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Abstract. Adversarial attack methods have demonstrated the fragility
of deep neural networks. Their imperceptible perturbations are frequently
able fool classifiers into potentially dangerous misclassifications. We pro-
pose a novel way to interpret adversarial perturbations in terms of the
effective input signal that classifiers actually use. Based on this, we ap-
ply specially trained autoencoders, referred to as S2SNets, as defense
mechanism. They follow a two-stage training scheme: first unsupervised,
followed by a fine-tuning of the decoder, using gradients from an ex-
isting classifier. S2SNets induce a shift in the distribution of gradients
propagated through them, stripping them from class-dependent signal.
We analyze their robustness against several white-box and gray-box sce-
narios on the large ImageNet dataset. Our approach reaches comparable
resilience in white-box attack scenarios as other state-of-the-art defenses
in gray-box scenarios. We further analyze the relationships of AlexNet,
VGG 16, ResNet 50 and Inception v3 in adversarial space, and found
that VGG 16 is the easiest to fool, while perturbations from ResNet 50
are the most transferable.
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1 Introduction

We nowadays see an increasing adoption of deep learning techniques in produc-
tion systems, partially even safety-relevant ones (as exemplified in [1]). Hence, it
is not surprising that the discovery of adversarial spaces for neural networks [2]
has sparked a lot of interest. A growing community has quickly focused on dif-
ferent ways to reach those spaces [3,4,5], understand their properties [1,6,7], and
protect vulnerable models from their malicious nature [8,9,10].

Most prevalent methods exploiting adversarial spaces [3,4,5,10] use gradients
as their main starting point to search for perturbations surrounding a clean sam-
ple. Due to the intractability of transformations modeled by neural networks and
the limited amount of change that is allowed for perturbations to be considered
adversarial, gradients from a classifier expose just enough information about
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which parts of the input correlate highly with the label that a model associates
to it. With this in mind, defenses against adversarial attacks have been devised
upon those same gradients in two fundamental ways: 1) They complement tradi-
tional optimization schemes with a two-fold objective that minimizes the overall
prediction cost while maximizing the perturbation space around clean images
that classifiers can withstand [10,11,12]. 2) Gradients are blocked or obfuscated
in such a way that attacking algorithms can no longer use them to find effective
adversarial perturbations [13,14,15]. Type 1 methods enjoy mathematical rigor
and hence, provide formal guarantees with respect to the kind of perturbations
they are robust to. However, note that this can also be disadvantageous since
networks become attack-dependent. Any other strategy for finding perturbations
could circumvent such a defense mechanism [16]. While effective for small-scale
problems such as MNIST and CIFAR, we found no empirical evidence that these
methods scale to larger problems such as ImageNet. It has even been shown that
defenses for adversarial attacks tested on small datasets do not scale well when
applied to bigger problems [6].

Currently, large scale state-of-the-art defenses rely on the second use of gra-
dients: suppression [17] and blockage [14,18]. As defined by Athalye et al. [16],
gradient obfuscation is the result of instabilities from vanishing or exploding
gradients, and the use of stochastic or non-differentiable preprocessing steps.
All these alternatives can be modeled as lossy identities where the original sig-
nal contained in the input is preserved, while the adversarial perturbation is
destroyed. The usefulness of this principle fits well with findings from a recent
study showing that image classifiers only use a small fraction of the entire sig-
nal within original input. Therefore, a portion of its information can indeed be
dropped without affecting performance [19].

In this paper, we propose an alternative defense that affects the information
contained in gradients by reforming its class-related signal into a structural one.
Intuitively, we learn an identity function that encodes structure and decodes only
the structural parts of the input necessary for classification, dropping everything
else. To this end, an autoencoder (AE) is trained to approximate the identity
function that preserves only the part of the signal that is useful for a target
classifier. The structural information is preserved by training both encoder and
decoder unsupervised, and fine-tuning only the decoder with gradients coming
from an existing classifier. By using a function that only looks at structure,
gradients are devoid of any class-related information, therefore invalidating the
fundamental assumptions about gradients that attackers rely on. We call this
defense a Structure-To-Signal Network (S2SNet).

Formal Definitions Let f : R3 → {1, . . . , k} be an image classifier, and x̃f
the portion of the signal in the original input x that is effectively being used
by f . In other words, f(x) = f(x̃f ) subject to I(x, x̃f ) < I(x, x), where I
is a measure of information e.g., the normalized mutual information [20]. Let
P = {δ : ||δ||L < ε} ⊆ R3 be the space of all adversarial and non-adversarial
perturbations under a given norm L ∈ {1, 2,∞}. We also define the sub-space
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Fig. 1: Overview of gradient and perturbation spaces, and their relation to
S2SNets and adversarial attacks.

