
Understanding Kernel Size in Blind Deconvolution

Li Si-Yao
Beijing Normal University
lisiyao@mail.bnu.edu.cn

Dongwei Ren
Tianjin University

rendongweihit@gmail.com

Qian Yin*
Beijing Normal University

yinqian@bnu.edu.cn

Abstract

Most blind deconvolution methods usually pre-define a
large kernel size to guarantee the support domain. Blur
kernel estimation error is likely to be introduced, yielding
severe artifacts in deblurring results. In this paper, we first
theoretically and experimentally analyze the mechanism to
estimation error in oversized kernel, and show that it holds
even on blurry images without noises. Then to suppress this
adverse effect, we propose a low rank-based regularization
on blur kernel to exploit the structural information in de-
graded kernels, by which larger-kernel effect can be effec-
tively suppressed. And we propose an efficient optimization
algorithm to solve it. Experimental results on benchmark
datasets show that the proposed method is comparable with
the state-of-the-arts by accordingly setting proper kernel
size, and performs much better in handling larger-size ker-
nels quantitatively and qualitatively. The deblurring results
on real-world blurry images further validate the effective-
ness of the proposed method.

1. Introduction

Blind deconvolution is a fundamental problem in low
level vision, and is always drawing research attentions
[14, 15, 20–22]. Given a blurry image y, blind deconvolu-
tion aims to recover a clear version x, in which it is crucial
to first estimate blur kernel k successfully. Formally, the
degradation of image blur is modeled as

y = x⊗ k + n, (1)

where x and y are with size M ×N , k is with size L×K,
⊗ is the 2D convolution operator and n is usually assumed
as random Gaussian noises. Blind deconvolution needs to
jointly estimate blur kernel k and recover clear image x.

The most successful blind deconvolution methods are
based on the maximum-a-posterior (MAP) framework.
MAP tries to jointly estimate k and x by maximizing the
posterior p(k,x|y), which can be further reformulated as

an optimization on regularized least squares [2],

x̂, k̂ = arg min
x,k

(
‖x⊗ k− y‖2 + λg (x) + σh (k)

)
(2)

where g and h are prior functions designed to prefer a sharp
image and an ideal kernel, respectively. It is not trivial to
solve the optimization problem in Eqn. (2), and instead it is
usually addressed as alternate steps,

x̂(i+1) = arg min
x

(
‖x⊗ k̂(i) − y‖2 + λg (x)

)
(3)

and

k̂(i+1) = arg min
k

(
‖x̂(i+1) ⊗ k− y‖2 + σh (k)

)
. (4)

In the most blind deconvolution methods, kernel size
(L,K) is hyper-parameters that should be manually set. An
ideal choice is the ground truth size to constrain the support
domain, which however is not available in practical appli-
cations, requiring hand-crafted tuning.

On one hand, a smaller kernel size than ground truth can-
not provide enough support domain for estimated blur ker-
nel. Therefore, kernel size in the existing methods is usu-
ally pre-defined as a large value to guarantee support do-
main. On the other hand, as shown in Figure 1, oversized
kernels are very likely to introduce estimation errors, and
hence lead to unreasonable results. Hereby, we name this
phenomenon larger-kernel effect. This interesting fact was
first mentioned by Fergus et al. [9]. Then Cho and Lee [4]
showed a similar result that the residual cost of (2) increases
with over-estimated kernel size. However, such annoying
phenomenon was not well analyzed and studied yet. Note
that most MAP-based blind deconvolution algorithms adopt
the trial-and-error strategy to tune kernel size, so the larger-
kernel effect is a very common problem.

