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Abstract

To automatically produce a brief yet expressive summary
of a long video, an automatic algorithm should start by re-
sembling the human process of summary generation. Prior
work proposed supervised and unsupervised algorithms to
train models for learning the underlying behavior of hu-
mans by increasing modeling complexity or craft-designing
better heuristics to simulate human summary generation
process. In this work, we take a different approach by ana-
lyzing a major cue that humans exploit for summary gener-
ation; the nature and intensity of actions.

We empirically observed that a frame is more likely to
be included in human-generated summaries if it contains a
substantial amount of deliberate motion performed by an
agent, which is referred to as actionness. Therefore, we
hypothesize that learning to automatically generate sum-
maries involves an implicit knowledge of actionness esti-
mation and ranking. We validate our hypothesis by running
a user study that explores the correlation between human-
generated summaries and actionness ranks. We also run a
consensus and behavioral analysis between human subjects
to ensure reliable and consistent results. The analysis ex-
hibits a considerable degree of agreement among subjects
within obtained data and verifying our initial hypothesis.

Based on the study findings, we develop a method to in-
corporate actionness data to explicitly regulate a learning
algorithm that is trained for summary generation. We as-
sess the performance of our approach on 4 summarization
benchmark datasets, and demonstrate an evident advantage
compared to state-of-the-art summarization methods.ﬂ

1. Introduction

With the immense growth in the use of smart-phones
and cameras, the amount of recorded visual data has be-
come by far much more available than what can be at-
tentively viewed. Each day 144,000 hours of video are
uploaded to YouTube, which is almost 17 years worth
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Figure 1. When generating summaries, humans often favor frames
containing deliberate motion (such as a jumping man) over
frames without deliberate motion (such as waterfall), even when
natural/non-deliberate motion is more intense. The main ques-
tion addressed here is whether we can gain insights from learning
to recognize deliberate actions (i.e., actionness) to further assist
video summarization.

of videos [[16, 36, [12]. Moreover, recent statistics re-
port that 245 million CCTV cameras are professionally in-
stalled around the world, actively surveying day-to-day ac-
tivities [17]. Records in 2017 show that there are at least
2.32 billion active camera phones [37]]. Estimates show that
about 2.4 million GoPro body cameras were sold world-
wide in 2015 [44]]. This calls for efficient and automatic
methods that quickly examine visual data and provide an
informative briefing about the original videos. Video sum-
marization addresses the problem of selecting a subset of
video frames such that summary captures the most impor-
tant and representative events of the original video.

Several prior works made substantial efforts to better un-
derstand the video summarization problem and have pro-
posed heuristic solutions (e.g., (26} [50, 311 39]). The
remarkable success of deep neural networks
has motivated researchers in designing even more complex
black-box models instead of a developing a profound un-
derstanding of the problem (e.g., [53] 3l 20]). While
increasing model complexity often helps in better modeling
the latent patterns of data, it has the risk of overfitting to
standard benchmark training video datasets and being sen-
sitive to noise and irrelevant features, unless a proper learn-
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Figure 2. When examining human-generated summaries, we observe that they usually contain high degree of deliberate actions. In this
work we put forth and examine the following hypothesis: ”Frames containing high magnitude of deliberate motion have a higher likelihood

of being included within the video summary”.

ing objective is used. To address this challenge, here we
seek to investigate a new learning objective that takes into
account the role of deliberate actions performed by generic
agents within the human-generated summaries and utilize
this correlation to perform a robust automatic summariza-
tion. The premise of our work stems from our observation
that humans tend to include frames with deliberate actions
more frequently in the summary, since they tend to repre-
sent more “unexpected and important” events, and tell more
about the story of the video.

Actions and motion patterns in videos present an intri-
cate visual stimulation to the eyes of the viewer and thus
become major cues when generating summaries for long
videos. In the philosophy of actions [6]], there are three as-
pects that define a generic action instance: 1) it is carried
out by an agent, ii) it requires an intention, and iii) it leads
to side-effects. Spatial Actionness was introduced to quan-
tify the likelihood of an image region to contain a generic
action instance [4}, 49]. Along the same lines, video sum-
marization aims to localize temporal instances where im-
portant events occur. We propose to extend this definition
to the temporal domain to better serve the summarization
problem. That is, Temporal Actionness is the likelihood of
a generic action to appear within a temporal video segment.