Px,f ⊆ P as the set of adversarial perturbations that are reachable from the input
gradients ∇xC(f(x), y1...k) ⊆ R3, where C represents the cost function, and yi
is the ground truth used for training. Note that said spaces depend on f and x,
but not on the class y or the cost function C. Hence, unless noted otherwise, we
use the simplified notation ∇xf = ∇xC(f(x), y1...k) from now on. Adversarial
perturbations are elements δadv ∈ Px,f such that f(x) 6= f(x+δadv)

3. As attacks
use gradients to compute adversarial perturbations, and such gradients can only
correspond to parts of the signal that are used by the model, it follows that
Px,f ≡ Px̃,f . An S2SNet can hence be defined as a function g : R3 → R3 such that
g(x) = x̃f . This way, g defends f by serving as a proxy for incoming, potentially
malicious inputs, as well as exposing gradients via the function composition f ◦g.
The relation between x and x̃ concerning information implies that g produces
lossy reconstructions of the input space. We train g in a way that gradients
∇xf ◦ g lie in a different space than those leading attackers to Px̃,f (Figure 1).
In other words, we train g such that |∇xf ◦ g ∩∇xf | is minimized. This in turn,
will cause the intersection |Px,f◦g∩Px̃,f | to be smaller, resulting in perturbations
that are non-adversarial (i.e., δ ∈ P − Px̂,f ). Further details of the architecture
and training of f and g are discussed in Section 3.1.

The architecture of this defense offers important advantages when dealing
with adversarial attacks:

– Zero compromise for safe use-cases: there is no drop in performance
when the defense is deployed, but the network is not under attack. As the
transformation done by S2SNet is preserving all required signal x̃f , using
either g(x) or x has no impact to the classifier when clean images are used.

– Removing S2SNet is a defense strategy: a novel gray-box defense (i.e.,
when the attacker knows the classifier but not the defense mechanism) works
by giving away gradient information from an S2SNet to the attacker and then
removing it, applying adversarial attacks (based on gradients from S2SNet)
to the original classifier instead.

– Attack agnostic: S2SNets rely on the same information used by adversarial
attacks but not on the attacks themselves. Therefore, S2SNets do not require
any assumptions with respect to the specific way an attack works.

3 Strictly speaking, adversarial perturbations can be reached through other domains
that do not depend on gradients (as shown by Ngueyen et al. [21]) but so far, all
instances of strong adversarial attack methods, base their entire strategy on the
information of gradients.



4 Palacio S., Folz J., et al.

– Post-hoc implementation: our defense uses gradients from a trained net-
work, and can be used to defend models that are already in production.
Likewise, no special considerations need to be made when training a new
classifier from scratch.

– Compatibility with other defenses: due to the compositional nature of
this approach, any additional defense strategies that work with the original
classifier can be implemented for the ensemble f ◦ g.

We test S2SNets on two high-performing image classifiers (ResNet50 [22] and
Inception-v3 [23]) against three attack methods (Fast Gradient-Sign Method
(FGSM) [3], Basic Iterative Method (BIM) [24] and Carlini-Wager (CW) [5]) on
the large scale ImageNet [25] dataset. Experiments are conducted on both classi-
fiers under white-box and gray-box conditions. An evaluation of the effectiveness
of S2SNets with respect to regular AEs (e.g., as proposed in [26]) is presented in
Section 3.1, empirically proving that S2SNets are a better approximation of the
signal x̃f that is used by a classifier. Furthermore, an evaluation of the gradient
space Px,f and Px,f◦g is conducted, showing that their intersection does indeed
approach the empty set.

The main contributions of this paper are threefold: First, we propose a novel
way to interpret adversarial perturbations, namely in terms of the effective input
signal that classifiers use x̃f . Second, we introduce a robust and flexible defense
against large-scale adversarial attacks based on S2SNets. And third, we provide
a comprehensive baseline evaluation of adversarial attacks for several state-of-
the-art models on a large dataset.

2 Related Work

The fast growing interest in the phenomenon of adversarial attacks has gained
momentum since its discovery [2] and has had three main areas of focus. The first
area is the one that seeks new and more effective ways of reaching adversarial
spaces. In [3], a first comprehensive analysis of the extent of adversarial spaces
was explored, proposing a fast method to compute perturbations based on the
sign of gradients. An iterative version of this method was later introduced [24]
and shown to work significantly better, even when applied to images that were
physically printed and digitized again. A prominent exception to attacks based
on gradients succeeded using evolutionary algorithms [21]. Nevertheless, this
has not been a practical wide spread method, mostly due to how costly it is to
compute. Papernot et al. [1] showed how effective adversarial attacks could get,
even with very few assumptions about the attacked model. Finally, there are
methods that go beyond a greedy iteration over the gradient space and perform
different kinds of optimization that maximize misclassification while minimizing
the norm of the perturbation [4,5].

