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Abstract

In this paper, we introduce a self-supervised approach
for video object segmentation without human labeled data.
Specifically, we present Robust Pixel-level Matching Net-
works (RPM-Net), a novel deep architecture that matches
pixels between adjacent frames, using only color informa-
tion from unlabeled videos for training. Technically, RPM-
Net can be separated in two main modules. The embed-
ding module first projects input images into high dimen-
sional embedding space. Then the matching module with
deformable convolution layers matches pixels between ref-
erence and target frames based on the embedding features.
Unlike previous methods using deformable convolution, our
matching module adopts deformable convolution to focus
on similar features in spatio-temporally neighboring pixels.
Our experiments show that the selective feature sampling
improves the robustness to challenging problems in video
object segmentation such as camera shake, fast motion, de-
formation, and occlusion. Also, we carry out comprehen-
sive experiments on three public datasets (i.e., DAVIS-2017,
SegTrack-v2, and Youtube-Objects) and achieve state-of-
the-art performance on self-supervised video object seg-
mentation. Moreover, we significantly reduce the perfor-
mance gap between self-supervised and fully-supervised
video object segmentation (41.0% vs. 52.5% on DAVIS-
2017 validation set).

1. Introduction
Video object segmentation, segmenting a foreground ob-

ject along an entire video sequence, is one of the challeng-
ing tasks in computer vision. Most of the previous work
[9, 34, 8, 15, 37, 1, 23, 4, 14] focus on increasing the per-
formance with human labeled annotations. However, com-
pared to other tasks using videos (e.g., video object tracking
and video object detection), video object segmentation suf-
fers from generating pixel-level annotations for every frame
[40, 33]. For example, the DAVIS dataset [26], which is the

Figure 1: Sampling locations (i.e., receptive fields of the
matching module, marked in red) for target pixel (marked
in green) matching are adaptively adjusted according to the
change of frame. We overlay two consecutive frames for
visualization. The best view is in color and zoomed in.

most widely used dataset in the video object segmentation,
contains 4,219 manually pixel-wise annotated frames.

The main motivation of this paper begins with relieving
the amount of efforts to generate annotations for video ob-
ject segmentation. To this end, we introduce Robust Pixel-
Level Matching Networks (RPM-Net) for self-supervised
video object segmentation. Rather than using segmentation
annotations, RPM-Net leverages only color information for
training. The proposed network consists of two parts: an
embedding module and a matching module. The embed-
ding module extracts high-dimensional features from input
RGB images and the matching module matches pixels be-
tween two frames according to embedding features.

However, since there is no human supervision for train-
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ing, the network is vulnerable to challenges in video ob-
ject segmentation such as camera shake, fast motion, de-
formation, and occlusion. To address this problem, we
use deformable convolution layers [6] in the matching
module to focus on similar features in spatio-temporally
neighboring locations (see Fig. 1), and show that this
leads to robust pixel-level matching. Moreover, we ana-
lyze how deformable convolution works in self-supervised
learning with extensive experiments and visualizations. In
fully-supervised learning, deformable convolution discov-
ers class geometric-invariant features for semantic segmen-
tation [21, 39], object detection [29, 38, 3], and other com-
puter vision tasks [19, 18, 35]. Unlike the conventional ap-
proaches, in our self-supervised scheme, deformable con-
volution in the matching module pays attention to spatio-
temporally similar features (see Fig. 2).

There are several advantages of RPM-Net: Firstly, the
proposed RPM-Net can be trained in an end-to-end way
with a single forward path, where all layers are differen-
tiable. Secondly, although the model is only trained with
unlabeled videos, RPM-Net well tracks the objects without
online training at inference procedure, which allows the net-
work to operate with a high speed. Moreover, RPM-Net can
be used in real-world applications, since it segments target
objects without accessing future frames.

