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Abstract

Semantic shape completion is a challenging problem in
3D computer vision where the task is to generate a complete
3D shape using a partial 3D shape as input. We propose a
learning-based approach to complete incomplete 3D shapes
through generative modeling and latent manifold optimiza-
tion. Our algorithm works directly on point clouds. We use
an autoencoder and a GAN to learn a distribution of em-
beddings for point clouds of object classes. An input point
cloud with missing regions is first encoded to a feature vec-
tor. The representations learnt by the GAN are then used to
find the best latent vector on the manifold using a combined
optimization that finds a vector in the manifold of plausi-
ble vectors that is close to the original input (both in the
feature space and the output space of the decoder). Exper-
iments show that our algorithm is capable of successfully
reconstructing point clouds with large missing regions with
very high fidelity without having to rely on exemplar based
database retrieval.

1. Introduction
With the increasing availability of low-cost RGB-D scan-

ners, the availability and consequently the need to process
3D data is becoming of great interest to the robotics and vi-
sion community. Voxelized representations of 3D data have
been quite popular in the learning community because of the
ease of generalizing convolution operations to 3D. However
most 3D data, whether acquired through RGB-D scanners
like Kinect, or through Structure from Motion (SfM) and
stereo cameras, is in the form of point clouds. This, along
with the fact that point clouds are highly memory efficient
while preserving fine surface details, makes it highly desir-
able to extend deep-learning methods to point clouds. Point
clouds have been significantly harder to incorporate into
deep learning architectures due to irregular organization of
points, i.e, they are not regular structures and can’t be di-

∗Both authors contributed equally

rectly used with architectures that exploit regularity in the
input for weight sharing. The networks proposed for point
clouds need to be able to handle arbitrarily sized inputs and
permutation invariance.
A common challenge when reconstructing 3D scenes is that
the resulting point clouds may have large missing regions.
Reconstructions using SfM may be sparse due to lack of
feature points to track on the object. Similarly the point
cloud generated by a range scanner may have gaps due to
occlusions, limited viewing angle, and may be limited by the
resolution of the sensor.

Figure 1. 3D reconstruction through techniques like Structure from
Motion or RGB-D scanners often leads to incomplete shapes due
to lack of feature points and occlusions respectively.

In this paper we aim to solve this challenge using a deep
learning approach. We propose a framework that can take
as input a point cloud with arbitrary corruption, such as
large holes, entire missing regions (such as due to occlu-
sions/viewing angle) and low resolution/ small number of
points (which can also be caused by texture-less surfaces
during SfM, or due to limitations in the resolution of a RGB-
D sensor); and output a dense complete point cloud. Note
that the novelty of our approach lies in the fact that we don’t
need to train on a dataset containing these corruptions and
yet manage to handle them at test time.

Our main contributions are as follows :

• The first shape completion framework that works di-
rectly on point clouds, and can handle all types of point
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cloud noises at test time such as large holes, multiple
smaller missing regions, and low density, even if trained
only on complete point clouds.

• A novel algorithm that performs shape completion by
performing optimization on a latent manifold learnt by
a generative model, using a combination of losses that
ensures reconstruction of a valid object while simulta-
neously fitting the available data.

• Quantitative and qualitative evaluation of our method
and other baseline methods on both synthetic and real
(SfM) data. We demonstrate our method is able to
generalize to real data while being trained entirely on
synthetic data, something that the baseline methods fail
at.

2. Related Work
Deep Learning on 3D data. Common tasks on point

clouds include classification, segmentation, object detection
and dense labeling [16, 17, 18, 19, 24]. Incorporating point
clouds into a deep-learning framework poses several chal-
lenges, due to several peculiarities such as input size and
order variance, non-uniform density, and shape and scaling
variance.
Previously, most deep-learning approaches for point cloud
centric applications overcame these challenges by voxeliz-
ing the point clouds, which allows for the extension of ideas
from 2D CNNs into the 3D space [14] [15]. However voxels
are highly inefficient in terms of accuracy and fidelity of the
shape represented, and the network size increases rapidly as
spatial resolution is increased [41]. More importantly, point
clouds are the most common and general representation for
3D data as other representations can easily be obtained from
them.

Qi et al. [1, 2]first introduced a deep learning network,
PointNet, for point cloud classification and segmentation.
The network handles the arbitrary input size of point clouds
by using an element wise symmetric operation, such as max
pool, to encode any input into a fixed size feature vector.