The second area focuses on understanding the properties of adversarial per-
turbations. The work of Goodfellow et al. [3] was already pointing at the lin-
ear nature of neural networks as the main enabler of adversarial attacks. This
went in opposition of what was initially theorized, where the claim was that
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non-linearities were the main vulnerability. Not only was it possible to perturb
natural looking images to look like something completely different, but it was
also possible to get models issuing predictions with high confidence using either
noise images, or highly artificial patterns [2,21]. The transferability of adversar-
ial perturbations was shown to be possible by crafting attacks on one network
and using them to fool a second classifier [27]. However, transferable attacks are
limited to the simpler methods as iterative ones tend to exploit particularities
of each model, and hence lose power when used in different architectures [6].
As it turns out, not only is adversarial noise transferable between models but
it is also possible to transfer a single universal adversarial perturbation to all
samples in a dataset to achieve high misclassification rates [7]. Said individual
perturbations can even be applied to physical objects and bias a model towards
a specific class [28].

The third and arguably the most popular area of research has focused on
how networks can be protected against such attacks. Strategies include changing
the optimization objective to account for possible adversarial spaces [10,11],
detection [9], dataset augmentation that includes adversarial examples [3,12],
suppressing perturbations [8,15,17,26,29] or obfuscating the gradients to prevent
attackers from estimating an effective perturbation [13,14,18,30,31].

In this work, we build on the idea of using AEs as a compressed repre-
sentation of the input [15,26], but tailored towards a specific characteristic of
adversarial perturbations [17], using the notion of useful input signal (i.e., the
one effectively used by a classifier) [19]. Furthermore, we explore the nature of
adversarial perturbations and its relationship with network capacity, in terms of
used signal.

3 Methods

This section explains in detail the architecture of an S2SNet and its partic-
ular signal-preserving training scheme, followed by an empirical evaluation of
the gradients it provides. We start by testing the robustness of S2SNets in a
white-box setting, and compare it to a simple baseline using regular AEs. To
recreate realistic attack conditions, we further test the ensemble network, simu-
lating a re-parametrization technique similar to [16], aimed at circumventing the
defense, and explore further strategies to cope with this attack. Next, we exam-
ine the performance of S2SNets in a gray-box scenario. Finally, we provide an
evaluation of the transferability of single step attacks for different models, and
correlate their overlap in terms of input signal from the perspective of adversarial
perturbations.

3.1 Structure-to-Signal Networks

S2SNets start out as plain AEs that are trained on the large-scale YFCC100m
data set [32]. Only a single pass is required, as the ≈ 100 million images are more
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than sufficient to train the underlying SegNet architecture [33] to convergence4.
This network, referred to as AS , is able to reproduce input signals required by a
diverse set of classifiers such that their top-1 accuracy is within ≈ 3 percentage
points of the original classification performance [19].

To model the effective input signal used by a trained classifier f , Palacio
et al. propose to further fine-tune the decoder of AS using gradients from f
itself. This allows AS to learn a way to decode the input that retains the signal
required by f . This fine-tuned variant, called Af , reconstructs images such that
the original top-1 accuracy of f is preserved, while amount of information in
the reconstructed image (measured as normalized mutual information) decreases
with respect to the original sample.

Note that, since the encoder of Af was trained unsupervised, any interme-
diate representations produced by Af are entirely class-agnostic. This means
that, during backpropagation through an S2SNet, gradients that can be read at
the shallowest layer correspond only to information about structure. Intuitively,
gradients from Af point to parts of the image that can be changed to influence
the reconstruction error.

In the following, we measure the extent to which gradients shift when images
are forwarded through these networks. Furthermore we explore and quantify
their emerging resilience to adversarial attacks in Section 4.

3.2 Properties of Gradient Distributions

To verify that the Structure-to-Signal training scheme produces large shifts in the
distribution of gradients, we forward images through a classifier, a pre-trained
SegNet, and through the fine-tuned counterpart to compare their gradients. We
use the magnitude of the gradients instead of raw values to stress the differences
of their spatial distribution. A large change in the position where gradients orig-
inally occur within the image is a good indicator that the information conveyed
by gradients has changed.

