in-
dividual and pairwise label information. The new enlarged
texture patches from the TSN also help in data augmenta-
tion to alleviate the problem of insufficient texture data and
are used to train the second stage of the network. Experi-
ments on three public texture image retrieval datasets indi-
cate the superiority of our texture synthesis guided hashing
approach over existing state-of-the-art methods.

1. Introduction
Recent times have seen a huge explosion of digital im-

ages over the internet which has made large image databases
prevalent. Given any database one might want to search for
images semantically using a query image. Content Based
Image retrieval (CBIR) explored in [20, 23, 32, 35, 37, 38]
provides a solution to the above mentioned problem by re-
trieving a set of similar images by the measure of a similar-
ity metric between the feature representations of the query
image and the member images of the database. Thus a gen-
eral image retrieval pipeline consists of two steps : first,

characterization of each image by rich discriminative fea-
tures and second, performing a similarity search by some
metric using these features to retrieve similar images.

Feature representations for images are usually
continuous-valued and thus running a nearest neigh-
bour search on these representations for retrieval turns out
to be very slow and computationally inefficient, especially
for real-time applications in mobile devices or in databases
with millions of images. Hence, there is a need to optimize
this naive search technique under the constraints of both
space and time. Hashing [47] is one such state-of-the-art
technique for Approximate Nearest Neighbor (ANN)
search [17, 34, 36] used due to faster retrieval speeds and
reduced memory footprint. It involves learning a hash
function for encoding continuous-valued image descriptors
to compact binary codes while preserving their similarity
and discriminative properties. The similarity between two
such hash codes can be easily computed by their Hamming
distance with the simple XOR operation. Recently, perfor-
mance of traditional hashing methods have been bettered by
deep hashing techniques like [4, 5, 13, 21, 22, 31, 54, 55]
which employ deep neural networks for learning the hash
function. Consequently, our work uses deep hashing to
address a special kind of image retrieval task called Texture
Image Retrieval.

Texture image retrieval may be defined as a type of CBIR
which aims at searching for images having texture-patterns
semantically similar to that of the query image. Texture be-
ing a low level visual attribute of an image’s surface acts as a
representative of the surface’s roughness and also provides
useful visual cues about the object’s identity. Texture im-
age retrieval has a variety of applications such as in digital
library, multimedia web search, multimedia storage system
and query-based video investigation. However, this task is
very challenging for a couple of reasons. Firstly, due to the
lack of large scale texture databases, this task is much less
explored in the context of deep learning as compared to or-
dinary image retrieval. Secondly, for image retrieval tasks
in general, the closeness among images is usually governed
by the similarity among their high level features. However,
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in texture image retrieval where similarity is governed by
texture patterns, similar semantics become difficult to cap-
ture owing to the fact that texture is a low level visual at-
tribute.

In our work, we introduce a deep hashing framework for
texture image retrieval guided by a Texture Synthesis Net-
work (TSN) [52]. We extract information at various levels
from the intermediate layers of a pre-trained TSN and com-
bine these multi-scale activations using channel-wise atten-
tion in a progressive manner to generate a powerful set of
feature descriptors for texture images. The example-based
texture synthesis approach aims at generating a texture im-
age, double the size of input that faithfully captures all the
visual properties of the input by preserving the large-scale
structural features, the natural appearance and the spatial
variation of local patterns. For this we use a generative ad-
versarial network (GAN) where the generator aims to syn-
thesize a larger image with an expanded view of the given
input texture and the discriminator aims at comparing and
classifying the generated textures with the corresponding
ground truth images. Although this might resemble im-
age super-resolution [24], they are different in various ways.
Image super-resolution simply aims at enhancing the qual-
ity of the given image by increasing its resolution and sharp-
ening it, whereas, texture synthesis aims at expanding the
view of the given texture patch by injecting additional con-
tent consistent with the given input. Since the generator is
able to synthesize larger textures from smaller patches, it is
evident that all of the texture related information is recorded
in the intermediate layers of the generator network. This in-
formation is used as the key source in our work for generat-
ing good descriptors for texture images.

Channel-wise attention helps us to combine activation
maps from various layers of the pre-trained TSN in a selec-
tive manner and reduce noise, such that channels with more
information are given greater weightage than noisy and less
informative ones. These continuous valued features are fi-
nally hashed to generate compact binary coded representa-
tions of the images. In addition to images from existent tex-
ture datasets, we also make use of images generated from
our TSN to alleviate the problem of insufficient texture data
for training which significantly improves the performance
of our deep neural network.