In this paper, we first explore the mechanism of larger-
kernel effect and then propose a novel low rank-based reg-
ularization to relieve this adverse effect. Theoretically, we
analyze the mechanism to introduce kernel estimation er-
ror in oversized kernel size. Specifically, we reformulate
convolution of (3) and (4) to affine transformations and an-
alyze their properties on kernel size. We show that for x in
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Figure 1. Large kernels produce inferior results. (a) Numerical errors with kernel size. (b) Blurry image and ground truth kernel. (c-e)
Deblurred results. In the first row of (c-e) are restored images and corresponding estimated kernels; in the second row are support domains
(k > 0), where adjacent positive pixels are colored identically and zeros are white. In this experiment, we omitted regularization h;
hence, k-step equals to a bare least squares optimization. We also avoided using multi-scaling scheme and threshold in this experiment.
Parameters that performed well on the truth size were kept identical for larger sizes during the experiment.

sparse distributions, this larger-kernel effect remains with
probability one. We also conduct simulation experiments
to show that kernel error is expected to increase with ker-
nel size even without noise n. Furthermore, we attempt to
find out a proper regularization to suppress noise in large
kernels. By exploiting the low rank property of blur ker-
nels, we propose a low-rank regularization to reduce noises
in k̂, suppressing larger-kernel effect. Experimental results
on both synthetic and real blurry images validate the effec-
tiveness of the proposed method, and show its robustness
to against over-estimated kernel size. Our contributions are
two-folds:

• We give a thorough analysis to mechanism of the phe-
nomenon that over-estimated kernel size yields inferior
results in blind deconvolution, on which little research
attention has been paid.

• We propose a low rank-based regularization to effec-
tively suppress larger-kernel effect along with effi-
cient optimization algorithm, and performs favorably
on oversized blur kernel than state-of-the-arts.

2. Larger-kernel effect
In this section, we describe the larger-kernel effect in

detail and provide a mathematical explanation.

2.1. Phenomenon

In Figure 1(b-c), it has shown that the larger the kernel
size would lead to more inferior deblurring results, since
the estimated blur kernel with larger support domain is very

likely to introduce noises and estimation errors. Figure 1(a)
shows both the error ratio (err) [17] of restored images and
the Summed Squared Difference (SSD) of estimated kernels
reach the lowest at the truth size and increase afterwards.

2.2. Mechanism

To analyze the source of larger-kernel effect, we firstly
introduce an interesting fact that we call inflating effect.

Claim 1. (Inflating Effect) LetA = [v1 . . .vn], where vi ∈
Rm (m ≥ n+1). LetB = [w1Aw2], where w1,w2 ∈ Rm
and rank(B) > rank(A). Given an m-D random vector b
whose elements are i.i.d. with the continuous probability
density function p, for u ∈ Rm

Pr
(

inf{‖Bu− b‖2} < inf{‖Au− b‖2}
)

= 1.

Proof.

Pr
(

inf{‖Bu− b‖2} ≥ inf{‖Au− b‖2}
)

= Pr
(
b ∈ Rm \ (span{B} \ span{A})

)
=

∫
Ω

dp(b)

where Ω = Rm \ (span{B} \ span{A}).
For rank(B) > rank(A), we have dim(span{B} \

span{A}) > 0. Hence, the Lebesgue measure of Ω is zero,
and the probability is zero.

Claim 1 shows that padding linear independent columns
to a thin matrix leads to a different least squares solution
with lower residue squared cost.



The convolution part in (1) is equivalent to linear trans-
forms:

y = Tkx + n = Txk + n. (5)

where italic letters y,x, k and n represent column-wise ex-
panded vectors of 2D y,x, k and n, respectively; Tk ∈
RMN×MN and Tx ∈ RMN×LK are blocked banded
Toeplitz matrices [1, 11]; L and K are required to be odd.

We attribute the larger-kernel effect to either substep (3)
or (4). On one hand, Tk remains identical when L and
K increase by wrapping a layer of zeros around k and the
result of x-step keeps the same. Hence, x-step should not
be blamed as the source of the larger-kernel effect. On the
other hand, when k is larger, Tx will become inflated for
the same x. In 1D cases, where N = K = 1, assume
L = 2l + 1, then

Tx(L)

=



xl+1 · · · x2 x1 0 · · · 0
...