Temporal actionness ranking can assist an automatic
summarization algorithm in localizing and quantifying the
intensity of generic action instances. Consequently, it can
also estimate the likelihood of including each event in the
summary. Fig. [2]shows an example of a first-person video
of a person performing base jumping. There are four dis-
tinct types of motion in this video: running water, camera

relative motion, a jumping partner, and first-person own-
hand manipulation; but only the last two instances qualify
as strong temporal actionness which tend to constitute the
vast majority of the summary.

Our main contributions in this paper is three-fold. First,
we establish the concept of temporal actionness and study
how it relates to video summarization. Second, we intro-
duce a new set of actionness labels over four existing sum-
marization benchmarks, and run a consensus and behavioral
analysis on them to verify their consistency. Finally, we
propose a method that utilizes temporal actionness to im-
prove the summary generation through a multi-task learning
formulation.

2. Related Work

In this section, we start by reviewing the concept of spa-

tial actionness in the literature. Then, we briefly review Re-
current Neural Networks (RNN) and mention some of their
applications in video processing. Finally, we conclude by
discussing some prior approaches that have applied RNN
models to the video summarization problem.
Actionness: The concept of spatial actionness was first
introduced in [4] as the deliberate bodily movement per-
formed by an agent; which is distinct from general instances
of motion since it requires intention. They used Lattice
Conditional Ordinal Random Fields to rank the regions of
an image based on its likelihood of containing an action
(i.e., ranking actionness).

Accurate and efficient ranking of spatial actionness was
shown to benefit other related tasks [49, 53| 30, 27]. For
example, Wang et al. [49] used a fully convolutional net-



work to estimate spatial actionness. Then, they embedded
the predicted actionness heat-map within a hybrid approach
that performs action detection. Also, Ting et al. [53} [10]
suggested a framework that performs action proposals by
generating actionness curves via a snippet-level actionness
classifier, then grouping them over time to produce the pro-
posal candidates. Finally, Zhao et al. [57] proposed a tem-
poral action proposal scheme called Temporal Actionness
Tagging (TAG). This method uses an actionness classifier
to evaluate the binary actionness probabilities for individual
snippets. Our definition of temporal actionness is consistent
with theirs, but also generalizes to agents other than humans
as discussed in Section 3.1.

Recurrent Neural Networks (RNNs): Since their intro-
duction in [40, 51], RNNs have been commonly used to
model sequential data. Unlike feed-forward networks (e.g.,
CNNs) whose output only depends on the input at the cur-
rent time-step, RNN output also relies on previous time-
steps. The basic formulation of RNN has the drawback of
missing long-term dependencies due to the vanishing gra-
dient problem [18]]. Several extensions of RNNs have been
introduced to resolve this problem. Popular approaches in-
clude: Long-Short Term Memory (LSTM) [19], and Gated
Recurrent Unit (GRU) [5]]. Both of these models have been
successfully employed for applications such as video cap-
tioning using LSTM [47,138, 152, [28]], and action recognition
and action proposals using GRU [1} 122} 48]].

Video Summarization using RNNs: Because of their abil-
ity to process temporal data, RNNs have been widely used
to train supervised and unsupervised video summarization
models (e.g., [201132}1553,143,156[]). Zhang, et al. [55] were
the first to use a supervised LSTM and a Multi-Layer Per-
ceptron (MLP) while optimizing the Determinantal Point
Process (DPP) maximum likelihood [25} 133, 24, 12]. DPP
is used to quantify the diversity in the selected subset of
frames which deems maximizing DPP to be equivalent to
selecting a representative summary since the redundancy is
minimized. Recently, Mahesseni et al. [32] presented an
unsupervised video summarization framework by training
an LSTM network in an adversarial manner to better model
the complexity of the data. Further, Chen et al. [3] used a
hybrid framework that utilizes GRU, MLP, and a temporal
segmentation algorithm to perform the tasks of video sum-
marization and video captioning simultaneously.

3. Relating Actionness to Summarization

In this work we hypothesize that human-generated sum-
maries favor frames that contain deliberate motions over
stationary or monotonous motions that are deemed boring.
To test this hypothesis, we start by defining the type of mo-
tion that we expect to be a substantial component in human-
generated summaries, which we refer to as temporal action-
ness. Then, we conduct a user study on human subjects

investigating the relationship between temporal actionness
and generated summaries. Finally, we conduct a consen-
sus analysis on the obtained data to measure the agreement
among subjects and a behavioral analysis to ensure the reli-
ability of our findings.

3.1. Temporal Actionness

As discussed in Section 2.1, spatial actionness is defined
as the likelihood of a certain region in an image to contain
an action [4]]. An image region is considered to contain an
action based on the definition of actions in [[6] as ”what an
agent can do with a deliberate bodily movement that leads
to side-effects”.

