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Abstract

For a given identity in a face dataset, there are certain
iconic images which are more representative of the subject
than others. In this paper, we explore the problem of com-
puting the iconicity of a face. The premise of the proposed
approach is as follows: For an identity containing a mix-
ture of iconic and non iconic images, if a given face can-
not be successfully matched with any other face of the same
identity, then the iconicity of the face image is low. Using
this information, we train a Siamese Multi-Layer Percep-
tron network, such that each of its twins predict iconicity
scores of the image feature pair, fed in as input. We observe
the variation of the obtained scores with respect to covari-
ates such as blur, yaw, pitch, roll and occlusion to demon-
strate that they effectively predict the quality of the image
and compare it with other existing metrics. Furthermore,
we use these scores to weight features for template-based
face verification and compare it with media averaging of
features.

1. Introduction
What makes Brad Pitt look like Brad Pitt? A clean

frontal image of the actor might better represent him, than
an image where he is wearing sunglasses and a large fedora
(Figure 1). In this case, the former can be considered
as an iconic image and the latter as a non-iconic one.
Predicting face iconicity is a useful task in facial image
analysis. This problem is difficult because ‘iconicity’ is
subjective, and is dependent on the existing images of a
subject. Most face recognition and verification systems
are known to perform well for iconic images captured in
constrained environments. However, for measuring the
performance of such systems in real life scenarios, they
should be evaluated on unconstrained faces. Moreover,
the performance of a system can be accurately measured
by taking into consideration the difficulty (based on the
iconicity) of the test dataset. So, computation of iconicity
of a given facial image is useful for properly evaluating
face verification and recognition systems.

In [4], an iconic image for an object is defined as an

(a) (b)

Figure 1: (a.) Iconic and (b.) Non-iconic image of Brad
Pitt. Our approach assigns an iconicity score of 0.84 and
0.33 to (a) and (b), respectively.

image with a large clearly delineated instance of the object
in a characteristic view. Here the authors showed that
iconic images can be identified rather accurately in natural
datasets by segmenting images with a procedure that
identifies foreground pixels. But this does not translate
well to identifying iconic facial images. One unsupervised
method to segregate iconic and non-iconic face images
would be to perform global clustering across all identities
and conclude that the images that are not present in the
appropriate identity cluster are non-iconic. However, in this
setting, we cannot compute iconicity of any unseen identity.
Moreover, in a dataset containing millions of images (such
as UMD Faces, MS-Celeb-1M) it can be very cumbersome
to perform clustering. Thus it would be very helpful to
have a method which can assign an iconicity measure on
any unseen image without any additional information.

It can be expected that an iconic image is likely to be
a high quality face image. Thus, computing iconicity can
also help us develop a notion of face quality. In [5], the
authors propose a framework to regress the quality scores
of a model to human quality values. Although this method
can directly estimate the face quality of unseen images, its
training phase is not scalable, as it is expensive to assign
humans to provide ground truth for a regression model.
Hence, it is important to design an approach where a blind
quality/iconicity prediction model can be trained only
by optimizing an objective that is only dependent on the
inherent properties of a given image.
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Figure 2: We propose an approach to map feature vector of
a facial image whose length is a function of the iconicity

Similarity of an image with another is one such inherent
property. In this work, we define iconicity as the verifia-
bility of an image and propose a technique to use pairwise
similarity for training a model to predict the verifiability
of an image. This model is built as a Siamese Multi Layer
Perceptron (MLP) network, which is trained using deep
face descriptors extracted using a recognition network and
optimized using their similarity. It should be underscored
that ‘verifiability’ of an image (also known as its iconicity)
is defined as the distinct suitability of a facial image feature
to be matched with any other image feature of the same
identity, in the entire dataset. The training of Siamese
MLP does not require any iconicity-based supervision, and
only needs identity labels. This is important as there exist
several face datasets with identity labels but no datasets
with iconicity-based annotation.

During training, the model learns to map a given feature
to iconicity scores by learning its interaction with those of
same and different identities. Once the model learns this
mapping, it can be used to predict the iconicity of images
of unseen identities. After the model is trained, the mea-
sure of iconicity is unary. At test time, we do not require
any explicit information such as identity labels, the global
knowledge of the dataset or any predefined reference im-
ages and attributes. We can also generate different sets of
iconicity scores corresponding to different sets of descrip-
tors for training the Siamese MLP network.