Achlioptas et al. [5] proposed coupling a PointNet-style
encoder with a decoder of fully connected layers, along
with loss metric like Earth Mover’s distance (EMD) to learn
representations of point clouds. They further showed that
Gaussian Mixture Models (GMMs) or Generative Adverse-
rial Networks (GANs) could be trained to directly generate
the latent representations, which can be used for point cloud
generation.

Yu et al. [7] adapt [2] for the task of upsampling point
clouds. As noted by the authors in the paper, their approach
is not suited for point clouds with large gaps or missing
regions.

Shape Completion. Shape completion has long been a
problem on interest in the graphics and vision community.

Traditional geometric methods such as [33, 32, 31] can only
fill in small holes in surfaces. A lot of classical approaches
relied on exemplar-based completion, where a CAD database
was used to fetch similar models to reconstruct the object,
which may then be deformed to match the partial input [25,
35, 34]. The vast majority of deep learning works on shape
completion have relied on voxel representations due to the
ease of generalizing convolution operations to 3D using
3DCNNs. Dai et al. [27] used 3DCNNs to predict a course
complete shape, which was in turn used to lookup similar
model from a database. These similar models were then
used together with the input for a combined complete shape
synthesis. Other recent methods have removed reliance on
a database by directly building predictive models for the
complete 3D shape, often in a course-to-fine manner [27,
29, 26, 30]. Another interesting angle has been the task of
predicting 3D shapes from depth maps [39, 40], although
these don’t address the challenge of having point clouds with
uneven density and arbitrary holes.

The idea of using deep generative models has been shown
to be effective in recovering missing regions in 2D images
[11] [12]. Similar methods were extended to voxelized 3D
shapes recently in [20], which incorporates a convolutional
encoder-decoder, a GAN and an LSTM to better learn global
and local structure.
There has been very little work done on learning-based meth-
ods for shape completion directly on point clouds. The au-
thors of [5] show that their autoencoder architecture may also
be trained for completing point clouds. More robust formula-
tions of the autoencoder architecture have been proposed in
[4, 6] although these works don’t address shape completion.
We note that these recently proposed approaches aimed at
learning more robust representations of point clouds can be
seamlessly incorporated into our algorithm, as our latent-
optimization is agnostic of the style of encoding-decoding
mechanism used. To the best of our knowledge, we are the
first to propose a deep learning based shape completion ap-
proach that works directly on point clouds and can handle
arbitrary corruptions in the point cloud without requiring
any special training. We also need very small networks
with much fewer parameters as compared to voxel based
approaches. Our approach is purely learning based and does
not rely on exemplar-based retrieval from a database, and
generalizes well to objects not seen during training.

3. Methods

3.1. Generative models for point clouds

We build upon a recent model for point cloud generation
proposed by Achlioptas et al. [5], which extends [1] to learn
an autoencoder for point clouds. The encoder consists of
multiple layers of 1D convolutions followed by a symmetric
pooling layer (max pool in our case) resulting in a single
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Figure 2. The proposed Point cloud completion algorithm. Loss
terms of the LDO for an incomplete input point cloud are visualized
with dotted lines. Blocks in blue are only used once for initializa-
tion. The losses are used to find the correct point in the latent space
of the generator. No network weights are changed.

global feature vector (GFV) for the entire point cloud. The
decoder consists of a set of stacked fully connected layers.
The last layer of the decoder outputs an N × 3 dimensional
vector which corresponds to the N points of the point cloud.
The Earth Mover’s distance (EMD), which is a permutation
invariant metric, is used as the loss function. The EMD
between two point clouds S1, S2 is given by:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2 (1)

where φ : S1 → S2 is a bijection. The optimal bijection
is unique and invariant under infinitesimal movement of
the points. The autoencoder is trained on the ground truth
complete point clouds in the training set. The trained encoder
(E) is then used to extract the global feature vector encoding
for each point cloud in the training set. As in [5], we then
train a GAN on the extracted global feature vectors. New
feature vectors generated from the generator (G) can be
passed through the decoder (H) to generate point clouds. The
GAN has the advantage of being a differentiable network -
it is possible to take gradients through it from the output to
the input distribution space. This is key for our latent-space
optimization algorithm.