In this paper, we make the following novel contributions:
• We introduce a deep hashing network for texture image
retrieval, which uses the rich texture information recorded
in the intermediate layers of a pre-trained TSN, filters
them using channel-wise attention and then combines these
multi-scale feature representations in a progressive manner
to get a powerful and robust set of feature descriptors for
texture images. We finally learn a hash function to map
these continuous valued feature descriptors to dense binary
codes.

• To the best of our knowledge, our work is the first to
introduce an end-to-end deep neural network and hashing
for texture image retrieval. Experimental results on various
benchmark datasets exhibit a superior performance of our
framework over existing methods.

2. Related Work
Earlier methods for image retrieval relied on encoding

techniques [15, 40, 41] for aggregating local patches to
build a global image representation. Later methods such as
[11, 39] relied on convolutional neural networks (CNNs) for
learning image features. Krizhevsky et al. [18] used feature
information gathered by a classifier, pre-trained on large
scale dataset like ImageNet, as the basis of developing suit-
able descriptors for instance-level retrieval tasks. A more
recent work by Radenovic et al. [43] aims at generating
good descriptors for image retrieval by fine-tuning CNNs
on a large collection of unordered images in a fully auto-
mated manner. The authors of [11] proposed a large-scale
dataset which they cleaned to produce less noisy training
data for image retrieval. Furthermore, they improved the
R-MAC feature descriptor [46] and used a triplet loss for
training it using a siamese network.

Few of the existing works compressed the descriptors to
improve the storage requirements and retrieval efficiency at
the cost of reduced accuracy. Both supervised [12] and un-
supervised [14, 41, 42] compression techniques are used for
this purpose. The issue of compressing the feature descrip-
tors for faster retrieval without compromising on accuracy
is solved by hashing. Traditional hashing methods largely
differ from the state-of-the-art deep learning based methods
which learn the image representations and hash codes in an
end-to-end manner.

The authors of [51] proposed one of the first approaches
to deep hashing called Convolutional Neural Network
Hashing (CNNH) which used a two stage network for learn-
ing the image representations and the hash codes. However,
their hash code learning process did not receive any kind of
feedback from the learnt image representations. Network
in Network Hashing (NINH) [21] attempts to alleviate the
problem faced in CNNH by learning the image represen-
tations and the hash codes at the same stage. Many other
ranking-based deep hashing methods [48, 53, 55] and pair-
wise label based deep hashing methods [29, 57] have been
proposed in the recent years. The hashing part of our work
draws inspiration from [28] which proposes a single frame-
work to learn the binary codes directly by using both pair-
wise and individual label information.

Although hashing has been proved to significantly in-
crease the time and memory efficiency, it has still not been
used in texture image retrieval. Earlier methods on tex-
ture image retrieval relied on handcrafted features like Dis-
crete wavelet transform, Gabor features [26], local binary



Figure 1: A 128× 128 texture patch is passed as input to the pre-trained generator of the TSN which generates an expanded
texture patch of size 256× 256 as output. The corresponding activation maps of the same size from the encoder and decoder
part of the generator are depth-wise concatenated and are passed through a channel-wise attention (CA) module to generate
a filtered version of the intermediate features, followed by a 1 × 1 convolution operation. We use separate CA modules for
every pair of feature combination between encoder and decoder side of activation maps. The multi-scale features are then
combined in a progressive manner using successive downsampling (by strided convolution) and depth-wise concatenation.

pattern (LBP) [33], rotated wavelet filter, rotated complex
wavelet filter and dual tree complex wavelet transform for
feature extraction. Although LBP worked well for grayscale
images, it performed poorly for colour images. To alle-
viate this problem, the authors of [33] introduced color-
information feature (CIF) in addition to LBP to generate
textural and color information for images under the settings
of image retrieval and classification. Li et al. [26] use Ga-
bor wavelets to decompose colour texture images into vari-
ous dependencies, analyse them and then capture these de-
pendencies with Gaussian copula models. A recent work

by Banerjee et al. [2] introduces a new feature descriptor
called Local Neighbourhood Intensity Pattern (LNIP). We
argue that in order to learn good feature descriptors for tex-
ture image retrieval, it is necessary to understand the under-
lying patterns and the low-level and high-level properties of
the texture images. This can be done effectively by learning
to generate a larger texture image from a smaller patch by
injecting newer patterns in a consistent and non-repeating
manner.