To sum up, our contributions can be summarized as fol-
lows: 1) We propose novel self-supervised video object seg-
mentation framework, which is annotation-free, end-to-end
trainable, and no online training at inference process. 2) In
order to achieve that, we adopt deformable convolution [6]
which is widely used in fully-supervised learning. Our ex-
periments and visualizations suggest that deformable con-
volution aggregates similar spatio-temporal features, so that
the robust pixel matching is available. To the best of our
knowledge, this is the first time that deformable convolution
is adopted in self-supervised learning and pixel-wise match-
ing. 3) To provide a reference work on self-supervised
video object segmentation, and also to show the general-
ity of RPM-Net, we report the performance on three pub-
lic video object segmentation datasets (DAVIS-2017 [26],
SegTrack-v2 [20], and Youtube-Objects [27]). Our RPM-
Net outperforms the latest self-supervised method. Most
importantly, we significantly reduce the performance gap
between self-supervised and fully-supervised video object
segmentation.

The paper is organized as follows. Section 2 presents the
related work. Section 3 describes the details of the proposed
frameworks. Section 4 shows the performance on video ob-
ject segmentation datasets and also presents the analysis of
RPM-Net. Finally, Section 5 concludes the paper.

“Bird”

(a) fully-supervised

Reference Frame

Target Frame

(b) self-supervised

Figure 2: Illustration of the role of deformable convolution
in fully-supervised and our self-supervised learning. (a)
With human given class, the deformable convolution lay-
ers extract class geometric-invariant features for pixel-wise
classification (we illustrate a segmentation example). (b) In
our proposed method, the deformable convolution layers in
the matching module focus on spatio-temporally neighbor-
ing pixels which have similar features. The best view is in
color and zoomed in.

2. Related Work

2.1. Video Object Segmentation

There is a large literature on video object segmentation
since it is one of the most important tasks in video anal-
ysis. Recently, most research focus on unsupervised and
semi-supervised video object segmentation. Unsupervised
methods segment primary objects without any information
of these objects. Since there is no given target object infor-
mation in inference time, they use optical flow [16, 10, 30]
and saliency maps [32] for obtaining information about the
target object. Note that even though they are referred to as
“unsupervised” methods, these methods require annotations
for network training.

Semi-supervised methods segment foreground objects
where object mask is given in the first frame. Recent semi-
supervised approaches are based on deep neural networks
[11, 1, 7, 5, 24, 9] using semantic information from the first
frame and achieve reliable performance on given datasets.
Our method is included in semi-supervised video object
segmentation. However, unlike the above two methods, we
do not use annotations for training.

2.2. Self-Supervised Tracking

Our method is comparable to recent work by Vondrick et
al. [31], which proposes a self-supervised tracking method
using gray-scale features from target and reference frames.
They outperform the high-performance optical flow net-
work [12] on the video object segmentation dataset [26].
However, this method is vulnerable to object deformation
and scale change during the video sequence since they use
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Figure 3: The training and inference scheme of RPM-Net. The RPM-Net architecture consists of two parts: an embedding
module and a matching module. The embedding module extracts features from input RGB images with up-convolutional
layers to keep the resolution of embedding feature maps (128×128). The matching module is composed of deformable
convolution layers and offset convolution layers. In our self-supervised training scheme, these layers are trained to focus
on similar embedding features. After training, RPM-Net infers the target segmentation mask St using RGB images and
predicted segmentation mask St−1 of the frame t − 1. Note that a ground-truth segmentation mask is only given in the first
frame.

only the several frames in the beginning of the video for
inferring the target frame mask. Also, the boundary distor-
tion problem can be occurred since the features of object
boundary usually have a large variation during the video
sequence. Our RPM-Net deals with this problem by pixel-
wise matching between adjacent frames so that the more
reliable segmentation results are achieved.

2.3. Deformable Convolution (Background)

Deformable convolution [6] is designed to improve the
model geometric transformation capability of CNNs [21,
29]. It shifts standard grid sampling locations R by adding
2D offsets. For example, considering the 3× 3 kernel, stan-
dard convolution operation at location p0 on the input fea-
ture map x and the output feature map y becomes

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn), (1)

where R = {(−1,−1) , (−1, 0) , ..., (0, 1) , (1, 1)}. We use
the same notation as in [6] for consistency.