The contributions of our work are as follows: (1) We
propose a novel method to relate the iconicity of a face im-
age to verifiability of its descriptor. (2) We propose a sim-
ple Siamese Multi Layer Perceptron architecture to estimate
the iconicity of a given facial image feature, without any
iconicity-based supervision. (3) We demonstrate that defin-
ing iconicity in the aforementioned manner correlates well
with factors that affect the visual quality of an image. (4)
We establish a use-case for our iconicity scores by using
them to pool features in template-based face verification,
and obtain results comparable to state-of-the-art.

The paper has been organized as follows: Previous work
in this area is summarized in Section 2. We present our ap-
proach in Section 3 and describe the experiments performed

in Section 4. Experimental results are reported in Section 5.

2. Related work
Face iconicity (or image iconicity in general) has not

been explored widely in previous research. In [3], the au-
thors use compositionality of an image, and its similarity
with images of different object categories to select images
that are highly representative of the class. This is followed
by clustering to filter out the most iconic images of an ob-
ject category. But, the specified method requires explicit
information about categories at test time.

As mentioned earlier, face iconicity is related to face
quality. We believe that an ideal face iconicity metric should
correlate well existing image quality metrics. Before we
proceed, it is important to highlight that image quality as-
sessment (IQA) and face image quality prediction are dif-
ferent tasks. For instance, a profile face image can be of
high quality, yet it might not represent the identity as well
as a frontal image can. Also, it should be noted that IQA is
usually defined in the context of image compression. How-
ever, due to the shared attributes in face quality prediction
and general IQA, we discuss the relevant work in both of
these areas. Existing literature on (facial) image quality can
be divided into three categories which are discussed below:
Techniques computing a specific attribute to measure
quality : Previous experiments ([1], [25], [21]) in this field
have defined quality on the basis of a specific attribute of the
facial image, such as pose, blur etc. For example, the au-
thors of [1] defined quality on the basis of contrast, bright-
ness, focus, illumination and sharpness. The authors in [12]
propose the BRISQUE algorithm based on the ‘naturalness’
of the image, defined as the deviation of the normalized lu-
minance distribution from its Gaussian estimation. How-
ever, these approaches use a specific attribute or reference
images to develop a notion of face quality, and hence cannot
be scaled to larger datasets with more variation and breadth.

Techniques which utilize explicit manually extracted
quality specific information: Several experiments and
most of the CNN/deep network-based quality assessment
frameworks require supervision with respect to quality
score during training. However, the size of such datasets
is limited and construction of such databases is time-
consuming and expensive. Moreover, there does not exist
such datasets for face quality. For example, in [8], the
authors proposed a no-reference deep CNN architecture
which is trained on datasets (such as LIVE [22]), that
supply image degradation level as ground truths. Similarly,
the authors proposed a learning-to-rank technique in [6],
where in weights (which indicate quality) are learned
for image features according to their respective datasets,
such that the predefined ranking of the quality of images
in the datasets considered is maintained. However, the
ranking of the dataset quality needs to be explicit in this



Figure 3: Overview of our proposed approach. During
training, we compute the loss using cosine similarity cosα,
pair label y, which guides the growth/decay of r(f1) &
r(f2). f1 and f2 are extracted from a recognition network.
During testing, we use one of the trained twins.

work. In [10], the authors used a Siamese network to rank
the image features according to their quality. However,
their approach explicitly required quality-based ranks for
training. Moreover, as their framework is not specifically
defined for faces, the feature similarity cannot indicate of
the pair-quality as there is no concept of identities.

Descriptor/image-to-score techniques One of the more
recent works [16], used the scores assigned to a face by
a face detector (FD scores) as a measure of facial image
quality. In this work it has been established that weight-
ing features of network proposed in [17] with these qual-
ity scores helps to improve the performance of existing
template-based face verification systems. Another interest-
ing work in this area is [13], where it was proposed that
the norm of a facial image feature can be used as a qual-
ity measure of the face. It was demonstrated that a lower
norm value is associated with low quality images. However,
this is not applicable for normalized image features (such
as those obtained in [17], [24], [23] etc. where the network
normalizes the feature as part of the training process). To
the best of our knowledge, [13] and [16] are the only works
for face quality prediction (as opposed to general IQA),
where computation of the quality scores is completely inde-
pendent of reference images/attributes and/or does not rely
on quality level ground truth during training. Hence, we
present a technique in this category which directly predicts
the iconicity of an unseen facial image given its feature de-
scriptor. This alleviates the dependence of the predictor on
reference attribute or image, making the method scalable
and generalizable.