... x2 x1
. . .

...

xM−1

...
... x2

. . . 0

xM
. . .

...
...

...
. . . x1

0
. . . xM−1

...
... x2

...
. . . xM xM−1

...
...

0 · · · 0 xM xM−1 · · · xM−l


(6)

During blind deconvolution iterations, for identical val-
ues of x̂(i), a larger L introduces more columns onto both
sizes of Tx̂(i) and results in different solutions. To illustrate
this point, we tested a 1D version of blind deconvolution
without kernel regularization and took different values of L
(truth and double and four times the truth size) for the 50th
k-step optimization after 49 truth-size iterations (see Figure
2). Figure 2(a-c) show that the optimal solutions in differ-
ent sizes differ slightly on the main body that lies within the
ground truth size (colored in red), but greatly outside this
range (colored in green) where zeros are expected. Figure
2(d-f) compare ground truth to estimated kernels in (a-c) af-
ter non-negativity and sum-to-one projections. Larger sizes
yield more positive noises; hence, they lower the weight of
the main body after projections and change the outlook of
estimated kernel.

2.3. Probability of larger-kernel effect

Even if x̂(i) successfully iterates to truth x, Claim 1 im-
plicates the larger-kernel effect remains under the existence
of random noise n. We show

Pr (rank (Tx (L+ 2)) > rank (Tx (L))) = 1, (7)

under which, the inflating effect holds for probability one in
blind deconvolution.
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Figure 2. Estimated kernels in 1D Blind deconvolution simula-
tions. Left column are optimized kernels of different sizes after
50th iteration. Right column are corresponding normalized ker-
nels of left after non-negativity and sum-to-one projections. In
this experiment, x is a 255×1 vector extracted from a real image
and the truth k is generated by marginalizing a 23× 23 truth ker-
nel from Levin’s dataset [17]. The signal prior is `1

`2
. This figure

is recommended to view in color.

Above all, we have

Pr (rank (Tx (L+ 2)) > rank (Tx (L)))

≥Pr (rank (Tx (M)) = M) .
(8)

Kaltofen and Lobo [13] proved that for an M-by-M Toeplitz
matrix composed of finite filed of q elements,

Pr
(
rank(TM×M ) = M

)
= 1− 1/q. (9)

Herein, clear images are statistically sparse on derivative
fields [19, 27], and elements of x are modeled to be contin-
uous in hyper-Laplacian distributions [14]:

p(x) =

{
β exp (−γ|x|α) , x ∈ [−1, 1]

0 , otherwise.
(10)
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Figure 3. Quantitative simulations show that error increases with kernel size. (a) The extracted row from a clear image. (b) Singular
boundaries of T†x and ‖T†xn‖ with sampled n. (c) Synthetic sparse signals. (d) The smallest, greatest and mean singular values of
(Txgt + T∆x)

†Txgt − I.

Then we get the following claim:

Claim 2.

Pr
(
rank(Tx(M)) = M

)
= 1.

Proof. See supplementary file.

To now, we have shown that for x in sparse distribution,
the inflating effect happens almost surely.

2.4. Quantification of error increment

Assume x̂ iterates to ground truth xgt during iterations.
Then, for estimated kernel k̂, we have

k̂ = arg min
k
‖Txgt

k − y‖2 = kgt + T†xgt
n (11)

where † represents Moore-Penrose pseudo-inverse. Then,

SSD = ‖k̂ − kgt‖2 = ‖T†xgt
n‖2. (12)

Assume ‖n‖ = 1, then

s1(T†xgt
) ≤ ‖T†xgt

n‖ ≤ sn(T†xgt
), (13)

where s1 and sn represents the smallest and the greatest
singular values, respectively.

The inflating effect implicates that a larger kernel size
amplifies the error in k̂ due to noise n. To quantify this in-
crement, we extracted a line x from a clear image in Levin’s
set [17] as shown in Figure 3(a), and plotted s1(T†x) and
sn(T†x) with increasing kernel size L. We also gener-
ated normalized random Gaussian vectors n and compared
‖Txn‖ to simulated boundaries of singular values (see Fig-
ure 3(b)). The error in k̂ increases hyper-linearly with ker-
nel size.