In deformable convolution, convolution operation is for-
mulated as follows:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn + ∆pn). (2)

Here, offsets for each sampling point are denoted as
{∆pn|n = 1, ..., |R|}. Offset ∆pn is assigned from the
output of another convolution layer (i.e., offset convolution
layer) which takes the feature map x as input.

Here, the shifted sampling location (p = p0+pn+∆pn)
is the fractional location. Therefore, x(p) is calculated by
bilinear interpolation as

x(p) =
∑
q∈Z

K(q,p) · x(q), (3)

where K(·, ·) is the bilinear interpolation kernel, Z is the
set of all integral spatial locations on the input feature map



x. Moreover, the bilinear interpolation kernel consists of
two one dimensional kernels as

K(q,p) = k(qx, px) · k(qy, py), (4)

where k(a, b) = max(0, 1− |a− b|). Refer to [6] for more
details. In our method, deformable convolution is adopted
in the matching module which helps to achieve robust pixel-
level matching without training annotations.

3. Proposed Method
3.1. Overview

Our goal is to segment foreground objects along an entire
video without annotations for training. Rather than training
with dense annotations, RPM-Net leverages color informa-
tion from unlabeled videos. Our proposed network archi-
tecture is illustrated in Fig. 3.

Also, our intention is not just building the network with-
out interpretation, but specifying how the network behaves
in self-supervised learning. Therefore, we divide the net-
work into two parts: an embedding module and a matching
module. Moreover, we verify that these modules work ac-
cording to their purpose by showing experiment results in
Section 4. In the remainder of this section, we first describe
each module, and then demonstrate training and inference
procedures in detail.

3.2. Embedding Module

The purpose of the embedding module is extracting
a deeper representation from RGB images for more re-
liable matching. Our embedding module produces 64-
dimensional embedding feature maps from two given RGB
images. The extracted embedding features are taken into
the matching module with concatenation.

A reference frame Iref and a target frame Itar are given
as the input for the embedding module. The inputs are re-
sized to a resolution of 512×512. We use FCN-ResNet101
[22] for our embedding module and modify up-convolution
layers to obtain 128× 128 feature maps. The process of the
embedding module can be formulated as follows:

ĝ = concat(E(Iref ), E(Itar)), (5)

where E (·) represents the modified FCN-ResNet101 in our
embedding module, and ĝ denotes the concatenated features
obtained from two input frames Iref and Itar.

3.3. Matching Module

The matching module matches pixels between refer-
ence and target frames using deformable convolution layers.
To simplify notations, we use D (a, b) to represent a de-
formable convolution layer, where a and b denote the input
feature map and offsets, respectively. Also, we represent a

Table 1: The layer-by-layer definition of the matching mod-
ule. Batch normalization and ReLU non-linearity are omit-
ted for brevity. D1 takes IM1 as input, and D4 directly
takes IM2 as input. Please see Appendix A in supplemen-
tary material for detailed layer-by-layer definition including
the embedding module.

Layer Description Output Tensor Dim.
IM1 Concatenated features (64, H/4, W/4)

IM2
Reference image (training) or

t− 1 Segmentation mask (inference)
(3, H, W) or

(1, H, W)

D1
3×3 deformable conv, 32, stride 1
offset conv: 3×3 conv, 18, stride 1 (32, H/4, W/4)

D2
3×3 deformable conv, 16, stride 1
offset conv: 3×3 conv, 18, stride 1 (16, H/4, W/4)

D3
3×3 deformable conv, 2, stride 1

offset conv: 3×3 conv, 18, stride 1 (2, H/4, W/4)

D4
1×1 deformable conv, 3, stride 1

offset: feature maps from layer 108
(3, H/4, W/4) or

(1, H/4, W/4)

convolution layer for deformable offsets as O (·). Since the
matching module consists of 4 cascaded deformable con-
volution layers, we can write the output feature map f̂k+1

from the deformable convolution layer as follows:

f̂k+1 = Dk(f̂k, Ok(f̂k)), (6)

where f̂k denotes the input feature map of the layer k in the
matching module. Note that f̂1 obtained from the concate-
nated embedding feature map ĝ in eq. 5.