Generative Adversarial Network (GAN). GANs are a
popular category of generative models which have been re-
cently shown to produce state of the art results in image
generation. GANs learn a mapping from an easy to sam-
ple distribution (say, a unit normal distribution) to the data

generating distribution using a function approximator like
a neural network (generator). The generator(G) is trained
in a game theoretic set up, where the objective of the gen-
erator is to generate samples that look indistinguishable (to
another network, called the discriminator) from the data.
The discriminator (D) is trained to distinguish between the
real data and the samples generated by G. We introduce a
third network, the Initializing Encoder (IE), that learns a
mapping from the output of the generator to the latent space
z. But the traditional GAN training scheme is known to be
unstable. Recent advances in GANs [21, 22, 23] have tried
to address this issue by modifying the loss or the training
procedure itself. We use the loss modification proposed in
[21] for more stable training. We train the GAN on the set
of global feature vectors(GFVs) produced by the encoder.
We use fully connected layers for both the generator and the
discriminator. The training procedure for the AE and GAN
is given in Algorithm 1. The losses optimized for training
the GAN along side the IE have been described below :

J (D) = Ez∼pz D(G(z))− Ex∼pdata
D(x) (2)

J (G) = Ez∼pz [||IE(G(z))− z||2 −D(G(z))]

+ Ex∼pdata
||G(IE(s))− x||2

(3)

J (IE) = Ez∼pz ||IE(G(z))− z||2
+ Ex∼pdata

||G(IE(s))− x||2
(4)

where, pz is the unit normal distribution centered at the
origin, pdata is the distribution of GFVs, z and x are samples
from these distributions.

3.2. Point Cloud Completion using LDO

Consider an incomplete point cloud at test time, such
as one generated via SfM. The point cloud may also be
noisy and have uneven density. If this point cloud is passed
through the encoder E, a "noisy" GFV is obtained, i.e. one
that doesn’t lie on the manifold of representations learnt
by the autoencoder. We model the task of completing the
point cloud as obtaining a clean GFV corresponding to the
noisy one, through an optimization procedure. The cleaned
GFV can then be passed through the decoder (H) to obtain a
completed point cloud.

Thus the task is reduced to projecting the noisy GFV onto
the manifold of clean GFVs. This is not trivial, since we
don’t have an analytical expression to represent the clean
GFV manifold. Thus we use a GAN to represent the clean
GFV manifold. As described in the previous section the
GAN is trained on clean GFVs, extracted from the training
set of complete point clouds. Projecting a noisy data point
onto the manifold of clean GFVs can be reduced to finding
the closest GFV to the noisy GFV, that is also classified
as real by the discriminator. However, directly optimizing
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over the space of GFVs would result in adversarial exam-
ples. Thus we choose to perform the optimization procedure
in the latent space of the generator, represented by the la-
tent vector z. First we produce an initialization for z by
passing the noisy GFV through the Initializing Encoder,
zinit = IE(GFV ). From this initial value, z is optimized
so as to produce a clean GFV through the generator, G(z).
Specifically, the objective of our Latent Denoising Optimiza-
tion (LDO) algorithm can be decomposed into three parts:

Discriminator Loss: This term ensures that the gener-
ated GFV is from the data manifold. We optimize to maxi-
mize the score given by the discriminator to the generated
GFV:

LD(z) = −D(G(z)) (5)

Latent Least Squares Loss: This term ensures that the
generated GFV, G(z) is close to the noisy GFV, wi during
the optimization and thus remains semantically similar to
the input point cloud. The noisy GFV was obtained using
the encoder E, wi = E(Si). We simply minimize the L2
distance between the generated GFV and the noisy GFV:

L2(z;w) = ||G(z)− wi||22 (6)

Decoder EMD Loss: This term ensures that the gener-
ated GFV maps to a point cloud which is close to the input
point cloud where it exists. Here, we minimize the Earth
Mover’s distance between the input point cloud and the point
cloud decoded from the generated GFV:

LEMD(z;Si) = dEMD(Si, H(G(z))) (7)

Thus our final loss becomes a weighted combination of
these losses:

Loss(z) = LEMD(z;Si) + λLD(z) + βL2(z;wi) (8)

We perform this optimization using the ADAM optimizer.
Note that we use an exponential decay to reduce the value
of λ and β, starting with an inital value of 0.001 each. This
helps us ensure that in the initial stages of the optimization,
the emphasis on obtaining a semantically consistent and real
looking point cloud and in the latter stages, the emphasis
is on reconstructing fine details of the point cloud. The
optimization is stopped as soon as the loss LD(z) starts in-
creasing. This ensures that the optimization does not lead to
’unreal’ looking point clouds in order to get the details right.
It is important to note here that we only minimize the loss
with respect to z (which is the input to the Generator). We do
not update the generator or discriminator parameters when
performing this optimization. At the end of the optimization,
we obtain the optimal latent vector, z∗. We simply pass this
through the generator to get the clean GFV, G(z), which is
passed through the decoder to obtain the completed point

cloud, H(G(z)). The entire Latent Denoising Optimization
(LDO) algorithm has been given in Algorithm 2 and visual-
ized in fig 2. Note that the hyperparameter values stay the
same for all our experiments. Thus no experiment specific
tuning is required.