In practice, nuances are expected between x̂ and xgt.
Cho and Lee [4] indicated that x̂ should be regarded as a
sparse approximation to xgt, not the ground truth. Hence,

x̂ = xgt + ∆x, (14)

which yields implicit noise [25]. Assume n = 0, then,

x̂⊗ kgt = xgt ⊗ kgt + ∆x⊗ kgt (15)

and
k̂ = arg min

k
‖Tx̂k − y‖2

=(Txgt + T∆x)†Txgtkgt.
(16)

Then,

SSD = ‖
(
(Txgt

+ T∆x)†Txgt
− I
)
kgt‖2. (17)

To quantify how singular values of (Txgt +T∆x)†Txgt−I
changes with kernel size, we simulated 100 times, in each
of which we generated a stochastic sparse signal xgt with
length 254 under PDF in (10) with M = 254, γ = 10 and
α = 0.5, and generated random Gaussian vector ∆x where
‖∆x‖ = ‖xgt‖/100. Figure 3(c) shows one example of
generated xgt and ∆x. Figure 3(d) shows means and stan-
dard deviations of s1, sn and s̄, which is the average of sin-
gular values, of simulated (Tx + T∆x)†Tx − I on L. The
error of k̂ is expected to grow with kernel size even n = 0.

3. Low-rank regularization
Blind deconvolution is an ill-posed problem for lacking

sufficient information. Without regularization, MAP de-
grades to Maximum Likelihood (ML), which yields infinite
solutions [17]. As prior information, kernel regularization
should be designed to compensate the shortage of ML and
to guide the optimization to expected results. Great amount
of studies focus on image regularization to describe natu-
ral images, e.g., Total Variation (TV-`1) [16, 23, 26], hyper-
Laplacian [14], dictionary sparsity [12,30], patch-based low
rank prior [24], non-local similarity [5] and deep discrimi-
native prior [18].

Unfortunately, kernel optimization doesn’t attract much
attention of the literature. Previous works adopted various
kernel regularizations, e.g., `2-norm [3, 10, 21, 28, 29], `1-
norm [15, 20, 25] and `α-norm (0 < α < 1) [31], which,
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Figure 4. Singular values of clean kernels and noisy matrices. (a) The support domain (black) of a 47× 47 random positive half Gaussian
noise matrix. (b) The distribution of singular values of (a). (c) log det costs of random Gaussian noise matrix (black), the truth kernel
from [17] after zero-padding (red), and Gaussian PSF with size/6 standard deviation (blue) on kernel size. (d) Scaled (maximum to 1)
singular value distributions of clean, impure and regularized kernels.

however, generally treated kernel regularization as an ac-
cessory and lacked a detailed discussion.

The larger-kernel effect is yielded by noise in ultra-sized
kernels. Figure 1 and Figure 2 show that without ker-
nel regularization, the main bodies of estimated kernels can
emerge clearly, but increasing noises take greater amounts
when k is larger. To constrain k̂ to be clean, regularization
h is expected to distinguish noise from ideal kernels effi-
ciently.

To suppress the noise in estimated kernels, we take low-
rank regularization on k such that k-step (4) becomes

k̂(i+1) = arg min
k

(
‖x̂(i+1) ⊗ k− y‖2 + σrank (k)

)
.

(18)
Because the direct rank optimization is an NP-hard prob-

lem, continuous proximal functions are required. Fazel et
al. [8] proposed

log det (X + δI) (19)

as a heuristic proxy for X ∈ SN+ where I is the N-by-N
identity matrix and δ is a small positive number.