Texture synthesis aims exactly at this task and has been
extensively researched for over the past two decades. Clas-



sical methods for texture synthesis include non-parametric
approaches, such as [6, 19, 25, 49, 50]. Whereas recent ap-
proaches [3, 16, 27, 52, 56] make use of deep learning based
methods to significantly improve the quality of results. One
of the earliest methods for texture synthesis using deep neu-
ral networks include the work of Gatys et al. [8] where they
iteratively optimize an image to generate texture. Fang et
al. [7] proposed a novel application of texture synthesis for
editing images by applying texture to the surface of a pho-
tographed object. TextureGAN [52] uses a deep generative
network that aims to synthesize textures in sketch images
guided by user defined texture samples. In [56], Zhou et
al. proposed a state-of-the-art generative approach for dou-
bling the spatial extent of the given input patch by injecting
newer texture content.

3. Proposed Work
This work introduces a novel deep hashing framework

for texture image retrieval. We aim to generate good fea-
ture descriptors for texture images by transferring knowl-
edge learned from the task of texture synthesis to texture
image retrieval. Our framework can be divided into two
stages: In the first stage, we train the TSN using an ad-
versarial setup, where the generator learns to generate large
texture images from smaller patches by injecting newer tex-
ture content. In the second stage, the pre-trained TSN is
used for feature extraction of texture images for hashing.
We combine the multi-scale activation maps from the in-
termediate layers of pre-trained generator network in a se-
lective and efficient manner to generate a powerful set of
feature descriptors. Finally, these continuous valued fea-
ture descriptors are hashed to compact binary vectors for
efficient memory usage and faster retrieval. These binary
valued vectors are then compared by their Hamming dis-
tance using a simple XOR operation. We also tackle the
data insufficiency problem for training the deep network by
using the newly generated texture patches from the TSN for
learning the hash function. The details of our model and the
training procedure is discussed in the subsequent sections.

3.1. Texture Synthesis Network

Generating large texture images from smaller patches
forms the basis of generating powerful feature descriptors
for the texture images in our work. A generative adversarial
approach is employed for texture synthesis, with a convolu-
tional encoder-decoder network as the generator and a fully
convolutional classification network as the discriminator.

The generator GTSN (.) takes in a smaller texture patch
of size K × K as input and generates a larger texture im-
age of size 2K × 2K via adversarial expansion. In the en-
coder part of the generator, after every strided convolution
operation, the spatial dimensions of the activation maps are
halved and the number of channels are increased. Similarly

in the decoder part, after each deconvolution operation, the
spatial dimensions of the activation maps are doubled and
the number of channels are reduced. The generator network
is by purpose designed in a symmetric manner to allow easy
combination of activation maps from the corresponding lay-
ers of the encoder and decoder network in the second stage
of our framework. It is also to be noted that the genera-
tor is not perfectly symmetrical due to the extra deconvo-
lution operation in the decoder part which is necessary for
upsampling the image to size 2K × 2K. The details of
the generator architecture has been shown in Figure 1. The
discriminator, DTSN (.), is a traditional convolutional clas-
sification network which takes in a large texture image (of
size 2K × 2K) and classifies it as being generated by the
generator (fake) or not (real). Our discriminator has an ar-
chitecture similar to the one used in [44].

Along with the adversarial loss Ladv [10], for simulta-
neous training of the generator and the discriminator, we
follow [56] to use two additional loss terms which guide
the generator to generate high quality expanded textures
over time. We use L1 loss between the image patch out-
put by the generator and it’s ground truth counterpart from
the examples so as to provide a pixel-wise error supervision
to the generator. Second, we use style loss Lstyle [9] to
enforce perceptual similarity between the generated image
and the ground truth image. For this, we use Gram matrices
[9] computed from the activations of convolutional layers of
the pre-trained VGG-19 network. Therefore, the final loss
equation is as follows:

Ltotal = Ladv + γ1Lstyle + γ2LL1
(1)

The pre-trained generator of this TSN is used for two
purposes: first, to extract powerful feature descriptors for
the texture images from its intermediate layers and second,
to generate more data to train the second stage of the net-
work for hashing.