3. Our Approach

We view iconicity as one of the indicating factors of the
quality of an image. We hypothesize that for an identity

consisting a mixture of iconic and non-iconic images, if a
facial image cannot be matched successfully with images
of the same identity, then it is a non-iconic image, i.e. ver-
ifiability of that image is low. This information from the
training dataset is indirectly used to optimize an objective
function, which is designed to enable the network estimate
the verifiability of a feature. Once the model learns to map
a feature to its verifiability, it can predict the same for any
feature, irrespective of identity, during evaluation. We use
deep feature representations of faces instead of the raw im-
age and propose an approach (depicted in Figure 3) to pre-
dict the verifiability of any given image feature, without us-
ing reference images/attributes.

3.1. Estimating iconicity using pairwise learning

On a hypersphere of images, the cosine similarity of an
image feature pair provides an estimate of the angular sepa-
ration between these images. However, in this hypersphere,
the notion of length of feature vectors is lost as the cosine
similarity is obtained by normalizing the feature vectors fol-
lowed by their inner product. We present an approach which
maps this representation to another hypersphere (shown in
Figure 2) where the length of the feature vector f represents
the iconicity of the feature and is represented by a function
r(f), which is the tentative output of our model. For this
mapping we need to normalize the feature f

‖f‖ and represent

it as r(f). f
‖f‖ in the new hyperspace, where r(f) represents

the iconicity of the feature. Thus, the iconicity determines
the length of the feature from the origin of the hypersphere.
In order to learn r(f), we use a pairwise learning technique
where we optimize 〈f1, f2〉r, which represents the dot prod-
uct of a feature pair in the new hypersphere (r(·)) space.

〈f1, f2〉r =

(
r(f1)

f1
‖f1‖

)T(
r(f2)

f2
‖f2‖

)
=⇒ 〈f1, f2〉r = r(f1) r(f2) cosα

To optimize this inner product in the new space we formu-
late it as a new similarity measure which can take into ac-
count the iconicity of individual features as well. So, we
define an objective function for training the model as:

L(f1, f2) = max(0, y (∆− r(f1) r(f2) cosα)) (1)

where ∆(> 0) represents the margin, which is a hyperpa-
rameter. Specifically, we want the angle α between two im-
age features f1 and f2 and the label y associated with the
pair (+1 for positive pair i.e. both images from the same
identity and -1 for negative pair i.e. if both images belong
to different identity), to guide the growth/decay of r(f1) and
r(f2). We build a Siamese MLP network to learn the func-
tion r(·). While training, it takes in a pair of features f1 and
f2, and predicts their iconicity i.e. r(f1) and r(f2). Initially,



Interpretation table
Type cos(α) y(∆− r(f1)r(f2). cosα) Effect on r(f1)r(f2) for optimization

I Relatively low (< 0- Non iconic) Relatively high Decrement
II (Disguise) Relatively high (> 0- Non iconic) Relatively high Decrement

III Relatively high (> 0- Iconic) Relatively low Increment
IV Relatively low (< 0- Iconic) Relatively low Increment

Table 1: Tentative effect of cosα on the product (r(f1) r(f2))

r(f) is a random scalar but as the network is trained, for a
given feature f , r(f) is optimized in a way such that it cap-
tures the verifiability of f with respect to the entire dataset,
by taking into consideration its associated pair label and its
interaction with other features. Hence the model is trained
to predict the verifiability of any given f , using angular sep-
aration and pair labels. The numerical interpretation of our
loss function is provided in the next section.

3.2. Interpretation

Without loss of generality, we can assume the presence
of the following four types of pairs in the training dataset:
Type-I : At least one unclean image in a positive pair. Sim-
ilarity scores of such pairs are less than zero, even though
the associated images are of the same identity.
Type-II : At least one unclean image in a negative pair.
Similarity scores of such pairs are positive, even though the
associated images belong to different identities, represent-
ing disguise.
Type-III : Both clean images in a positive pair. Similarity
scores of such pairs are positive, as expected.
Type-IV : Both clean images in a negative pair. Similarity
scores of such pairs are negative, as expected.
Table 1 illustrates the effect of α and the possible effect of
loss function on the product r(f1) r(f2). It can be noticed
that the model is inclined to decrease this product if the pair
contains at least one non iconic image.