Concretely, we quantify the structural similarity [34] (SSIM; a locally normal-
ized mean square error measured in a sliding window) of gradients obtained by
the same image when passed through a ResNet50 (R), an S2SNet fine-tuned to
defend the same ResNet50 (R ◦AR), a plain SegNet AE coupled with ResNet50
(R◦AS), the fine-tuned S2SNet without the classifier (AR), and the plain SegNet
AE alone (AS). While the first three models require gradients to be computed
with respect to a class label, the last two are produced by measuring the re-
construction error. Also, note that for AR the true reconstruction cannot be
directly obtained as it is indirectly defined by the classifier it was fine-tuned on.
In this case, reconstruction gradients are computed by comparing its output to
the original input.

4 We choose a large architecture as an upper bound to the ideal identity function
g(x) = x̃f , because it was proven capable of encoding the semantics of the deep
image classifiers tested in this work.
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Table 1 reports the mean SSIM of the gradients over ImageNet’s validation set
for all combinations of network pairs. Note that the dissimilarity between AS and
AR indicates that the Structure-to-Signal training scheme has indeed changed
the reconstruction process i.e., the identity function being computed based on
the input. Similarly, comparing the SSIM values of R ◦ AS and R ◦ AR reveals
a difference in the information contained by their gradients. Most importantly,
the similarity between the gradients coming from classifier R and either of the
ensembles R ◦ AS and R ◦ AR is considerably smaller (0.18 and 0.17) than any
combination involving AEs exclusively (> 0.32). This disparity indicates how
much the position of gradients change (and hence the information contained
within), when passed through an S2SNet.

Further evidence for the class-agnostic nature of gradients propagated through
AEs can be found when comparing the SSIM of gradient magnitudes when differ-
ent target labels are used to compute gradients. Let x be some input image and
y∗ its true label. We then randomly select a different label ŷ 6= y∗ and compute

SSIM(||∇xC(f(x), y∗)||, ||∇xC(f(x), ŷ)||)

for all x in ImageNet’s validation set, and f ∈ {R,R◦AR, R◦AS}. We measured
mean SSIM values of 0.50 for R ◦ AR, 0.47 for R ◦ AS , and 0.34 for R. This
means that the influence of the label is smaller when gradients are propagated
through the AE, but also emphasizes how dissimilar gradients of just ResNet 50
are, compared to any AE at just 0.12 to 0.18 SSIM (Table 1).

Figure 2 visualizes this phenomenon. Here, gradient magnitudes observed for
just AEs (AS , AR) predominantly highlight edges as source of error. This is
expected, since it is more difficult to accurately reproduce the high frequencies
required by sharp edges, compared to the lower frequencies of blobs. Extracting
magnitudes based on classification from AEs show similar structures (R ◦ AR,
R ◦ AS). Some coincidental overlap between ResNet 50 (R) and AE variants is
unavoidable, since edges are also important for classification [35]. However, the
classifier on its own differs considerably from all other patterns. Overall, SSIM
is at least twice as high between AE variants, than between the classifier and
any of the AE configurations.

Table 1: Pairwise mean SSIM of input gradient magnitudes for ResNet 50 (R)
on the ImageNet validation set, with and without being passed through AR or
AS . SSIM values of R w.r.t. any AE variant show the least similarity.

R R ◦ AR R ◦ AS AR AS

R 1.00 0.17 0.18 0.12 0.14
R ◦ AR 0.17 1.00 0.40 0.46 0.32
R ◦ AS 0.18 0.40 1.00 0.37 0.36

AR 0.12 0.46 0.37 1.00 0.36
AS 0.14 0.32 0.36 0.36 1.00
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4 Experiments

This section presents experiments quantifying the robustness of S2SNets when
used as a defense against adversarial attacks (Figure 3). The experimental setup
closely follows the conditions from Guo et al. [14] in order to facilitate compa-
rability:

– Dataset: We use ImageNet to test S2SNets in a challenging, large-scale
scenario. Classifiers are trained on its training set and evaluations are carried
out on the full validation set X (50000 images).

– Image classifier under attack: we use ResNet 50 (R) and Inception v3
(I), both pre-trained on ImageNet as target models. The classifiers have been
trained under clean conditions i.e., no special considerations with respect to
adversarial attacks were made during training.

– Defense: we train an S2SNet for each of the classifiers under attack, follow-
ing the scheme described in Section 3.1. These defenses are denoted as AR
and AI for R and I respectively.