3.2. Channel-wise Attention

In the second stage of our framework, we perform
channel-wise concatenation of the corresponding activation
maps of the same size from the encoder and decoder parts of
the pre-trained TSN. The reason behind this concatenation
is that we intend to combine both local and global informa-
tion from the intermediate layers of the TSN. The activa-
tions from the encoder part hold the local texture-specific
information extracted from the input patch, whereas the ac-
tivations from the decoder part hold information about the
inherent properties of the texture and a global class-specific
representation of the same. Since the decoder part is mainly
responsible for generating an expanded view of the input
texture by injecting additional texture content, it can be in-
terpreted that the information contained in the activation



maps of the decoder part is more representative of the inher-
ent global properties of the texture image. Every channel of
any convolutional feature map has high response to some
specific content of the image. Thereby it becomes impor-
tant to assign more priority to those channels which contain
more discriminative information in order to facilitate better
feature learning. The Channel-wise Attention (CA) mod-
ule in our framework is mainly used to encode this char-
acteristic and in the process provides higher weightage to
the channels carrying more texture specific information than
the channels with lesser information. The output of the CA
module is a tensor of same dimensions as that of input but
channels weighted as per their scalar relevance value.

An intermediate output of the CA module is a vector Ac

having dimension equal to the number of input channels C,
along which the attention operation is applied. Here, every
ith element of Ac represents the normalized contribution of
the corresponding ith channel to the output of the attention
module. Ac is calculated as follows :

Ac = softmax(Wc ∗ q + b) (2)

In the above equation, ∗ operator represents the convolution
operation, Wc represents the convolutional filter, b repre-
sents the bias factor and q represents the vector of dimen-
sion C obtained by performing global average pooling on
every channel of the input to the channel-wise attention
module. This normalized vector is finally multiplied with
the original input tensor to get a filtered output. We use sep-
arate CA modules for every pair of feature combination be-
tween the encoder and the decoder side of activation maps.
In our case, we use 8 different CA modules (see Figure 1)
in order to adaptively weigh different channels of the com-
bined feature maps of sizes ranging from 256×256 till 2×2
by powers of 2.

3.3. Progressive Multi-scale Feature Combination

Following the channel-wise attention operation, we in-
tend to combine these multi-scale feature maps to get a fi-
nal feature vector representation of the input texture patch.
This progressive multi-scale feature combination module
includes two operations: first, a 1 × 1 convolution opera-
tion upon the filtered output of the CA module and second,
progressive combination through successive downsampling
by strided convolution and depth-wise concatenation. There
are two main reasons behind the use of 1 × 1 convolu-
tion: feature mixing by combining channel-wise weighted
feature maps and dimensionality reduction by reducing the
number of channels equal to the depth of the previous layer
for concatenation at a later stage. Let CAM represent
the output of a CA module applied to feature map of size
M × M , where M has values 256, 128, 64, 32, 16, 8, 4,
and 2 . 1× 1 convolution is applied to every CAM , except
where M equals to 256, resulting in a feature map FM

1×1.

First, CA256 is passed through a strided convolutional layer
giving F 128

strided and then concatenated with F 128
1×1 which is

of same depth. In a similar fashion, the concatenated feature
map is again passed through another strided convolutional
layer by outputing F 64

strided and similar operations are per-
formed for successive downsampled feature maps to finally
generate a d dimensional vector. Therefore, it can be gener-
alized from M = 128 onwards as follows:

FM
1×1 = Conv1×1(CA

M ) (3)

F
M/2
strided = Convstrided(F

M
strided ⊕ FM

1×1) (4)

where, Convstrided(·) is a strided convolution layer with
kernel size 3 × 3 and stride 2, and Conv1×1(·) is a 1 × 1
convolutional layer with number of filter equals to half of
the depth of its input. A clearer and vivid visual description
can be found in Figure 1.

3.4. Hash Function

The previous sections involved generating a d dimension
feature descriptor for a given input texture patch. This sec-
tion describes the use of hashing which converts these con-
tinuous feature representations to dense binary codes while
preserving the semantic similarity between the images.

In the problem of hashing, given a set of N images each
of which have been described by the features of dimension
d the aim is to encode the feature matrix, Z, of dimension
d×N into another matrix H of dimension k×N such that
every element of H is either 1 or −1. In other words every
column of Z that represents the image’s complex features in
d dimensions is mapped to a binary feature representation
of dimension k. Thus if we consider h(.) to be the hashing
function, this process can be explained mathematically as
Hi = h(Zi), where Hi represents the ith column of matrix
H and Zi represents the ith column of matrix Z.