3.3. Decoupling due to pairwise training

In the previous sub section, we inferred that the prod-
uct r(f1)r(f2) would be decreased by the model if the pair
contains at least one non-iconic pair. If the training dataset
consists of l iconic and m non iconic images, then a given
non iconic image feature f can be associated with at most
l +m− 1 pairs, each of them belonging to either Type I or
Type II. Similarly, a given iconic image can be associated
with only m pairs belonging to Type I or II. Hence dur-
ing training, the product r(f1)r(f2) involving a given non
iconic image would be penalized more than that involving
a given iconic image since m � l + m − 1 i.e. the dataset
consists of a mixture of iconic and non-iconic images. From
this, we cannot directly deduce that the score of the non-
iconic feature f would be penalized more. This is because
the product can also be decreased by penalizing the score

of an iconic image and increasing that of the non iconic im-
age in such a way that the product is decreased. However,
as presented in Table 1, the product should be maximized
when an iconic pair is encountered during training, to de-
crease the loss. So, for penalizing a product consisting of a
non iconic image feature, the score of the non iconic image
feature would be needed to be decreased. Therefore, it can
be concluded that since a given non iconic image can be as-
sociated with more non iconic pairs (as compared to iconic
image), it would be penalized more than a given iconic im-
age.
3.4. Mixture of iconic and non-iconic images

As explained in the previous subsection, in order to op-
timize the network, the number of iconic images l and
non iconic images m should be chosen such that m <<
l + m − 1, i.e. l >> 1. When sampling positive pairs,
this implies that for a given identity, there should be several
(more than one) iconic images. Similarly, when sampling
negative pairs the network must encounter several iconic
images. We empirically verified that choosing identities
with l and m satisfying m

l+m ≈ 0.5 during training yields
the best results. This explains the requirement of mixture
of iconic and non-iconic pairs for every identity. This step
is performed before computing facial iconicity. Hence, we
use Face Detection scores for calculating l and m.

4. Experiments
4.1. Datasets

As explained in Section 3.4, we require a training dataset
that has a mixture of iconic and non iconic images for every
identity. Hence we use Batch 1 of UMD Faces [2] which
satisfies this requirement. This subset of the dataset consists
of 175,534 images for 3674 subjects. For testing, we choose
datasets with domains different from that of UMD faces.
Since we show the correlation of our iconicity score with
respect to several parameters (like blur, pose etc.), we select
datasets with appropriate annotation of these parameters.

4.2. Architecture - Siamese MLP

We train a Siamese MLP network (Figure 4), using pairs
from Batch 1 of UMD Faces dataset. A single twin of the
Siamese network accepts a 512 dimensional descriptor, and
has 4 hidden layers, each consisting of 512, 256, 128, 64



Figure 4: One of the Siamese MLP twins

hidden units. The first three hidden layers are followed by
SeLU [9] activations. There exists full connection between
outputs these activation layers and the consequent hidden
layer. The final hidden layer is then connected to the out-
put node, which is scaled between 0 to 1 by using sigmoid
unit. We assign a ground truth y ∈ {+1,-1} on positive and
negative pairs. Hence, Eq. 1 is used as loss function. In our
experiments, we chose ∆ = 0.5 based on the distribution of
the similarity scores of the training dataset.

4.3. Features used

In order to demonstrate the robustness of our model
across different set of features, we perform experiments us-
ing features extracted using two separate network architec-
tures. We use features of the architecture proposed in [17],
which is trained using L2 constrained softmax loss, on MS
Celeb 1M dataset [7]. All features generated using this net-
work have unit norm. We also perform experiments with
features learned by the network proposed in [19], which fol-
lows the AlexNet architecture. This network is trained on
the CASIA-Webface dataset [27]. Thus, we train the fol-
lowing two Siamese MLP models, using two set of feature
descriptors:
a.) Model-1 : Siamese MLP trained with features of [17]
b.) Model-2 : Siamese MLP trained with features of [19].
The aforementioned features are used as their correspond-
ing networks have demonstrated high performance for the
task of face verification. Also, in all our experiments, fea-
tures are extracted after computing face coordinates using
the all-in-one network described in [18].