Our definition of actionness is consistent with the afore-
mentioned definitions, but we extend it in two ways. First,
we also consider non-human agents that perform deliberate
motions, because human agents do not necessarily exist in
the videos that are required to be summarized. For exam-
ple, a swimming dolphin represents an action while a run-
ning river is not. Even though both of them contain similar
magnitudes of motion but there is no intention in the latter.

Second, we adapt the actionness concept to the tempo-
ral domain, where we estimate the likelihood of a given
video segment to contain an action. For biological agents,
it is possible to predict the likelihood of the action from the
agent’s pose. However, since we are generalizing our def-
inition to non-biological agents, their motion often is not
distinguishable within a single frame. Thus, a video seg-
ment is essential to determine the nature of motion. For
instance, detecting a moving vehicle requires monitoring
several frames to track the vehicle’s location changes and
to distinguish it from a stopped one.

We target a rank ordering of actionness rather than a bi-
nary classification of whether a segment contains an action
(i.e., action proposal [1]]) for two reasons. First, the funda-
mental notion of temporal actionness as “localizing when
there is an action” immediately presents a difficulty: tem-
poral segmentation remains a challenging and open prob-
lem. Some efficient methods exist for this purpose such as
KTS [39], but the average f-score remains too low for robust
use (about 0.41). Ranking makes it more plausible to pro-
vide a stratified quantification to the likelihood of a segment
based on the prevalence of an action. Second, in any given
video, often background actions (e.g., monotonous actions)
are overlooked by the viewers as opposed to foreground
abrupt actions. For instance, in a surveillance video, it is
only natural to dismiss the background monotonous moving
traffic, and monitor the abrupt motions around a building’s
entrance.

3.2. User Study

To estimate actionness, we first used KTS algorithm [39]
to produce semantically consistent variable-size segments
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Figure 3. How often each user chose a given actionness scale in the

annotations? Having close frequencies indicates a general agree-

ment between the users.

that contain atomic semantic meanings. Then, for each
segment, we asked five users to label it by selecting the
appropriate rank from the following scales:

0: No action (No deliberate motion by an agent)

1: Background action (Weak indication of an action)

2: Partial foreground action (Strong action indication
covering a minor part of the segment)

3:  Active foreground action (Strong action indication
covering a major part of the segment)

For a tractable annotation process, we subsampled the
videos to 1 fps. Then, we constructed the displayed seg-
ment to contain all the frames in a grid display allowing
the users to see all the frames of one segment simultane-
ously. Before starting the process, users underwent a train-
ing stage to understand the task and the procedure. They
were asked to rank actionness on four videos. After train-
ing, the users were asked to perform the same task on
four benchmark summarization datasets: SumMe [14], TV-
Sum [41]], Youtube [7], and OVP [11]. Videos used during
the user training stage were discarded in model develop-
ment.

3.3. Data Analysis

Consensus analysis. To ensure the validity of the an-
notations, we measured the consensus among users us-
ing two metrics. The first metric is the f-1 score. We
computed the average pairwise fl-measure to estimate the
agreement among the annotators for each scale. We ob-
tained 0.55, 0.40, 0.48, and 0.51 for SumMe, TVSum, OVP,
and Youtube datasets, respectively. The second metric is the
rank-frequency over original videos for each user. That is,
how often each user chose a given scale for all the videos
of the annotation? Fig. [3]shows the frequency ranks for all
users. We observe that ratios by users are close to each other
for all the scales, which along with the f-1 scores demon-
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Figure 4. Do GT summaries contain high actionness? GT sum-

maries mostly consist of scale-three actionness, while original

videos mostly contain scale-zero actionness.

strates evident consensus among users.

Do summaries contain high actionness? To answer this
question, we computed the average frequency of each ac-
tionness scale in both of the ground-truth summary and the
original video. Fig. 4] demonstrates that scale-three action-
ness frames seem to be the dominant majority rank among
the summary despite their minority existence in the original
video. Hence, frames containing high actionness are more
likely to be included in the summary.

Were the annotators just looking for abrupt motions?
For a more extensive verification, we examine if the users
tended to choose segments containing abrupt motion (i.e.,
high magnitudes of motion) as representation for the high-
actionness segments. To answer this question, we first need
to provide an evaluation for abrupt motion. We calculated
the mean magnitude of optical flow for each of the seg-
ments, and normalized it across each video. Then, we com-
puted the histogram plot of the segments scored by the users
as level-three actionness sorted by their normalized mean
magnitude of optical flow. As shown in Fig. the se-
lected segments are distributed among a wide variation of
optical-flow intensities. This shows that users were not
merely selecting the most abrupt motion segments as rep-
resentatives for the deliberate actions required in high ac-
tionness.