Algorithm 1 Training a generative model for use in LDO
algorithm

Require: A training set of clean, complete point clouds S.
1: Train an autoencoder, with encoder E and decoder H, on

the training set S, using EMD as the loss metric. For our
experiments we use the implementation in [5], but our
algorithm is completely transferable to other PointNet-
style architectures such those presented in [2, 4].

2: Using the trained Encoder, extract the global feature
vectors (GFVs) for all examples in the training set.

3: Train a GAN to fit on the distribution of extracted GFVs
from training set.

Algorithm 2 Point cloud completion using LDO algorithm

1: Extract the GFV wi for the partial cloud Si by passing
it through Encoder E. wi = E(Si)

2: Initialize the latent vector zi using the initializing en-
coder IE, zi = IE(wi)

3: Set prevLD = LD(zi), λ = 0.001, β = 0.001
4: for k=1,2..N do
5: Compute ∇zLoss(zi) = ∇zLEMD(zi;Si) +

λ∇zLD(zi) + β∇zL2(zi;wi)
6: Update zi using ADAM
7: Update λ = λ ∗ 0.9998
8: Update β = β ∗ 0.9998
9: if LD(zi) > prevLD then

10: Exit Loop
11: end if
12: Update prevLD = LD(zi)
13: end for
14: Pass the cleaned GFV G(zi) through the previously

trained autoencoder’s decoder D to obtain the semanti-
cally completed point cloud H(G(zi))

4. Experimental Results
In this section we demonstrate the salient features of our

LDO algorithm by evaluating its quantitative and qualitative
performance in multiple scenarios. We compare our model
to 2 baseline models of point cloud completion, and show
the improvement in reconstruction by applying LDO in con-
junction with these baseline models. We show quantitative
and qualitative results of the improvements gained by LDO
on the tasks of point cloud completion and upsampling. Fi-
nally, we show experiments on a real world scenario (SfM)
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where we demonstrate that our approach particularly shines
in generalizing to real world data, while only having been
trained on synthetic data. To summarize, we’ll be comparing
the following models:

1. Autoencoder (AE): An autoencoder trained only with
complete point clouds. See Appendix for full imple-
mentation details. This baseline is used to demonstrate
cases where no prior information is available about the
deformities in the true data.

2. Denoising Autoencoder (DAE): Another intuitive base-
line is an autoencoder with the same architecture as AE,
trained with an augmented dataset of incomplete point
clouds. While working on our experiments, we be-
came aware that the authors of [5] incidentally updated
their work to suggest a similar DAE based completion
method. Our initial experiments found that DAEs have
a tendency to overfit, and don’t generalize well to dif-
ferent amounts and kinds (small holes, large missing
region, low-resolution, SfM point clouds) of incomple-
tion (see appendix). Hence, we train different DAEs
with different amounts of incompletion and test them
on the same amounts of incompletion to get a com-
petitive baseline for comparison. Although one would
never have this luxury in the real world, this baseline is
used to demonstrate the superiority of our method even
when the exact kind and amount of deformity is known
beforehand.

3. Latent Denoising Optimization with AE (AE+LDO):
Our algorithm applied using AE and a GAN learnt
on GFVs of the clean training data generated by the
AE. We show that despite never having been trained
on noisy/incomplete point clouds, AE+LDO is very
effective at point cloud completion and achieves a huge
boost over just the AE’s performance.

4. Latent Denoising Optimization with DAE
(DAE+LDO): To show the transferability of LDO, we
also apply it on DAE, with a GAN trained on GFVs
produced by the DAE on clean training data. We
show that LDO is able to capitalize on the more robust
representations learnt by DAE to improve performance
even further than AE+LDO.

Dataset. We use ShapeNetCore, a subset of the full
ShapeNet[10] dataset with manually verified category and
alignment annotations. It covers 55 common object cate-
gories with about 51,300 unique 3D models. For the pur-
poses of our experiments we use 4 classes with the most
available data from the dataset, namely: airplane, car, chair
and table. For each class, we split the models into 85/5/10
train-validation-test sets for our experiments and results. We
use the models without any pose or scale augmentations.