4.4. Training and testing

For every epoch, we randomly choose 20000 positive
and 20000 negative pairs from the dataset, feed the fea-
ture pair to the network and perform mini batch gradient
descent using a batch size of 256. We train the network for
50 epochs. We train two models, using features of the net-
work in [17] and [19]. For testing we only use one of the
twins of the trained model to determine the iconicity of any
given image feature.

5. Results

An ideal face quality/iconicity metric is expected to
be an all-in-one metric which obtains considerable perfor-
mance on a variety of quality related tasks, and correlates
well with human quality opinions. We evaluate face quality
metrics on the basis of their performance on the following
two tasks.
Relation with factors that affect face quality: To ver-
ify the usefulness of any quality score, we observe its cor-
relation with some of the factors that visibly affect facial
image quality : yaw, pitch, roll, occlusion and blur. We
also demonstrate that our Siamese models generate iconic-
ity scores well correlated with human perception of quality.

Template-based face verification: In [5] and [16],
template-based face verification has been used as one of the
applications of face quality measure. Hence, we also eval-
uate the effectiveness of our iconicity scores for this task.
We use iconicity scores as weights to perform quality pool-
ing for template-based face verification, and compare our
verification results with that obtained with media averaging
technique to combine features of the same template.

As mentioned in [15], computing quality using a biomet-
ric system is a Biometric complete problem, which basi-
cally implies that our computed iconicity score cannot im-
prove the one-to-one verification algorithm. However, in
template-based face verification, the objective is to reduce
the error rate of the system (and not to remove the weakness
of algorithm). Thus, we expect our scores to help us appro-
priately weight samples in a template.
To properly evaluate our iconicity scores, a fair comparison
with existing face quality metrics as well as a general IQA
metric is required. As mentioned in Section 2, FD score
(i.e. scores assigned to a face by a face detector, effectively
implying faceness) and norm of features are the only qual-
ity scores which do not require any reference image during
training and evaluation. Therefore, we compare the quality
scores of Model-1 and Model-2 with: a.) Face Detection
scores [16], b.) Norm of features in [19] and c.)BRISQUE
[12] (an existing general IQA metric), for showing corre-
lation with respect to affecting factors in most of the ex-
periments. We cannot use Norm of [16] as these features
have unit norm. For the task of template based face veri-
fication, we compare the verification results obtained after
quality pooling with scores of Model-1 and Model-2, with
FD Score and Norm of [19]. Finally we compare the per-
formance breadth of each of these metrics.

5.1. Visualization

Firstly, we visualize the images according to Model-1
scores. Figure 5 confirms that the scores accurately capture
the visual quality of a facial image.



(a) (b) (c) (d)
Figure 5: Images with low Model-1 iconicity score (i.e. r(f)) in a.) Batch 2 of UMD Faces [2], b.) IJB-C dataset [11] and
images with high Model-1 iconicity score in c.) Batch 2 of UMD Faces, d.) IJB-C dataset.

(a) (b) (c)
Figure 6: Variation of scores obtained with Model-1, Model-2, FD Score [16], norm of [19] and BRISQUE [12] across a.)
Yaw, b.) Pitch, c.) Roll, on IJB-C dataset.

5.2. Dependence on yaw, pitch and roll

The quality score of the facial image is expected to de-
crease as the pose of the face becomes extreme. We define
pose on the basis of yaw, pitch and roll. For evaluation, we
compute the values of these parameters for images in IJB-
C dataset [11] using the all-in-one ConvNet trained in [18].
The IJB-C dataset consists of 3531 identities with a total of
31,334 still images and 117,542 video frames collected in
unconstrained settings. Following this we bin these values
in a way such that each bin approximately contains equal
number of images. For each bin, we compute the aver-
age quality score and visualize their variance as the pose
keeps on becoming extreme. It is worth noting that while
analyzing one pose parameters, the other two parameters
are constrained to be between −30◦ to 30◦. It can be con-
firmed from Figure 6 that the Siamese MLP iconicity scores
(Model-1 and Model-2) correlate well with pose variation.
It should be emphasized that even though the model was
not given any explicit information about facial poses, it is
able to capture the relation of pose and quality on a dataset
with a domain, completely different from that of the training
dataset. On the other hand, BRISQUE [12], being a general
IQA metric, shows no correlation with face pose. Also from
Figure 6, it is clear that the FD score does not correlate well
with roll.