Oracle labels. Having established our hypothesis, we
seek to utilize the data obtained from the study to further
improve the automatic video summarization algorithms.
In order to train a supervised learning model, we need to
produce a single set of labels out of multiple annotations for
each video. This is often referred to as Oracle Labels set.
We follow the algorithm proposed in [[12, 24] that greedily
selects the segment that results in the largest marginal gain
on the f-1 score computed between the users’ annotations.
To produce frame-level labels, we consider all the frames
within a segment to have its ranking label.
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4. Approach

In this section we propose a model that incorporates ac-
tionness ranking task to regularize video summarization.

4.1. Overview

Figure [6] shows an overview of our framework. The in-
put is a video of n frames. First, a visual encoder ¢ (i.e., a
pretrained CNN) is used to extract spatial features for each
frame. Next, the extracted features are sent to a sequential
encoder (i.e., a Bi-directional GRU) to extract their corre-
sponding temporal features. GRU is used as a sequential
encoder because it has fewer parameters than LSTM, which
results in faster training and a less risk of overfitting, and
shown to perform on par to the LSTM [5]. Next, we ag-
gregate both types of the features, spatial and temporal, to
generate a comprehensive spatio-temporal feature vector for
each frame. These features represent the visual information
of the current frame as well as encode all the temporal infor-
mation from other frames in the video. Finally, the aggre-
gate features are mapped to the actionness and importance
scores using two independent MLPs.

The framework is trained to learn two tasks: 1) summa-
rization by minimizing importance estimation loss, and 2)
actionness ranking by minimizing actionness classification
loss. The framework is optimized by applying a regularized
multi-task learning paradigm [9]. Imposing a regulariza-
tion term in a joint loss is aimed to penalize the unneces-
sary complexity of the original learning problem that might
cause overfitting to training data, while enforcing learning
task relationship.

By combining the two losses into a single joint loss, the
network is trained to learn a set of trainable parameters 6

such that:
argming S(0) + AR(6), (1)

where S(6) is the summarization loss (section 4.2), R()
is the actionness classification loss (section 4.3) which acts
as a regularizer, and A is the regularization weight used to
force both the losses to operate on comparable ranges, pre-
venting the learning to be biased towards one of the losses.

4.2. Importance Estimation

Importance scores (i.e., summarization labels) are binary
labels that indicate the frames selected to be a part of the
summary: 1 for selected frames, and 0 otherwise. The prob-
lem with this type of labeling is that frames within the same
segment tend to have similar semantic features, therefore
the annotators could have chosen any other frame within a
selected frame’s segment (i.e., key segment). To reduce the
effect of the inherent noise in the labels, we apply Gaus-
sian smoothing as a preprocessing step. Particularly, binary
labels are converted to real-values where the mean is the se-
lected frame within the summary, and the Gaussian distri-
bution is sampled across its key segment (see Fig. [6). Thus,
the framework would not be penalized for choosing a frame
within a key segment as much as it would be penalized for
choosing a frame outside a key segment.

Increasing the diversity within the selected subset is
equivalent to choosing a representative subset since the re-
dundancy is minimal. Following [33], we follow the
decomposition in to compute the marginal kernel L,
as a of a Gram matrix in the following manner:

Lij = qi¢] 3453 Vi, j €y )

where ¢; can be seen as a representative feature vector,
and ¢; is quality score of frame : in the selected subset y.
Similar to [[33], we construct the features with a dimension-
ality of 256 for each frame, and the quality score as a single
scalar for every frame. In our framework, we apply two
independent MLPs with the aforementioned dimensions to
obtain ¢ and g and compute the marginal DPP kerenl as in
Eq.2}

Finally, we optimize the Maximum Likelihood Estima-
tion (MLE) of the normalized marginal DPP kernel that
quantifies the diversity in the ground-truth summaries y as

follows: det(L,)
500 =10 351 25

where L is the marginal kernel of the ground-set of all the
frames in the video, and [ is the identity matrix.