We uniformly sample the point clouds (2048 points each)
from these models, which serve as the ground truth for our
training. In section 4.3, we experiment on a real-world data
case we take sequences of images of faces and pass them
through an SfM pipeline to get noisy point clouds of faces.
We use the CMU Multi-PIE [36] dataset as the source of
these face images and the Basel face model [37] to obtain a
synthetic dataset of faces. More details on this are provided
in section 4.3

4.1. Masking Experiments

For the first set of experiments we choose a synthetic
masking scheme to demonstrate the benefits of using LDO
in point cloud completion tasks. In order to perform masking
on a point cloud, we first choose a random point from the
point cloud, and remove its 2048*(X/100) nearest neighbors
of the point to obtain an X% masking. To ease batch pro-
cessing of point clouds with unequal number of points, we
replicate one of the non-masked points so that each point
cloud is the same size. The PointNet architecture by its na-
ture ignores replicated points. In latter sections we would
look into more realistic scenarios where this would become
important.

4.1.1 Varying levels of Incompletion

We train a vanilla autoencoder (AE) using the training set
in the Airplane class. We then train a GAN on the GFVs
of the AE. At test time, we test the AE and AE + LDO (La-
tent Denoising Optimization) with varying levels of masking
(20%, 30%, 40% and 50%) in the input point cloud. The
corresponding scores have been reported in Table 1. Note
that we didn’t have to retrain our model for the different
levels of masking. We observe a clear improvement in per-
formance using our method. We also note that the perfor-
mance of AE decreases with increasing levels of masking
whereas AE+LDO remains more or less robust. We also
train multiple denoising autoencoders (DAE) along with the
corresponding GANs with varying levels of masking in the
input (20%, 30%, 40% and 50%). The DAEs are trained to
reconstruct the ground truth given the masked input. In this
case, we test DAE and DAE + LDO with masking amounts
that the DAE and the corresponding GAN was trained on.
So a DAE and GAN trained with 40% masking are tested
on 40% masking. This is done to demonstrate the benefit
of LDO even when the underlying model (DAE) already
has prior knowledge about the incompletion (since it was
trained on the specific kind incompletion). The correspond-
ing scores have been reported in Table 1. We observe that
AE + LDO perform on par with a DAE despite not having
any prior knowledge about the kind or amount of incomple-
tion during training. Moreover, performing LDO on DAE
provides further improvement as seen from the scores in
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Table 1. This shows that our model can integrate with any
AE architecture and capitalize on the robust representations
learnt by the models. A visualization of how reconstruction
quality varies with increasing percentage of missing data can
be found in the appendix.

4.1.2 Different classes

To show the robustness of our methods, we test our model
on other classes, namely Chair, Car and Table, both in single-
class and multi-class setups. We train a separate AE and
the corresponding GAN on the training set of each category.
We also train separate DAEs and corresponding GANs with
30% and 50% masking for each category. We also train a
multi-class AE, GAN pair on a training set with a combi-
nation of the four classes (Table, Chair, Car and Airplane).
Correspondingly we train two DAE, GAN pairs with 30%
and 50% masking respectively (referred to as Multi-Class in
results tables). We test these models on 30% and 50% mask-
ing using the corresponding test sets and report the results in
Table 1. As in the previous section, the DAEs trained with
specific masking amounts are tested with the same masking
amounts. We observe a similar pattern as was observed in
Airplane in all classes except Cars. AE+LDO performs on
par or better than DAE in most of these cases. Moreover, in-
corporating LDO with DAE further improves the results and
provides better scores than all other models in most cases.
Interestingly, DAE trained on masked Cars performs better
or on par with our models. On further inspection we find that
this is because there is very little variety in the dataset of cars.
Thus DAE is able to easily transfer from the Car training set
to the Car test set by simply producing the nearest neighbors
from the training set. We visualize completion results with
50% masking using our best performing multi-class model
(DAE + LDO) and compare it against its baseline (DAE) in
Figure 3(An enlarged version may be found in the appendix).
It is seen that our multi-loss optimization ensures that both, a
sharp, valid object is reconstructed, that also fits the available
partial scan as best as possible. Figure 4 compares the point
cloud completion results of AE and AE+LDO with 50%
masking. We observe that AE produces meaningless point
clouds when the inputs are very highly masked/distorted.
Yet, just the addition of our algorithm drastically boosts the
quality of results as shown in the figure, despite the models
never having been trained on incomplete point clouds.