As shown in Table 1, the first three layers are 3 × 3 de-
formable convolution layers, which sample useful features
from the concatenated embeddings for pixel-level match-
ing. And the last layer is a 1 × 1 deformable convolution
layer with fixed weights of value 1. Also, we do not use the
offset convolution layer O4 for the last deformable convolu-
tion layer D4, and the layer directly use the features f̂4 for
offsets. Thus, the last layer matches each target pixel with
a fractional location in the reference frame based on offsets
f̂4.

The input feature map for the last deformable convolu-
tion layer is varied according to the training and inference.
In the training procedure, the layer directly takes as input
the RGB image from the reference frame and predicts the
target frame image:

Îtar = D4(Iref , f̂4). (7)

Otherwise, in the inference procedure, the reference seg-
mentation mask St−1 is used for computing target segmen-
tation mask:

St = D4(St−1, f̂4). (8)

3.4. Training and Inference

In training and inference procedures, we assume that the
image intensity does not change significantly between ad-



Table 2: Quantitative evaluation on the DAVIS-2017 validation set [26], SegTrack-v2 [20], and Youtube-Objects [27] dataset.
We group the methods depending on whether human supervision is used for training. Also, we report the both J -score
(mIOU) and F-score (contour accuracy) on the DAVIS-2017 validation set. Here, we denote the RPM-Net with the refine-
ment stage as RPM-NetR.

Method Annotations for Training* DAVIS-2017 SegTrack-v2 Youtube-Objects
Optical Flow (Coarse-to-Fine) X 13.0 / 15.1 31.9 54.2
Optical Flow (FlowNet 2.0) X 26.7 / 25.2 35.1 52.4
Colorization [31] X 34.6 / 32.7 41.4 55.0
RPM-Net with Conv (Baseline) X 31.7 / 33.5 41.6 55.2
RPM-Net with Dilation (Baseline) X 30.8 / 33.1 41.8 54.4
RPM-Net X 35.7 / 38.8 45.2 56.2
RPM-NetR X 41.0 / 42.2 48.4 57.4
Modulation [37] O 52.5 / 57.1 - 69.0
OSVOS [1] O 56.6 / 63.9 65.4 78.3

jacent frames. Therefore, we can match pixels with similar
features and predict that these pixels belong to the same ob-
ject.

Training. Since our goal is to train RPM-Net without
annotations, we use unlabeled videos for training. There-
fore, we do not represent network outputs as binary values
(e.g., background: 0, target: 1), which requires annotations
for training. Instead, we use the L2 loss to penalize the
color difference between the target frame Itar and the pre-
dicted target frame Îtar from eq. 7. Our loss function L has
the form:

L =
1

N

∑
x

∑
y

∥∥∥Itar(x, y)− Îtar(x, y)
∥∥∥2
2
, (9)

where (x, y) is the pixel location and N denotes the total
number of pixels.

Inference. In video object segmentation, the segmenta-
tion mask contains the integer class value (e.g., background:
0, dog: 1, and cow: 2) at each pixel. Therefore, a fractional
pixel value obtained from bilinear interpolation kernel in the
deformable convolution layer (eq. 3) reduces the segmenta-
tion performance of RPM-Net.

To address this problem, we first separate the segmenta-
tion mask St−1 into the binary maps Bc of each class c in-
cluding background class. Then the binary maps are given
as a input to the matching module. After that, we select
the object class with the highest value at each pixel posi-
tion p. Therefore, in the last deformable convolution layer
in the matching module, the target segmentation mask St is
calculated as follows:

St(p) = argmax
c∈C

D4(Bc(p), f̂4), (10)

where C is the set of class labels in the video sequence, and
St(p) and Bc(p) denote the pixel value of the segmenta-
tion mask St and the class binary map Bc at the location

p, respectively. Moreover, we add a refinement stage using
dense CRFs [17].