Following [28], we make use of both pairwise label in-
formation and individual label information for supervising
the hashing network. The similarity measure between two
binary hash codes (bi, bj) is defined using the concept of
Hamming distance disth(·, ·) and cosine similarity 〈·, ·〉 as

disth(bi, bj) =
1

2
(k − 〈bi, bj〉). Since the inner product

and Hamming distance are inversely related, we can use in-
ner product to quantify similarity between the hash codes.
Negative log likelihood reduces the Hamming distance be-
tween similar pair of images and increases the Hamming
distance between dissimilar pairs. A simple linear classi-
fication network is used along side to exploit the label in-
formation directly and is based on the assumption that the
learned binary codes should be good enough for classifica-
tion as well. Therefore, our final loss function is a weighted
summation of negative log likelihood function J [28] and



classification loss Q [28], and is given by :

Lhash = J + νQ (5)

Since optimizing Lhash is a discrete optimization problem,
we follow the training and testing procedure proposed in
[28] for this purpose.

4. Experiments
4.1. Datasets

To demonstrate the efficiency of our method, we evalu-
ated the proposed texture synthesis guided hashing frame-
work on three popular texture datasets by comparing it
against several state-of-the-art hashing frameworks. We use
the MIT-VisTeX (full) database which is a collection of 167
unique texture patterns of size 512×512 with one image be-
longing to every class. Next, we also show our experimen-
tal results on the Salzburg Texture (STex) database which is
a collection of 476 unique texture patterns recorded under
real-world conditions. Every image of this database is of
size 1024 × 1024 with one image belonging to every cat-
egory of texture. We select this database to test the per-
formance of our framework for higher number of classes.
We also show our experimental evaluations on the Ams-
terdam Library of Textures (ALOT) database that contains
coloured images of 250 unique texture patterns. For every
unique texture pattern, 100 images were recorded by vary-
ing various scientific parameters. Apart from this, linear
mixtures of 12 materials are also included in the database
totalling upto more than 27500 images in the database. This
database was chosen because it contains a larger intra-class
variance which necessitates a robust framework for han-
dling the same.

4.2. Implementation details

Data Preparation: Since both MIT-Vistex and STex con-
tain only one image for every texture class, we resize all the
images from these datasets to 1024 × 1024 and divide ev-
ery image into 4 regions. Now randomly sampled patches
covering three-fourth of the image region are used for train-
ing and rest one-fourth is used for sampling test patches,
so that every testing sample remains unseen to the trained
model. On the other side, ALOT has 100 samples for every
texture class and we randomly select 70 images for training,
20 for testing and rest 10 for validation. This split is main-
tained for every experiment and we denote this division as
{Dtrain, Dtest, Dval}. For our experiments, Dval comes
only from the ALOT dataset and all the hyperparameters are
tuned based on this and remain constant for all the experi-
ments. In our framework, there are two stages of training:
we first train the Texture Synthesis Network (TSN) in an
adversarial setup alongwith a discriminator using the objec-
tive in Equation (1). Thereafter, we use the pre-trained TSN

as a multi-scale feature extractor and train the second stage
of the network with the objective in Equation (5) that finally
outputs a k bit binary vector for a given input texture patch.
Following this, we use two types of training samples for
training these two stages. Stage - 1: To train the TSN, we
use paired data {I128inp,stage1, I

256
gt,stage1}, where I256gt,stage1 is

an image of size 256× 256 randomly sampled during every
iteration of Stage - 1 from Dtrain and I128inp,stage1 is a ran-
domly cropped 128×128 texture patch contained inside the
I256gt,stage1. Stage - 2: As the second stage is responsible for
finally generating the binary hash codes, the second stage is
supervised with the paired data {Iiinp,stage2, Li

gt,stage2}Ni=1,
where Iiinp,stage2 is an image of size 128×128 cropped ran-
domly from Dtrain and Li

gt,stage2 denotes the correspond-
ing class label of ith training sample. For every experiment,
we generate a total of 2000 texture patches (from Dtrain)
with respect to each class in order to train the network.
During inference, we randomly generate 200 texture images
(from Dtest) of size 128 × 128 from every class which are
used as query to evaluate the performance.