3)

4.3. Actionness Ranking

This task aims to provide a regularization term to the
joint loss (Eq. [T) which is determined by classifying the
actionness scale v of each frame; v € {0, 1,2,3}. We train
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Summarization is learned by maximizing diversity within the selected subset. Training the framework in a multi-task learning fashion with
an accessory task of actionness ranking, improves the learning of the main task (i.e., video summarization).

an independent MLP to map the spatio-temporal features of
each frame to an actionness rank using the categorical cross
entropy loss as follows:

n 3
=D tislog(piy),

i=1 j=0

“4)

where p; ;,t; ; are the predicted and target values of action-
ness rank j for the i-th frame.

5. Experimental Results

In above sections, we proposed that deliberate motion
provides a significant cue when humans are summarizing a
given video. Then, we established this hypothesis by per-
forming a user study among multiple human subjects that
were asked to rank the magnitude of deliberate motion. By
analyzing the study results, it is clear that a significant por-
tion of the summary includes high intensity of deliberate
motion, as opposed to the original video contents. There-
fore, we introduced an approach that can rank the intensity
of deliberate motion and uses this knowledge to improve the
performance to perform a better video summarization. In
this section, we run an extensive set of experiments where
we show the effect of learning the actionness in learning
summarization.

5.1. Datasets

We evaluated our approach on four summarization
benchmark datasets: SumMe [14], TVSum [41], Open
Video Project (OVP) [[L1]], and Youtube [7]]. The first dataset
consists of 25 user videos covering multiple events such

as bears climbing a tree and cooking. It contains both
first-person and third-person videos with lengths varying
from 1.5 to 6.5 minutes. The second dataset consists of 50
Youtube videos from 10 categories of the TRECVid Multi-
media Event Detection (MED), 5 videos per category. They
vary in length from 1 to 5 minutes and include both first and
third person videos.

The third and fourth datasets are quite large. We use
the same subset of videos used in [7, 32, [55]], 50 videos
from OVP, and 39 videos from Youtube. OVP videos con-
tain mostly news reports and documentary clips that vary in
length from 1 to 4 minutes. All of them are third-person
videos. The last dataset contains news and sports videos
(third-person videos) with lengths varying from 1 to 10 min-
utes.

5.2. Experimental Setup

For a fair comparison with the related approaches, we
evaluate our method using the keyshot-based metric simi-
lar to [55] 32]. We first convert frame-level scores to shot
scores by applying the KTS algorithm [39]] that generates
semantic shots. The resulting shots are ranked based on
their importance score, which is the average score of the
frames in that shot. By applying the Knapsack algorithm, a
subset of the highest ranked keyshots are selected such that
the total duration of the generated summary is less than 15%
of the original video. We report the average fl-scores to
evaluate the predicted summary as compared to the ground-
truth summary.

Implementation Details: Similar to [32] [55], we use the
output of the pool5 layer of GoogLeNet [45] architecture



Model Canonical Augmented Transfer
SumMe TVSum SumMe TVSum SumMe TVSum

[29] 26.6 - - - - -

[15] 39.7 - 39.7 - - -

[14] 39.5 - 39.3 - - -

[55] 40.9 - 40.9 - 38.5 -
[56]-vsLSTM 37.6 54.2 37.6 54.2 41.6 57.9
[56]-dppLSTM 38.6 54.7 38.6 54.7 42.9 59.6
[33]-DPP - - 39.1 51.7 43.4 59.5
[33]-Sup - - 41.7 56.3 43.6 61.2
Ours-Basic 37.9 54.6 38.8 54.8 43.1 59.6
Ours-FT 38.7 54.9 42.3 56.1 43.8 59.3
Ours-Reg 40.1 56.3 45.8 59.1 46.1 60.1

Table 1. F1-scores for several test configurations. Canonical: Train on 80% of a dataset, test on the remaining 20%. Augmented: Train on
one dataset, test on the other. Transfer: Train on one dataset + OVP + YouTube, test on the other.

trained on ImageNet [8]] as the visual encoder for our frame-
work to extract a 1024 dimension spatial feature vector for
each frame. Then, we use a single-layer GRU with 256 hid-
den units as the sequential encoder and 256 hidden units
MLPs for both of the optimization tasks. Similar to the
training setup of [55]], we run our model for 100 iterations
in the training stage and stop the training if the validation
fl-score does not improve for more than 5 consecutive iter-
ations. The validation split is set to be 20% random subset
of the training data. We use Adam optimizer to train our
framework with learning rate of 0.001. To learn the task of
actionness ranking, we set A to 0.003. The value of A was
selected to make both of the losses operate on close ranges
so that none of them bias the optimization while training the
network.