Note that RPM-Net can be directly used at inference
procedure without online training. Also, our RPM-Net
segments primary objects without accessing future frames
(e.g., It+1), which allows RPM-Net can be applied in real-
world applications.

4. Experimental Results

In this section, we show the experimental results of
RPM-Net. We first describe the implementation details and
the datasets used for video object segmentation before we
present evaluation metrics, quantitative and qualitative re-
sults, and the analysis of our proposed network.

4.1. Implementation Details

We train RPM-Net on the training set from Youtube-
VOS [36] and DAVIS-2016 [25] (total 3,501 videos). In
the training procedure, we use frame t − 5 as a reference
frame and frame t as a target frame. Moreover, we do not
leverage pre-trained weights since our ultimate goal is to
train the network without any human supervision. There-
fore, the weights of all network layers are initialized with
Gaussian distribution. We train RPM-Net with 100 epochs
on the training dataset and use the SGD optimizer with mo-
mentum 0.9, weight decay 0.0005, and initial learning rate
0.001. Here, we use “ploy” learning rate policy [2] for every
epoch as lrinit · (1− epochcurr

epochmax
)0.9.

4.2. Datasets

To show the generality of our method, we report the per-
formance on three public datasets (DAVIS-2017, SegTrack-
v2, and Youtube-Objects).

DAVIS-2017. The DAVIS-2017 dataset [26] is well-
known video object segmentation dataset which includes



Figure 4: Qualitative results of RPM-Net (without the refinement stage) on three public video object segmentation datasets
(i.e., DAVIS-2017, Youtube-Objects, and SegTrack-v2).

Figure 5: Visualization of attributes-based analysis on the DAVIS-2017 validation dataset. The matching module with
deformable convolution achieves the best performance in all categories. In this experiments, we fix the embedding module
to FCN-ResNet101.

multiple objects for each video sequence. The dataset con-
sists of 60 training videos and 30 validation videos. Also,
the dataset contains several videos from its previous version
(i.e., DAVIS-2016 dataset). However, it is more difficult to
segment since multiple and similar objects appear in each
video sequence.

SegTrack-v2. To validate the capability of RPM-Net,
we further conduct further experiments on the SegTrack-v2
dataset [20]. The SegTrack-v2 dataset consists of 14 test
video sequences with 24 objects. The instance-level masks
are available for multiple objects tracking along the video
sequence.

Youtube-Objects. The Youtube-Objects dataset [27]
provides videos with 10 object categories (e.g., bird, boat,
and train). Note that pixel-level segmentation masks are
provided by [13].

4.3. Evaluation Metrics

We use the intersection over union metric (J ) [25] for
evaluating region similarity. The J score of DAVIS-2017,
SegTrack-v2, and Youtube-Objects datasets are reported in
Table 2. Also, like the previous methods, we further com-
pute contour accuracy (F) [25] for the DAVIS-2017 valida-
tion dataset.



Figure 6: The importance of feature representation capa-
bility in the embedding module. We change the backbone
network of the FCN model in the embedding module.

4.4. Video Object Segmentation Results

Table 2 presents the performance of self-supervised and
recent fully-supervised methods [1, 37] on the DAVIS-
2017, SegTrack-v2, and Youtube-Objects datasets. Firstly,
we compared RPM-Net with the very recent self-supervised
method [31]. As shown in Table 2, RPM-Net shows bet-
ter performance in both region similarity (J ) and contour
accuracy (F) on the DAVIS-2017 validation dataset. This
is because [31] uses only the several frames in the be-
ginning of the video for inference, and also the features
of object boundary usually have a large variation during
the video sequence. Otherwise, RPM-Net deals with this
problem by robust pixel-level matching between adjacent
frames. Moreover, with the refinement step using CRFs,
RPM-NetR further reduces the performance gap between
self-supervised and fully-supervised video object segmen-
tation. Our qualitative results in Fig. 4 show that although
the model is only trained with unlabeled videos, RPM-Net
achieves reasonable tracking results.