4.2. Upsampling Experiments

Upsampling is another important task that comes up in
processing 3D data. This is especially important for SfM
methods, that often rely on sparse feature points. We investi-
gate the performance of LDO for upsampling point clouds
that had been downsampled to 20% points of the original,
using just a regular AE without any special training, and

Figure 3. Visualizations of shape completions of LDO on a test
set containing all 4 classes. The outputs under "DAE" are from
single denoising autoencoder trained on objects of all 4 classes,
with 50% missing data. Outputs of DAE+LDO are of the single
DAE and a single GAN trained on global feature vectors of the
DAE. DAE+LDO leads to much sharper outputs with more details
of the partial shape captured. Last column shows ground truth and
our results overlaid for ease of comparison.

see impressive results. We show the EMD loss for plain AE
and our model in Table 2. The upsampled visualizations are
given in Figure 5. We see that the AE struggles to reconstruct
any meaningful point clouds. Yet, just by the addition of our
algorithm (AE+LDO) we observe a tremendous improve-
ment in the upsampling quality. This shows the versatility of
our approach.

4.3. Real-world Experiments

To evaluate the real-world applicability of LDO, we test
it on the task of completing input point clouds obtained from
SfM. The aim is to see whether LDO can generalize to real-
world point cloud data, while having been trained only on
synthetic data. We use COLMAP [38], a general purpose
SfM pipeline to generate point clouds using sequences of
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Figure 4. Visualizations of shape completion results of AE and
AE+LDO on a test set containing all 4 classes. Random 50%
chunks of the inputs are masked at test time. The outputs under
"AE" are from a single autoencoder trained on objects of all 4
classes. The right most column shows the AE+LDO outputs over-
lapped with the ground truth for direct comparison. A massive
improvement is seen in reconstruction quality with our method.

Figure 5. Visualizations of upsampling results of AE and AE+LDO
on a test set containing all 4 classes. The inputs at test time are
downsampled to 1/5th of the original points. The outputs under
"AE" are from a single autoencoder trained on objects of all 4
classes. The right most column shows the AE+LDO outputs over-
lapped with the ground truth for direct comparison.

images. We experiment with the following classes:

1. Shapenet type models: We use some toy car and air-
plane models for testing. The models were placed on a
rotating surface and multiple images were clicked from
different poses around the object. These images were
then processed through COLMAP. The output point
cloud had incompletions due to severe lack of texture
on these models. We test these incomplete point clouds
on the multi-class DAE and DAE+LDO, trained with
50% masking on ShapeNet models, as described in
section 4.1.2. We choose these, as they were the best

Figure 6. Plot of losses of a typical LDO optimization. EMD loss
against ground truth is used for evaluation, not for optimization.
LD loss is scaled by 0.1 for ease of visualization

Category % Points Missing AE DAE AE + LDO(ours) DAE + LDO(ours)
Airplane 20% 0.061 0.033 0.030 0.028
Airplane 30% 0.079 0.036 0.037 0.033
Airplane 40% 0.083 0.039 0.041 0.034
Airplane 50% 0.097 0.039 0.038 0.037

Chair 30% 0.107 0.061 0.052 0.050
Chair 50% 0.120 0.064 0.069 0.055
Car 30% 0.096 0.0427 0.054 0.041
Car 50% 0.118 0.046 0.060 0.051

Table 30% 0.142 0.055 0.052 0.047
Table 50% 0.143 0.055 0.062 0.050

Multi-Class 30% 0.121 0.072 0.058 0.044
Multi-Class 50% 0.113 0.069 0.056 0.046

Table 1. EMD loss of completed point clouds against ground truth
(lower is better). As baselines we compare against an autoen-
coder(AE) trained only with complete point clouds as well as a
denoising AE (DAE) trained with partial point clouds. For fairness,
the DAEs were trained with the same percentage of incompleteness
as they were tested against. We report the performance of our
LDO algorithm when used together with the AE (AE + LDO) and
with the DAE(DAE+LDO). Multi-Class refers to training a single
AE/DAE to reconstruct all 4 classes, as well as our own algorithm
when used with these AE/DAEs

Category Amount of down-
sampling at input

AE AE + LDO

Multi-Class 80% 0.073 0.058

Table 2. EMD loss of upsampled point clouds against ground
truth(lower is better). As baselines we compare against a autoen-
coder(AE) trained only with complete point clouds. We report the
performance of our LDO algorithm when used together with the
AE (AE + LDO).

performing models in our previous experiments.