5.3. Dependence on blur

The quality score of the facial image would decrease as
the image gets degraded due to blur. To experimentally ver-
ify this using the Siamese MLP iconicity scores, we evalu-
ate the scores on images in the WIDER Face dataset [26].
We use the training split of this dataset as we have ground
truth annotation for blur of the image. The training im-
ages have been labeled to have one of the three blur la-
bels : 0 - for no blur. 1 - for partial blur and 2 - for ex-
treme blur. We plot the distribution of images belonging
to each of these blur levels with respect to the score ob-
tained from the Siamese MLP. We chose images with no
extremes in terms of other parameters (such as occlusion,
illumination, expression etc.). We test the score obtained
by Model-1 and Model-2. It can be seen from Figures 7(a)
and (b) that the average quality score (represented by the
vertical line) keeps decreasing as the amount of blur is in-
creased. In addition, the model is able to assign somewhat
separate score distribution to different levels of blur. Here,
the iconicity models were not provided with any explicit
information about blur while being trained. We also pro-
vide corresponding plots using three other quality scores :
Face Detection (FD) score [16], norm of the feature [19] and
BRISQUE [12]. We can infer that while norm of the feature
models the blur quite well, the distributions obtained using
BRISQUE and FD score are not resolvable.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 7: (a-e) Distributions of quality scores on different
levels of blur obtained using a.) Model-1 b.) Model-2 c.)
Face detection scores [16], d.) Norm of [19] e.) BRISQUE.
(f-j) Distributions of quality scores on different levels of
occlusion obtained using f.) Model-1 g.) Model-2 h.) Face
detection scores [16] i.) Norm of [19] j.) BRISQUE

Figure 8: We perform face verification by pooling features
with various quality scores, on IJB-C dataset

Features used Scores for quality pooling
L2 constrained softmax loss [17] FD Score
L2 constrained softmax loss [17] None (Media average)
AlexNet [19] Feature Norm
AlexNet [19] None (Media average)
L2 constrained softmax loss [17] Model-1
AlexNet [19] Model-2

Table 2: Combination of features and quality pooling
scores, used in this experiment

Method / FPR: 10−6 10−5 10−4 10−3 10−2 10−1

Facenet [20] 20.95 33.30 48.69 66.45 81.76 92.45
VGGFace [14] 32.20 43.69 59.75 74.79 87.13 95.64
Norm of [19] 47.2 61.9 74.1 84.2 91.8 97.3
FD Score on [17] 66.2 85.9 91.9 95.3 97.5 98.8
MediaAvg of [17] 43.7 82.4 91.1 95.2 97.6 98.9
Model-1 (Ours) 66.5 87.3 92.3 95.3 97.4 98.7

Table 3: True positive rates for different face verification
methods on the IJB-C data set.

5.4. Dependence on occlusion

Facial image quality can be degraded due to possible oc-
clusions. To corroborate the universality of the Siamese
MLP scores, we observe the variation of the score with re-
spect to occlusion and compare it with the score-variation
of FD score and feature norm. We use the training split
of WIDER dataset as we have ground truth annotation for
occlusion of the image. Figure 7(f-j) presents the distribu-
tions for different levels of occlusion modeled by Model-
1, Model-2, Norm of [19] and Face Detection scores [16].
Once again it is clear from Figure 7(h) and (j) that FD score
and BRISQUE do not correlate well with occlusion.

5.5. Template-based face verification

After comparing the correlation of iconicity/quality met-
rics with various factors, we perform face verification by
pooling features with various quality scores (including the
scores of Model-1 and Model-2). The combination of fea-
tures and corresponding pooling weights is mentioned in
Table 2. These experiments are performed on the IJB-C
dataset, using the verification protocol specified in [11].