Obviously, there is a performance gap between fully-
supervised and self-supervised way. Nevertheless, through
the self-supervised approach, the cost for human supervi-
sion is heavily decreased for training. Moreover, it is pos-
sible that further improvement in self-supervised learning
might be achieved by more accurate pixel-level matching.

4.5. Experimental Analysis

In this section, we analyze the importance of each mod-
ule with extensive experiments. Before we present our ex-
perimental setup, a short note on terminology is required
for clarity. We use the “sample locations” for referring the
receptive fields of deformable convolutions, following the
original paper [6].

Experimental Setup. We experimented on the net-
work with different combinations of two modules. In order
to show the importance of feature representation capability
in the embedding module, we replaced the backbone net-
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Figure 7: The relationship between performance and the
receptive field size of the matching module. We overlay the
theoretical size of receptive fields.

work of FCN with ResNet-18, ResNet-34, and ResNet-50.
We also constructed matching modules using the standard
convolution and dilated convolution [2], to present the ef-
fect of receptive fields in the matching module. We varied
the number of standard convolution layers (L = 1, 3, 5), and
the dilation rate of dilated convolution layers (D = 3, 6, 9).
In the experiments, we fixed the number of dilated convo-
lution layers to 3, which shows the best performance with
dilated convolution. Note that we maintain the last 1 × 1
deformable convolution layer for pixel-level matching.

All experiments were performed on the DAVIS-2017
validation set. From now on, standard convolution with k
layers denotes as conv-k, and also dilated convolution with
dilation rate r represents as dilation-r for brevity. Refer
to Appendix B in supplementary material for quantitative
performances of network configurations using in our exper-
iments.

Embedding Module for Better Feature Representa-
tion. The embedding module generates high-dimensional
features that help the robust matching. As shown in Fig. 6,
the network performance is increased with deeper network
architectures. The results imply that rich feature informa-
tion is essential for obtaining good performance in our self-
supervised training scheme. Moreover, the figure shows
that deformable convolution achieves higher performance
gain compared to others, which means that deformable con-
volution efficiently uses features from the embedding mod-
ule.

Matching Module for Robust Pixel-Level Matching.
The performance of pixel-level matching is closely related
with the receptive fields in the matching module. Figure 7
shows the performance with varying the size of receptive
fields. In the figure, deformable convolution is excluded
from the comparison, since it has adaptive receptive field
size that can not be represented by fixed value. In the fig-
ure, convolution with smallest receptive fields (i.e., conv-
1) shows the lowest performance. This result demonstrates
that the receptive fields size of 1-layer convolution is not
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Figure 8: The effect of the embedding and matching mod-
ules. We visualize the last frame of the “car-shadow” se-
quence in the DAVIS-2017 validation set.

Figure 9: Feature similarities between embedding features
in the receptive fields (or sampling locations). We use the
DAVIS-2017 validation set for the experiments.

enough to cover the matching region. However, the figure
also shows that, except for conv-3, as the size of the recep-
tive fields increases, the average performance is decreased.
We further discuss this observations in the following sub-
section (i.e., feature-level analysis of receptive fields). In
Fig. 8, we compare the variants of our RPM-Net.

To show the effects of the matching module on challeng-
ing situations, we illustrate the performance of each video
attribute [25] in Fig. 5. Deformable convolution achieves
the best performance on the problems from the change of
scene (i.e., fast motion, motion blur, camera shake, defor-
mation, and scale-variation). Also, it is beneficial for the
problems from the objects configurations (i.e., heterogeneus
object and interacting object). For detailed description of
the attributes, see [25].

Feature-Level Analysis of Receptive Fields. More-
over, we further analyze the embedding features in the re-
ceptive fields of the matching module. To do this, in Fig.
9, we computed the average of cosine similarity between
the feature vector at target pixel and other feature vec-

Figure 10: Visualization of the contributions of embedding
and matching modules. For given frame t − 1 and frame t
(two images are overlaid in the first row), we show exam-
ples of embedding features (second row) and sampling lo-
cations (third row) for target pixel along the video sequence.
The best view is in color and zoomed in.