5.3. System Performance

Test Configurations: We follow [55} [32]] to evaluate our
method in three test configurations. In the first configura-
tion (Canonical), we use 80% of one dataset to train the
method, and test the method on the remaining 20% of the
same dataset. In the second configuration (Augmented),
TVSum and SumMe datasets are used together - one dataset
is used to train the method while being tested on the entire
other dataset. In the last configuration (Transfer), we adapt
the same paradigm as the second configuration but augment
the training set with OVP and Youtube datasets, which im-
proves the results on SumMe and TVSum.
Baselines: We conduct an extensive comparison with
the state of the art methods [14, [15, |54]], two models
from [55]: LSTM+MLP (vsLSTM) and LSTM+MLP+DPP
(dppLSTM), and two models from [32]: Unsupervised
DPP (DPP) and supervised model (SUP).

Also, to perform an ablation study on our model, we in-

troduce three variants of our approach. First, Ours-Basic is
our model without the actionness regularization;. It reduces
the model’s complexity to be close to [S5], however, our
model uses GRU instead of LSTM and performs Gaussian
smoothing preprocessing on the labels. Second, Ours-FT
is the same as the basic model, but the sequential encoder
is first trained for human-based action localization, then the
entire framework is fine-tuned for video summarization. To
train the GRU for action localization, we follow [35] to train
the sequential encoder on GoogLeNet features for action
recognition task on UCF-101 [42] for 100 epochs, then
fine-tune it for action localization on THUMOS-14 [21]] for
another 100 epochs. The last model is Ours-Reg, which is a
model that is trained for simultaneous video summarization
and actionness estimation as discussed in Section 4.
Summarization Evaluation: Table [1| shows the f-1 scores
of our models compared to the state-of-the-art methods. As
shown, Ours-Basic performs similarly to vsLSTM and dp-
pLSTM. Training our model on the action recognition la-
bels prior to summarization (Ours-FT) performs on par with
the state-of-the-art methods. However, the model that is
trained for actionness estimation, that is considering delib-
erate motions performed by generic agents (not just humans
unlike Ours-FT), significantly outperforms all other meth-
ods in most of the settings (Ours-Reg).

Actionness Evaluation: To investigate whether actionness
helps summarization, we ran two analyses. First, we ver-
ify that our model effectively learns the actionness ranking
task by computing the actionness classification accuracy in
all test configurations. As shown in Table , Ours-Reg
performs significantly better than chance, indicating that
the model actually learns actionness estimation and does
not dismiss it from the learning procedure. Second, we
compute the distribution of actionness scales in the ground-



SumMe TVSum
Chance 36.6 28.1

Canonical 39.7 30.3
Augmented 42.8 32.6
Transfer 41.8 29.5

Table 2. Actionness Classification Accuracy of Ours-Reg: In all
the settings our model learned to estimate actionness better than
the chance level.

truth summary, Ours-Reg, and [55]] over the SumMe dataset
for test configuration 1 (see Fig. 5). As shown in Fig. [6]
our model resembles the ground-truth summary better than
[S3)]. The two results suggest that learning actionness rank-
ing is indeed useful for better video summarization.

6. Conclusion and Future work

In this work, we present a further step in analyzing and
understanding the video summarization problem. We hy-
pothesize that humans actively rely on deliberate motion
and action cues -among other cues- to generate a brief sum-
mary that best expresses long visual sequences. We exam-
ine this hypothesis by running a user study, investigating
the correlation between human-generated summaries and
actionness ranking. We then conduct a consensus and be-
havioral analysis on the data obtained from users to ensure
the data reliability and agreement among the users. The
findings of the study show a substantial likelihood of in-
cluding frames containing high actionness ranks within the
summaries.

Thus, we propose a new method that utilizes actionness
cues to better learn the task of video summarization. We use
a recurrent neural network that is trained for video summa-
rization while being explicitly regularized to learn the ac-
tionness ranking task in a multi-task learning formulation.
The evaluation on four benchmark summarization datasets
shows a significant improvement by our approach over sev-
eral state-of-the-art summarization methods.

Future Work: The main objective of this work was to
examine the relationship between the tasks of actionness es-
timation and video summarization, and using the former to
improve the performance of the latter. As the initial step, we
used an extra set of annotations called actionness to train a
summarization model in a supervised manner. For future
work, we plan to utilize the actionness information to train
simpler more efficient video summarization methods in an
unsupervised manner.
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Figure 7. Distribution of actionness scales over summaries of
SumMe dataset. Our model better resembles the GT than dpp-
LSTM [55].
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