To allow this approximation to play a role in general ma-
trices, the low-rank object is substituted to (XXT )1/2 [6].
The regularization function then becomes

h(X) = log det((XXT )
1
2 + δI) =

∑
j

log(si + δ), (20)

where si is the i-th singular value of X .
Taking low-rank regularization on kernels is motivated

by a generic phenomenon of noise matrices [1]. Figure 4(a-
b) shows a non-negative Gaussian noise matrix and its sin-
gular values in decreasing order. For a noise matrix, where
light and darkness alternate irregularly, the distribution of
singular values decays sharply at lower indices; then, it
breaks and drag a relatively long and flat tail to the last. In
contrast, ideal kernels respond much lower to log det regu-
larization (see Figure 4(c)). Based on this fact, noise matri-
ces are distinguished by high log det cost from real kernels.
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Figure 5. Comparison on respond to noise. The cost ratio is calcu-
lated as 1 + cost(ε)−cost(0)

|cost(0)| . This figure is recommended to view in
color.

Figure 4(d) shows that singular values of a low-rank regu-
larized kernel are distributed similarly as the ground truth,
compared with the impure one.

One intelligible explanation on the low-rank property of
ideal kernels is the continuity of blur motions. Rank of a
matrix equals the number of independent rows or columns;
it reversely reflects how similar these rows or columns are.
Speed of a camera motion is deemed to be continuous [7].
Hence, the local trajectory of a blur kernel emerges similar
to neighbor pixels, which is measured in a low value by the
continuous proxy of rank.

Compared to previous `α norms, low-rank regularization
responds more efficiently to noise. To illustrate this point,
we generated a noisy kernel by adding a small percentage
(ε) of non-negative Gaussian noise and 1− ε of the real ker-
nel. Figure 5 shows that the low-rank cost rapidly adjust
favorably to the noise but `α norms fail. That is because `α
only takes statistical information. An extreme example con-
sists of disrupting a truth kernel and randomly reorganizing
its elements, with `α cost unchanged. In contrast, rank (sin-
gular values) corresponds to structural information.



4. Optimization
Function log det is non-convex (and it is actually con-

cave on S+). To solve the low-rank regularized least squares
(4), we introduce an auxiliary variable Ψ = k and reformu-
late the optimization into

min
k,Ψ

(
‖x̂(i+1) ⊗Ψ− y‖2 + σ log det

(
(kk)

1
2 + δI

))
s.t. Ψ = k

(21)
Using the Lagrange method, (21) is solved by two alter-

nate sub-optimizations
Ψ̂(j+1) = arg min

Ψ
‖x̂(i+1) ⊗Ψ− y‖2 + µ‖Ψ− k̂(j)‖2

k̂(j+1) = arg min
k

1

2τ
‖k− Ψ̂(j+1)‖2 + σh(k)

(22)
where j is the iteration number while µ and τ are trade-off
parameters.

The Ψ-substep is convex and accomplished using the
Conjugate Gradient (CG) method. For k-substep, low rank
is adopted with limit; otherwise, the regularization may
change the main body of kernel—an extreme result is k̂ =
0. Thus, our strategy is to lower the rank at Ψ̂ locally. Using
the first-order Taylor expansion of h at fixed matrix Z:

hZ(X) = h (Z) +
∑
i

si − ŝi
ŝi + δ

, (23)

where ŝi is the i-th eigenvalue of Z, the k-substep in (22) is
transformed into an iterative optimization

k(t+1) = arg min
k

(
1

2τ
‖k− Ψ̂(j+1)‖2 + σhk(t) (k)

)
(24)

where t is the inner iteration number. For convenience, we
set σ as a flag (if σ = 0, the k-substep will be skipped) and
only tuned τ as the trade-off parameter.

Define the proximal mapping of function φ as follows:

proxφ(v) = arg min
u

(
1

2
‖u− v‖2 + φ(u)

)
. (25)

Dong et al. [6] proved that one solution to the proximal
mapping of τhZ is

proxτhZ
(X) = U (Σ− τdiag (w))+ VT (26)

where UΣVT is SVD of X, wi = 1/ (ŝi + δ) and (·)+ =
max {·, 0}. Local low-rank optimization is implemented as
iterations via the given parameter τ (see Algorithm 1). In
our implementation, µ is designed to exponentially grow
with j to allow more freedom of Ψ̂ for early iterations.