Table 3: Computation time per frame on the DAVIS-2017
validation dataset.

RPMconv−3 RPM-Net RPM-NetR
J -score 31.7 35.7 41.0
F-score 33.5 38.8 42.2

time 0.02s 0.09s 0.55s

tors located in the receptive fields. The results demon-
strate that larger receptive fields are likely to contain re-
dundant features for pixel matching, which causes perfor-
mance degradation as already shown in Fig. 7. Otherwise,
deformable convolution shows significantly higher similar-
ity value, which means that the selective feature sampling
is helpful to reduce the redundant features in the receptive
fields.

Visualizations from Two Modules. One may won-
der whether our self-supervised training scheme is correctly
implemented as we intended. To alleviate this concern, we
present the results from two modules in Fig. 10. For visu-
alization, we project the 64-dimensional concatenated fea-
tures (i.e., embeddings from frame t − 1 and t) onto 3-
dimensional space using PCA [28]. From the results, we
observe that the nearby pixels in the same object are rep-
resented in similar embedding features. Also, we overlay
sample locations of the matching module on the projected
embedding features. It shows that the matching module en-
ables selective feature sampling by focusing on similar em-
bedding features.

Runtime of RPM-Net We evaluated the runtime of
RPMconv−3, RPM-Net, and RPM-NetR. As shown in Ta-
ble 3, deformable convolution does not require large com-
putation time. Also, we use 2 CRF iteration in RPM-NetR
for obtaining reasonable speed. Although the network is



trained without annotations, RPM-Net well tracks the ob-
jects apace.

5. Conclusion
In this paper, we have proposed a novel self-supervised

RPM-Net for video object segmentation. Particularly, we
adopted deformable convolution to improve the robustness
to challenging situations in video. Our experiments showed
that RPM-Net provides reasonable tracking results with-
out annotations. Moreover, our analysis on two modules
presented that the proposed RPM-Net works well with de-
formable convolution in our self-supervised scheme. Our
future work will be focused on the improvement of the ro-
bustness of the pixel matching in video object segmentation.

References
[1] S. Caelles, K. K. Maninis, J. Pont-Tuset, L. Leal-Taix,

D. Cremers, and L. V. Gool. One-shot video object segmen-
tation. In CVPR. 2017.

[2] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2018.

[3] X. Chen, Z. Wu, and J. Yu. Dual refinement network for
single-shot object detection. arXiv:1807.08638, 2018.

[4] J. Cheng, Y. H. Tsai, W. C. Hung, S. Wang, and M. H. Yang.
Fast and accurate online video object segmentation via track-
ing parts. In CVPR. 2018.

[5] J. Cheng, Y. H. Tsai, S. Wang, and M. H. Yang. Segflow:
Joint learning for video object segmentation and optical flow.
In ICCV. 2017.

[6] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In ICCV. 2017.

[7] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang. Rein-
forcement cutting-agent learning for video object segmenta-
tion. In CVPR. 2018.

[8] P. Hu, G. Wang, X. Kong, J. Kuen, and Y. P. Tan. Motion-
guided cascaded refinement network for video object seg-
mentation. In CVPR. 2018.

[9] Y.-T. Hu, J.-B. Huang, and A. Schwing. Maskrnn: Instance
level video object segmentation. In NIPS. 2017.

[10] Y. T. Hu, J. B. Huang, and A. Schwing. Unsupervised video
object segmentation using motion saliency-guided spatio-
temporal propagation. In CVPR. 2018.

[11] Y. T. Hu, J. B. Huang, and A. G. Schwing. Videomatch:
Matching based video object segmentation. In ECCV. 2018.

[12] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. In CVPR. 2017.

[13] S. D. Jain and K. Grauman. Supervoxel-consistent fore-
ground propagation in video. In ECCV. 2014.

[14] V. Jampani, R.Gadde, and P. V. Gehler. Video propagation
networks. In CVPR. 2017.