Training: Stage - 1: During the first stage of training,
the generator GTSN (·) takes I128inp,stage1 as input and out-
puts I256G of size 256 × 256. The discriminator, DTSN (·),
tries to classify between the generated image I256G (fake)
and the corresponding ground truth I256gt,stage1 (real), and
gives rise to adversarial loss, Ladv . Reconstruction loss
(LL1

) is calculated by taking the absolute difference be-
tween I256G and I256gt,stage1. We use a VGG-19 model pre-
trained on Imagenet to calculate the style loss (Lstyle)
using Gram matrices computed at the output of the fol-
lowing layers : relu1 1, relu2 1, relu3 1, relu4 1 and
relu5 1. Following [8], a weighted summation of the
corresponding losses is done by setting the weights to
0.244, 0.061, 0.15, 0.004, 0.004 respectively. A Gaussian
distribution of mean 0 and standard deviation 0.02 is used to
initialize the weights and biases of all the the convolutional
layers. Following [56], we use the Adam optimizer with
initial learning rate 0.0002 and set momentum to 0.5. We
train the network for 100000 epochs, and γ1 and γ2 are set
to 100 and 1 respectively. Once the training of Stage - 1 is
complete, we freeze all the weights ofGTSN (·) and use it as
a feature extractor. Stage - 2: In the second stage, we feed
Iiinp,stage2 to the TSN (i.e. GTSN (·)) and extract multi-
scale feature representations from its intermediate layers.
To alleviate the problem of insufficient data, we also use
the generated texture patches I256G from the output of TSN
by sampling random patches of size 128 × 128, in order to
train the second stage of network in an end-to-end manner.
This aids in data augmentation and helps the second stage
of the network to generalize well even from limited amount
of original data. While training the second stage of the net-
work, we follow the procedure used by the authors of [28].



Figure 2: Images generated by the Texture Synthesis Network. The smaller patches denote the inputs to the Synthesis
Network and the remaining columns show results generated by using different combinations of loss functions.

Figure 3: (a)-(c), (d)-(f), (g)-(i) show precision (Hamming radius ≤ 2) vs. number of bits, precision vs. number of top
retrieved images, and precision vs. recall curve for STex, MIT-VisTex, and ALOT datasets respectively.

4.3. Performance Analysis

In recent years, there has been a number of works ad-
dressing different loss functions to train end-to-end net-
works for hashing. DSDH [28] employs a deep CNN-F
architecture and uses pairwise label and classification in-
formation for generating hash codes. Similar to DSDH,
DPSH [29] uses pairwise label information, but learns fea-
ture representations and hash codes simultaneously. Sim-
ilar to DPSH, DHCQ [45] goes for simultaneous learning
of feature representations and hash codes based on classi-
fication and quantization errors. Due to superior perfor-
mance on various benchmark datasets, we have used the
loss functions and training methods proposed in DSDH [28]
to train the second stage of our framework which finally out-
puts a k-bit binary vector. However, our generative model
guided deep hashing framework is a meta-framework and

can be easily extended with any other state-of-the-art’s ob-
jective functions for training. Therefore, we have used ob-
jective functions from two other end-to-end trainable deep
hashing frameworks [29, 45] in order to justify the effi-
cacy of our framework. We name the experimental se-
tups as TSN-DSDH, TSN-DPSH, TSN-DHCQ; where we
train the second phase of our network, guided by a gener-
ative model, using the loss functions introduced in DSDH,
DPSH and DHCQ respectively. We also compare with the
original frameworks used in DSDH, DPSH, DHCQ which
are broadly based on feed-forward convolutional neural net-
work. We also compare against traditional hashing methods
like FastHash [30] and LSH [1] where every texture patch is
represented by a standard LBP feature descriptor. Follow-
ing other works [28, 45], we evaluate Mean Average Preci-
sion (MAP) for different methods using same standard split-



Methods STex VisTex ALOT
32 bits 64 bits 128 bits 256 bits 32 bits 64 bits 128 bits 256 bits 32 bits 64 bits 128 bits 256 bits

TSN + DSDH (Ours) 0.60 0.624 0.646 0.655 0.731 0.746 0.759 0.762 0.711 0.722 0.737 0.741
TSN + DHCQ 0.598 0.617 0.631 0.643 0.682 0.702 0.719 0.734 0.688 0.7 0.712 0.721
TSN + DPSH 0.587 0.611 0.629 0.632 0.667 0.699 0.711 0.717 0.64 0.661 0.675 0.688
DSDH [28] 0.44 0.464 0.475 0.482 0.554 0.582 0.6 0.606 0.518 0.54 0.555 0.56
DHCQ [45] 0.432 0.46 0.471 0.478 0.542 0.559 0.573 0.581 0.451 0.49 0.527 0.542
DPSH [29] 0.430 0.420 0.415 0.413 0.498 0.512 0.52 0.524 0.43 0.458 0.483 0.498