Overall Implementation. We took deconvolution sechme
in [15] where g = `1/`2 (but with small modification) and
applied non-blind deconvolution method proposed in [14].

Algorithm 1 Updating k with low-rank regularization
Input: x, y, µ, τ , OuterIterMax, CGIterMax,

innerIterMax
Output: k̂
1: for j ← 0 to OuterIterMax− 1 do
2: if j = 0 then
3: Ψ̂(j+1) ← minΨ ‖x⊗Ψ− y‖2 using CG with

maximum CGIterMax iterations
4: else
5: µ(j) ← µ

(
ej/eOuterIterMax

)
6: Ψ̂(j+1) ← minΨ ‖x⊗Ψ− y‖2 + µ(j)‖Ψ− k(j)‖2

using CG with CGIterMax iterations
7: end if
8: Initializing k(0) with all singular values equal to 1
9: for t← 0 to innerIterMax− 1 do

10: k(t+1) ← proxτh
k(t)

(
Ψ̂(j)

)
11: end for
12: k̂(j+1) ← max{k(innerIterMax), 0}
13: k̂(j+1) ← k̂(j+1)/

∑
k̂(j+1)

14: end for
15: k̂← k̂(outerIterMax)

Algorithm 2 Blind Deconvolution (single-scaling version)
Input: blurry image y, kernel size L, λ, η, τ , IterMax
Output: clear image x and degradation kernel k
1: y← [∇hy,∇vy]
2: Initialize x← y
3: Initialize k with an L× L zero matrix adding [0.5 0.5]

in the center
4: for t← 1 to IterMax do
5: Update x using Algorithm 3 in [15]
6: Update k using Algorithm 1
7: end for
8: x← Non-blind deconvolution (k,y)

5. Experimental Results
In this section, we first discuss the effects of low

rank-based regularization, then evaluate the proposed
method on benchmark datasets, and finally demonstrate
its effectiveness on real-world blurry images. The
source code is available at https://github.com/
lisiyaoATbnu/low_rank_kernel.

size=23, err=1.55 size=47, err=1.56 size=69, err=2.14
Figure 6. Deblurring results using low-rank regularization.

https://github.com/lisiyaoATbnu/low_rank_kernel
https://github.com/lisiyaoATbnu/low_rank_kernel
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Figure 7. Comparison of different kernel priors on real-world images. Large kernel size is 61× 61. It’s recommended to zoom in.
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5.1. Effects of low rank-based regularization

Corresponding to high error ratios of large kernels in Fig-
ure 1, we repeat the experiment using same parameters ex-
cept µ and σ. Figure 6 shows low-rank regularized kernels
are much more robust to kernel size. Noises in kernels are
efficiently reduced and qualities of restored images are en-
hanced. We further verify it on real-world images by im-
posing different regularization terms. As in Figure 7, blur
kernels with low-rank regularization have less noises, while
the others suffer from strong noises, yielding artifacts in the
deblurring images. We note that in experiments of Figure 6
and Figure 7, we deliberately omitted multi-scaling scheme
to expose the effectiveness of low-rank regularization itself.

5.2. Evaluation on synthetic dataset

The proposed method is quantitatively evaluated on
dataset from [17]. Figure 8 shows the success rates of state-
of-the-art methods versus our implementations with and
without (set µ and σ zero) low-rank regularization. The av-
erage PSNRs in Figure 8 with different sizes are compared
in Table 1. Parameters are fixed during the whole experi-
ment: σ = 1, µ = 1, τ = 5× 10−5, OuterIterMax = 20,

Method prior truth size double size
[22] – 27.34 23.29
[3] `2 26.85 25.74

[28] `2 26.91 26.71
[25] `1 26.54 26.44
[15] `1 25.34 23.95
[31] `α 26.58 26.83
σ = 0 – 26.68 23.85
σ = 1 log det 27.36 27.47

Table 1. Average PSNRs (dB) with truth and double sizes in ex-
periments of Figure 8.