[15] W. D. Jang and C. S. Kim. Online video object segmentation
via convolutional trident network. In CVPR. 2017.

[16] W. D. Jang, C. Lee, and C. S. Kim. Primary object segmen-
tation in videos via alternate convex optimization of fore-
ground and background distributions. In CVPR. 2016.

[17] P. Krhenbhl and V. Koltun. Efficient inference in fully con-
nected crfs with gaussian edge potentials. In NIPS. 2011.

[18] B. Kwolek. Person re-identification using multi-region
triplet convolutional network. In ACM. 2017.

[19] P. Lei and S. Todorovic. Temporal deformable residual net-
works for action segmentation in videos. In CVPR. 2018.

[20] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video
segmentation by tracking many figure-ground segments. In
ICCV. 2013.

[21] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation
network for instance segmentation. In CVPR. 2018.

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR. 2015.

[23] S. W. Oh, J. Y. Lee, K. Sunkavalli, and S. J. Kim. Fast video
object segmentation by reference-guided mask propagation.
In CVPR. 2018.

[24] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and
A. Sorkine-Hornung. Learning video object segmentation
from static images. In CVPR. 2017.

[25] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,
M. Gross, and A. Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation.
In CVPR. 2016.

[26] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbelez, A. Sorkine-
Hornung, and L. V. Gool. The 2017 davis challenge on video
object segmentation. arXiv:1704.00675, 2017.

[27] A. Prest, C. Leistner, J. Civera, C. Schmid, and V.Ferrari.
Learning object class detectors from weakly annotated
video. In CVPR. 2012.

[28] J. Shlens. A tutorial on principal component analysis. CoRR,
abs/1404.1100, 2014.

[29] B. Singh and L. S. Davis. An analysis of scale invariance in
object detectionsnip. In CVPR. 2018.

[30] P. Tokmakov, K. Alahari, and C. Schmid. Learning video
object segmentation with visual memory. In CVPR. 2017.

[31] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and
K. Murphy. Tracking emerges by colorizing videos. In
ECCV. 2018.

[32] W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic
video object segmentation. In CVPR. 2015.

[33] M. Wigness and J. G. R. III. Unsupervised semantic scene
labeling for streaming data. In CVPR. 2017.

[34] H. Xiao, J. Feng, G. Lin, Y. Liu, and M. Zhang. Monet: Deep
motion exploitation for video object segmentation. In CVPR.
2018.

[35] C. Xin, Y. Li, X. Luo, T. Shao, J. Yu, K. Zhou, and Y. Zheng.
Autosweep: Recovering 3d editable objects from a single
photograph. IEEE transactions on visualization and com-
puter graphics, 2018.

[36] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and
T. Huang. Youtube-vos: A large-scale video object segmen-
tation benchmark. arXiv:1809.03327, 2018.



[37] L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos.
Efficient video object segmentation via network modulation.
In CVPR. 2018.

[38] Q. Yang, M. Cheng, W. Zhou, Y. Chen, M. Qiu, and
W. Lin. Inceptext: A new inception-text module with de-
formable psroi pooling for multi-oriented scene text detec-
tion. arXiv:1805.01167, 2018.

[39] M. Zhang, X. Zhang, M. Xu, and Q. Li. Image segmentation
and classification for sickle cell disease using deformable u-
net. arXiv:1710.08149, 2017.

[40] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei. Fully convo-
lutional adaptation networks for semantic segmentation. In
CVPR. 2018.


	1 . Introduction
	2 . Related Work
	2.1 . Video Object Segmentation
	2.2 . Self-Supervised Tracking
	2.3 . Deformable Convolution (Background)

	3 . Proposed Method
	3.1 . Overview
	3.2 . Embedding Module
	3.3 . Matching Module
	3.4 . Training and Inference

	4 . Experimental Results
	4.1 . Implementation Details
	4.2 . Datasets
	4.3 . Evaluation Metrics
	4.4 . Video Object Segmentation Results
	4.5 . Experimental Analysis

	5 . Conclusion