The verification protocol includes 19557 genuine matches
and 15,638,932 impostor matches, which allows us to eval-
uate the performance at very low FARs of 10−6. The algo-
rithm used for quality pooling is same as in [16]. Given fea-
ture fi in a template of L images and corresponding qual-
ity score ri from a given model (Model-1 or Model-2), we
compute qi = eλri∑L

j=1 eλrj
where λ is a hyperparameter. We

empirically chose λ = 0.3 in our experiments, based on the
verification performance on the held-out data. Following
this, we use qi to weight feature fi in a given template. We
obtain the final feature descriptor as f =

∑L
i=1 qifi, and

use it for verification. It is clear from Figure 8 that Model-1
and Model-2 perform better than media averaging of fea-
tures and norm of features in [19], especially at low FARs.
Model-1’s performance, is especially comparable to that of
quality pooling features of [17] with FD scores. Moreover,
it is observed that features of [17] outperform AlexNet fea-
tures [19] in general. Hence we pool features of [17] using
scores of Model-1 (our best performing model), FD scores
and media averaging (which is our baseline) and compare
their respective verification results in Table 3. Clearly, the
iconicity scores from Model-1 outperform Norm of [19] and
media averaging of features of [17], Facenet [20] and VG-
GFace [14].

5.6. Inference

We now discuss the verification results obtained with our
iconicity scores and analyze the difference between the re-
sults obtained with Model-1 and Model-2. Our approach to
train iconicity models is dependent on the qualitative infor-
mation of facial quality encoded in the feature. Quality-rich
facial features would help to learn a better iconicity model,
trained with such features. Hence we perform a small exper-
iment to compare the quality information of faces present in
the features of [17] and [19]. In this experiment we compare
the relative information of facial yaw in these features, since
yaw is an important facial attribute that affects verifiability
(and hence the iconicity) of a face.

We randomly select 1000 features using [17] and [19]
and divide them into training and testing split (60% and
40% respectively). For this data, we also compute the yaws
using [18]. We then train a linear regression model using
the training data, to predict facial yaw. Finally, we compare
the relative error of the linear regressor trained with [17]
and [19] to estimate the amount of yaw information con-
tained in these features. The regression errors are provided
in Table 4. Clearly, the error of the regression model trained
with [19] is more than that trained with [17]. Hence we be-
lieve that features of [17] encapsulates much more yaw (and
hence quality) information than [19]. This explains the su-
periority of the iconicity model trained with [17] over that
trained with [19].

Features used for linear regression Test error
L2 constrained softmax loss [17] 0.71
AlexNet [19] 0.84

Table 4: Errors of linear regression models while predicting
facial yaw

Method : Y P R Blur Occln Verificn Universal
BRISQUE [12] 7 7 7 7 7 - 3
FD Score 3 3 7 7 7 3 3
Norm of [19] 3 3 3 3 3 7 7
Ours 3 3 3 3 3 3 3

Table 5: Performance breadth of different face quality
metrics across various tasks : Correlation with Yaw (Y),
Pitch(P), Roll(R), Blur, Occlusion, Quality Pooling for face
verification, Universality

6. Performance breadth

For any ideal face quality metric, it is the performance
breadth (rather than depth in certain tasks) and universal-
ity that demonstrates the efficiency of the metric. We find
that BRISQUE (which is a general IQA metric) is outper-
formed by all other methods. Citing the difference between
IQA and face quality prediction, this outcome is expected.
We find that FD scores can be effective to perform template
based face verification, but it does not correlate well with
blur, occlusion and roll (see Figures 6 and 7 ). Also, we find
that the norm of the features correlates well with yaw, pitch
and other factors, but performs poorly when used for tem-
plate based face verification, especially at low FARs (Table
3). Moreover, the norm cannot be used as a face quality
metric if the features which have uniform norms. Hence, it
is not universal. Interestingly, our iconicity scores (Model-
1/Model-2) correlate well with all factors affecting the face
quality and also obtains verification results comparable to
state of the art. Thus, as the Siamese MLP scores demon-
strate maximum performance breadth and is universal, it is
closest to an ideal quality metric, among existing metrics.
The breadth results are summarized in Table 5.

7. Discussion

In this work, we proposed a data driven approach to learn
the iconicity of an image feature without the use of a pre-
defined set of quality indicating images, or any external re-
source to aid the training of the model. As iconicity implies
quality, we observe the variation of our model scores with
respect to factors that affect the quality of an image. Finally,
we use our scores to weight the features for template-based
face verification. Our scores outperform the media aver-
aging technique for the same and shows improvement over
that achieved by scores obtained directly from a face detec-
tor.
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