2. Faces : We first create a synthetic training set of 3000
face point clouds using the Basel 3D Morphable Model
[37]. The model provides a PCA basis for faces, and
different faces can be obtained by sampling the PCA
coeffecients from gaussians. We train a DAE with
similar architecture as the ShapeNet DAEs, except with
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Figure 7. Visualizations of shape completion task on noisy and
incomplete point clouds generated by a general-purpose SfM
pipeline.

an input/output size of 8192x3. It is trained with 50%
masking on the synthetic face dataset. We then also
train a GAN on the GFVs obtained by this DAE, as in
the regular procedure to setup LDO. Next, we use the
CMU Multi-PIE [36] to obtain a sequence of images
of human faces taken from different poses. These are
processed through COLMAP to obtain point clouds.
These are tested on the DAE and DAE+LDO models
trained on the synthetic Basel dataset.

For both classes we align and do a "rough" cleaning of
the obtained point cloud by aligning it against a template
point cloud of the corresponding synthetic set, and removing
points beyond a threshold distance from the template. Note
that is only to remove background points - the intrinsic nois-
iness of the points characteristic of SfM is preserved. Where
needed we also downsample them to fit our model resolution.
The qualitative results can be seen in Fig 7. It is observed that
the DAE by itself, having only been trained on synthetic data,
fails completely on the ShapeNet-type models, and recon-
structs badly fitting faces for the face models, since it fails to
generalize beyond the PCA-basis constrained synthetic faces.
However DAE+LDO gets high quality reconstructions that
fit well with the partial input (A larger image visualizing
the face reconstructions from profile views is given in the
Appendix).

4.4. Analysis of loss functions

We show a plot of the 3 losses used in LDO optimization
and the EMD loss against ground truth (used for evaluation)

during the optimization process of DAE + LDO in Fig 6.
The x-axis shows the number of iterations and the y-axis
shows the loss values as the optimization progresses. The
plot shows that the initialization encoder provides a decent
initialization for the optimization, as measured by the ground
truth EMD Loss (EMD-GT). This shows that the initializa-
tion itself is decent enough to provide scores competitive to
that of the DAE. The optimization that follows is responsible
for the improvements over the baseline DAE model. We
observe that throughout the optimization, the three losses,
namely, Partial-EMD Loss, Discriminator loss(LD Loss) and
EMD-GT Loss decay gradually until the end of optimization,
whereas the L2 loss increases gradually. This indicates that
the GFV is being cleaned as it moves away from the noisy
GFV and moves closer to the clean GFV. The optimization
highlighted here takes 324 sec to process 50 point clouds on
a Titan X GPU. The batch size could be increased to achieve
lower time per point cloud.

5. Discussion and Conclusion
In this work, we presented a novel scheme for point cloud

completion using a purely learning based approach. We
demonstrate the following salient features of our approach :

• We show the superiority of our algorithms on a variety
of incompletion types ranging from large missing re-
gions (masked), low-density point clouds (upsampling)
to real world SfM point clouds.

• Even when trained with only complete point clouds, our
algorithm (AE+LDO) was able to obtain high quality
reconstructions.

• Compared with a denoising autoencoder baseline, our
approach was shown to generalize much better to un-
seen data (sec 4.3, 4.1). The reconstructions obtained
by DAE+LDO were shown to have higher fidelity to
match the partial input, whereas the DAEs overfit to the
training data resulting in more generic reconstructions.

• LDO shows generalization even in scenarios when the
underlying model is trained on synthetic data and then
tested on real world data (sec 4.3). In fact, even in cases
where the DAE fails completely, DAE+LDO is able to
extract high quality reconstructions.

LDO is quite flexible to the actual autoencoder architecture
and training mechanism used. We show that it is able to
capitalize on the more robust representations learnt by a
DAE. Recent works have proposed more robust formulations
of encoder-decoder architectures for pointclouds, such as by
incorporating local neighbourhood information [2, 4, 6]. In
our future work we wish to explore the integration of LDO
into these frameworks. We would also like to explore better
optimization schemes than ADAM.
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5.1. Implementation Details