CGIterMax = 3 and innerIterMax = 10; a 7-layer
multi-scaling pyramid is taken. Kernel elements smaller
than 1/20 of the maximum are cut to zero, which is also
taken in [3,14]. Low-rank regularization works more effec-
tively than the regularization-free implementation and the
state-of-art.

5.3. Evaluation on real-world blurry images

We compared our implementation to state-of-the-art
methods on real-world images to reveal the robustness
of low rank regularization on large kernel size. Specifi-
cally, [28] takes a heuristic iterative support domain detec-
tor based on the differences of elements of k̂, which is re-
garded to be more effective than 1/20 threshold. Figure 9
shows that 185× 185 size yields strong noises in estimated
kernels of previous works [3, 28], and even changes main
bodies of kernels [15, 31]. In contrast, low rank regular-
ization can keep the kernel relatively stable for the larger
size. One more comparison of different regularizations and
refinement methods on large kernel size are shown in Fig-
ure 10. As for computational efficiency of our method, it
takes about 85s on a Lenovo ThinkCentre computer with
Core i7 processor to process images with size 255× 255.



Blurry `2 [3] 85× 85 `2 [3] 185× 185 `2 [28] 85× 85

`2 [28] 185 `1 [15] 85× 85 `1 [15] 185 `α [31] 85× 85

`α [31] 185× 185 Low rank (ours) 85× 85 None (ours) Low rank (ours) 185× 185

Figure 9. Test on real-world image roma. Each domain (positive parts) of estimated kernel is displayed at the bottom right corner of
corresponding restored image.

Blurry `2, 1/20 max threshold [3] `2, heuristic domain detector [28]

`1 [15], 1/20 max threshold `α, none [31] Low rank, 1/20 max threshold

Figure 10. Test on real-world image postcard. Kernel regularizations are listed under restored images.

6. Conclusion

In this paper, we demonstrate that over-estimated ker-
nel sizes produce increased noises in estimated kernel. We
attribute the larger-kernel effect to the inflating effect. To
reduce this effect, we propose a low-rank based regulariza-
tion on kernel, which could suppress noise while remaining
restored main body of optimized kernel.

The success of blind deconvolution is contributed by
many aspects. In practical implementations, even for noise-
free y, the intermediate x̂(i) is unlikely to iterate to ground

truth, hence some parts of y will be treated as implicit
noises, which may intensify the effect even more than ex-
pected and require future researches.
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Supplementary File: Proof to Theorem 2
Assume M to be odd and M = 2m + 1 (m ∈ N+).

Then,

Tx(M)

=



xm+1 · · · x2 x1 0 · · · 0
...

... x2 x1
. . .

...

xM−1

...
... x2

. . . 0

xM
. . .

...
...

...
. . . x1

0
. . . xM−1

...
... x2

...
. . . xM xM−1

...
...

0 · · · 0 xM xM−1 · · · xm+1


(27)

=
[
J (−m)x · · · J (−1)x x J (1)x · · · J (m)x

]
. (28)

For any M -by-M matrix A, rank(A) = M i.f.f.
det(A) 6= 0. Thus,

Pr (rank (Tx (M)) = M) = Pr (det (Tx (M)) 6= 0) .
(29)

As we know, the explicit formula of determinant of a
Toeplitz matrix on its elements is unsolved in the current lit-
erature. Li [1] gives a concrete expression of det (Tx (M))
by using LU factorization but fails to fit all situations
(e.g. when xm+1 = 0). However, it can be shown
that det (Tx (M)) equals a multivariate polynomial func-
tion without manipulating the whole expression. By using
Laplace expansion on det (Tx (M)), the item of largest de-
gree is xMm+1 with factor 1.