FastHash [30] 0.369 0.381 0.394 0.396 0.387 0.414 0.431 0.449 0.324 0.354 0.386 0.41
LSH [1] 0.347 0.363 0.377 0.382 0.368 0.395 0.411 0.419 0.303 0.351 0.37 0.376

Table 1: MAP values of different methods using top-500 retrieved images.

Variants STex VisTex ALOT

T
SN

L
os

s LL1 + Lstyle 0.19 0.23 0.213
Ladv 0.482 0.566 0.551

Ladv + Lstyle 0.586 0.671 0.643
Ladv + Lstyle + LL1 0.624 0.696 0.722

No CA 0.587 0.651 0.678
No Data Augmentation 0.556 0.592 0.659

Table 2: MAP values for different variants of the proposed
model using code length of 64 bits.

ting protocol on three different datasets (see section 4.2).
Table 1 depicts the MAP values at different lengths of hash
code. In Figure 3, we have shown the plot for precision
vs. top-T retrieved samples, precision vs. number of bits
in hash code and precision vs. recall keeping the thresh-
old for Hamming distance equal to 2. From Figure 3, it
is evident that the performance of DSDH, DPSH, DHCQ
is limited. Whereas, the same loss objective significantly
boosts up the performance when combined with our TSN
guided framework. Comprehensive experiments also vali-
date that our method is the most time efficient with the av-
erage retrieval time per query (in seconds) being 0.00104,
0.00169 and 0.00281 for ALOT, MIT-VisTeX and STeX re-
spectively. From our observation, this significant improve-
ment is mainly due to two reasons: first, our generative
model guided framework can facilitate better feature learn-
ing, and second, the generated outputs of TSN help in data
augmentation for the training of second stage of our frame-
work.

4.4. Ablation Study

In our framework, the central idea is to use a power-
ful generative model (TSN) to help generate better feature
representations for texture image retrieval. Therefore, we
carry out a comprehensive study to judge how image re-
trieval performance is related to the quality of image gen-
eration network. Figure 2 depicts the quality of generated
texture patches due to the use of different combinations of
loss functions. In four different experiments, we train the

TSN using the following combinations of the loss functions
: a) L1 loss and style loss (b) adversarial loss (c) adversar-
ial and style loss (d) adversarial loss, style loss and L1 loss.
Thereafter, we use such pre-trained TSN networks as fea-
ture extractors in the second stage of training one at a time.
We notice the performance due to pre-trained TSN using
combination (a) to be very poor. The main driving force of
this TSN network is the adversarial loss function. However,
adding both L1 Loss and style loss alongside helps the TSN
to generate better quality images, and thereby signifying a
significant rise in the texture retrieval performance. The
performance due to different possible combinations of loss
objectives to train the TSN is shown in Table 2. This implies
that the better the generated images are, the more powerful
are the feature representations preserved in the intermediate
layers, thereby significantly improving the retrieval perfor-
mance. Apart from considering the importance of individ-
ual losses of TSN, we also conduct experiments to verify
the importance of channel-wise attention. We notice a drop
of 0.037, 0.045 and 0.044 in the MAP values (with code
length 64) for VisTex, STex and ALOT dataset respectively
by removing the channel-wise attention in the second stage.
We also conduct experiments without using data augmenta-
tion from the generated texture patches. Consequently, we
notice a drop in the performance which is significantly large
for Vistex and STex datasets due to them having less amount
of data.

5. Conclusion
We have introduced a novel deep hashing architecture

for texture image retrieval. Our framework first pre-trains
a TSN which learns to synthesize an expanded view of a
given texture thus recording texture specific information in
its intermediate layers. The binarized hash codes are finally
obtained by gathering feature maps from these intermediate
layers and combining them in a selective and progressive
manner. We also alleviate the problem of limited training
data by using the generated texture patches from the TSN
for training. Thus we conclude that, the idea of extracting
more robust features guided by generative networks can fur-
ther be extended to other image retrieval problems.
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