We implemented the Autoencoder as proposed by
Achlioptas et al. in [5]. The encoder consists of 5 layers
of 1x1 convolutions with 64, 128, 128, 256 and 128 filters
respectively. Each layer is followed by a ReLU non-linearity.
This is followed by a global max pooling operation leading
to a bottleneck size of 128. The decoder consists of three
fully-connected layers leading to hidden layers of size 256,
256 and 6144 respectively. The output of the last layer is
reshaped to 2048×3 to get the output point cloud. We use
the same architectures for the Autoencoder and Denoising
Autoencoder. Figure 8 shows more details about the specific
architecture. When feeding an incomplete point cloud we
simply remove those points from the input. Since the oper-
ations performed are symmetric to all points and agnostic
to the number of point clouds, the architecture works as is
for incomplete point clouds as well. The AEs were trained
using an optimized approximate implementation of the the
EMD loss, as used by Fan et al. in [3]. We also use EMD
of the completed point clouds against the respective ground
truth to evaluate our models. We use this AE to generate a
set of global feature vectors for all the point clouds in the
training set. We then train a W-GAN to be able to generate
samples from this distribution of global feature vectors. The
Generator samples from a unimodal gaussian noise distribu-
tion of 128 dimensions. It consists of two fully connected
layers of size 128 each, and outputs a global feature vector
of size 128. The discriminator takes a 128 dimension vector
at its input. It has 2 fully connected layers of size 256 and
512 followed by a final layer which outputs one value and a
sigmoid activation, resulting in a prediction of whether the
input vector was real or fake. The initialization encoder is
trained to map each GFV to a corresponding latent vector.
It also consists of 2 fully connected layers of size 128 each.
It takes the GFV as input and outputs the 128 dimensional
latent vector which is taken as input by the Generator and
mapped back to the corresponding GFV. The GAN is trained
with a learning rate of 0.0001 and an ADAM optimizer, for
200 epochs. We use the same learning rate with ADAM
optimizer for LDO as well. Initial values of λ, β and α are
0.1, 0.1, 0.001 respectively. λ and β are further decayed by
a factor of 0.999 after every update.

6. DAE overfitting

We observe that the DAE overfit to the specific noise type
they are trained on. If we train the DAE with a masking of
60% and test it on lower levels of masking, it’s performance
decreases. This can be seen in Figure 10. Taking a closer
look at the completion results of the DAE, we find that the
DAE has simply learnt a fixed mapping in the training set
from masked clouds to the completed point clouds. When
exposed to unseen data such as the test set, it simply produces

a nearest neighbor from the training set. This can be seen in
Figure 9.

6.1. Variation with masking

Figure 11 shows the performance of AE and AE+LDO
with varying levels of masking on the Airplane category.
The deterioration of performance with increasing levels of
masking is clearly visible in the AE but the optimization
procedure still manages to generate reasonable looking point
clouds. This shows the robustness of our approach to differ-
ent kinds of point cloud deformations.

11



Encoder

(G
lo

ba
l 

fe
at

ur
e)

 1
28

25
6

25
6

(P
oi

nt
 C

lo
ud

) N
x3

Decoder

Shared MLP
(128 x 256)

Shared MLP
   (3 x 128)

N
 x

 3

Shared MLP
(128 x 128)

Shared MLP
(64 x 128)

N
x6

4

N
x1

28

N
x2

56

N
x1

28

Shared MLP
(256 x 128)

N
x1

28

Figure 8. Autoencoder Architecture.

Figure 9. DAE failure cases. The Denoising Autoencoder is notori-
ously prone to overfitting on the training data. Overfitting increases
with the percentage of the incompleteness with which they are
trained. Column 1 has complete point clouds from the test set
which were fed to the DAE without any masking. Even with a
complete cloud as input, the DAE outputs a different point cloud
(Column 2), since it essentially collapses to a Nearest Neighbour
search against the training data. The difference between input and
DAE output is visualized in column 3. Due to lack of large datasets
for 3D, this is a huge disadvantage of the plain DAE. We also note
in our experiments that a DAE trained with higher percentages of
missing data performs poorly on lower percentages of corruption.

Figure 10. The plot shows the performance of Denoising Autoen-
coder(trained on point clouds with 60% masking) with different
levels of masking. The plot shows that the DAE performs worse
as the masking is reduced. Infact, it gives the worst performance
when the ground truth (0% masking) is given as input.
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Figure 11. The figure shows the performance of AE and AE+LDO with varying levels of masking (20%, 40% and 60%. The AE in this case
is trained specifically on the Airplane dataset.
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Figure 12. Enlarged version of Fig. 3 results in main paper, showing reconstructions of Multi-Class DAE and Multi-Class DAE+LDO
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Figure 13. Profile views of reconstructions of the faces shown in Fig. 7 (SfM data) results in main paper, showing reconstructions of Face
DAE and Face DAE+LDO (8k points)

Figure 14. Geometric methods such as Screened poisson reconstruction, while effective at removing small holes in surfaces, fail on large
missing regions.
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