Lemma. Let X be a continuous r.v. in the finite support
domain [a, b]. Let P : R→ R be a polynomial function

P (x) = xk +Q(x)

where Q is a finite polynomial function with the largest de-
gree less than k. Generate a new r.v.

Y = P (X).

Then, for ∀y ∈ R, the Cumulative Distribution Function
(CDF) FY is continuous at y.

Proof.

FY (y) = Pr(Y <= y) =

∫
Ξ(y)

fX(x)dx

where Ξ(y) = {x|P (x) <= y, x ∈ R}.
For ∀y ∈ R,

Ξ(y+) = Ξ(y)

and
Ξ(y−) = Ξ(y) \ Ω(y)

where Ω(y) = {x|P (x)− y = 0}.
Based on Beppo Levi’s Theorem,

lim
ξ→y+

∫
Ξ(ξ)

fX(x)dx =

∫
Ξ(y)

fX(x)dx.

Because P (x) 6≡ c (c is a constant), for ∀y ∈ R, zeros of
P (x)− y are finite, hence the Lebesgue measure of Ω(y) is
zero. We have

lim
ξ→y−

∫
Ξ(ξ)

fX(x)dx =

∫
Ξ(y)

fX(x)dx.

Thus
FY (y+) = FY (y−) = F (y).

Theorem 2. Let X be a continuous r.v. with PDF

fX(x) =

{
β exp (−γ|x|α) x ∈ [−1, 1]

0 otherwise.

For a sample of independent observations X1, . . . , XM ,
generate a new r.v.

Z =

det



Xm+1 · · · X2 X1 0 · · · 0
...

... X2 X1
. . .

...

XM−1

...
... X2

. . . 0

XM
. . .

...
...

...
. . . X1

0
. . . XM−1

...
... X2

...
. . . XM XM−1

...
...

0 · · · 0 XM XM−1 · · · Xm+1


.

Then,
Pr (Z = 0) = 0.

Proof. Based on the Law of Total Probability and Domi-
nated Convergence Theorem,

Pr (Z = 0)

= FZ(0)− FZ(0−)

=

∞∫
−∞

· · ·
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

FY (ξ1,...,ξm,ξm+2,...,ξM )(0)

fX(ξ1) · · · fX(ξm)fX(ξm+2) · · · fX(ξM )

dξ1 · · · dξm dξm+2 · · · dξM

− lim
z→0−

∞∫
−∞

· · ·
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

FY (ξ1,...,ξm,ξm+2,...,ξM )(z)

fX(ξ1) · · · fX(ξm)fX(ξm+2) · · · fX(ξM )

dξ1 · · · dξm dξm+2 · · · dξM



=

∞∫
−∞

· · ·
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

(
FY (ξ1,...,ξm,ξm+2,...,ξM )(0)

− FY (ξ1,...,ξm,ξm+2,...,ξM )(0
−)
)
fX(ξ1) · · · fX(ξm)

fX(ξm+2) · · · fX(ξM )dξ1 · · · dξm dξm+2 · · · dξM
where

Y (ξ1, . . . , ξm, ξm+2, ξM )

= det



Xm+1 · · · ξ2 ξ1 0 · · · 0
...

... ξ2 ξ1
. . .

...

ξM−1

...
... ξ2

. . . 0

ξM
. . .

...
...

...
. . . ξ1

0
. . . ξM−1

...
... ξ2

...
. . . ξM ξM−1

...
...

0 · · · 0 ξM ξM−1 · · · Xm+1



=XM
m+1 +Qξ1, ..., ξm, ξm+2, ..., ξM (Xm+1) .

Qξ1, ..., ξm, ξm+2, ..., ξM is a polynomial function with the
largest degree less than M . Based on Lemma, we have

FY (ξ1,...,ξm,ξm+2,...,ξM )(0)−FY (ξ1,...,ξm,ξm+2,...,ξM )(0
−) = 0.

Hence,
Pr(Z = 0).
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