– Perturbation Magnitude: we use the normalized L2 norm (L2) between
a clean sample x and its adversary x̂ = x+ ε ·δ, as defined by Guo et al. [14].
Epsilon values for each attack are listed below.

– Defense Strength Metric: vulnerability to adversarial attacks is measured
in terms of the number of newly misclassified samples. More precisely, for

any given attack to classifier f , we calculate
∑

x∈TP L2(x,x̂)

|TP | , where TP = {x ∈
X|f(x) = y∗} is the set of true positives and x̂ is the adversarial example
generated by the attack, based on x.

– Attack Methods: protected models are tested against a single step method,
an iterative variant, and an optimization-based alternative. Note that to
replicate realistic threat conditions, all resulting adversarial samples are cast
to the discrete RGB range [0, 255].

• Fast Gradient Sign Method (FGSM) [3]: a simple, yet effective attack
that works also when transferred to different models. Epsilon values used
for this method are ε ∈ {0.5, 1, 2, 4, 8, 16}.

• Basic Iterative Method (BIM) [24]: an iterative version of FGSM that
shows more attack effectiveness but less transferable properties. Epsilon

x R ◦AR

SSIM: 0.14

R

SSIM: 0.51

AR

SSIM: 0.45

R ◦AS

SSIM: 0.32

AS

Fig. 2: Gradient magnitudes for ResNet 50 (R) given a single input x, propagated
through AR or AS . SSIM values are in comparison to ||∇xR ◦ AR(x)||.
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Fig. 3: Overview of analyzed attack/defense scenarios.

values used for BIM are ε ∈ {0.5, 1, 2, 4, 8}. The number of iterations is
fixed at 10.

• Carlini-Wagner L2 (CW) [5]: an optimization-based method that has
proven to be effective even against hardened models. Note that this at-
tack issues perturbations that lay in a continuous domain. Epsilon values
used for CW are ε ∈ {0.5, 1, 2, 4}; the number of iterations is fixed at
100, κ = 0 and λf = 10.

– Attack Conditions: we test the proposed defenses under two conditions.

• White-box setting : the attacker has knowledge about the classifier and
the defense. This includes reading access to both the predictions of the
classifier, intermediate activations and backpropagated gradients. The
attacker is forced to forward valid images through the defended network
i.e., through the composed classifier R ◦ AR or I ◦ AI .

• Gray-box setting : the attacker has access to a classification model but is
unaware of its defense strategy.

4.1 White-Box

For this setting, input images flow first through the S2SNet before reaching the
original classifier. Similarly, gradients are read from the shallowest layer of the
S2SNet. For comparison, attacks are also run on the unprotected versions of
ResNet 50 and Inception v3. Results are summarized in Figure 4.

Under these conditions, plain models are only able to moderately resist
FGSM attacks, and fail completely for the more capable BIM and CW attacks.

0.00 0.05 0.10
L2

0.00

0.25

0.50

0.75

to
p-

1
ac

c.

FGSM

0.00 0.05 0.10
L2

BIM

0.00 0.05 0.10
L2

CW

I
R
AI ◦ I
AR ◦ R
AS ◦ R

Fig. 4: White-box attacks on ResNet 50 (R) and Inception v3 (I), with (solid)
and without (dashed) S2SNet as a defense.
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In contrast, S2SNets provide high levels of protection. CW, being an optimiza-
tion attack and generally the most capable in our comparison, is expected to
be more effective at breaking through the S2SNet defense. However, it does so
by introducing large perturbations even for small values of ε. In fact, none of
the attacking configurations was able to entirely fool any of our defended clas-
sifiers for even the highest levels of L2 in our tests. Note that these white-box
results are, to our surprise, already comparable with some state-of-the-art gray-
box defenses [14,18] (i.e., known classifier but unknown defense). Despite the
less favorable conditions for a white-box defense, S2SNets already match alter-
native state-of-the-art protections that were tested under the more permissive
assumptions allowed in gray-box settings.

For completeness, we also evaluate the defense using a pre-trained SegNet(AS)
instead of an S2SNet for ResNet 50 (shown in Figure 4 with light solid green).
This is most similar to the defense proposed by Meng et al. [26]. We can confirm
that having just an AE does not suffice to guard the classifier against adversar-
ial attacks and its performance is consistently lower than S2SNets. For a visual
analysis of the attacks and their reconstructions by S2SNets, we refer the reader
to the supplementary material.

Bypassing S2SNets through Reparametrization In order to push the lim-
its of S2SNets, we now simulate a more hostile scenario where an attacker tries
to actively circumvent the defense mechanism. Based on the work of Athalye et
al. [16], a reparametrization of the input space can be implemented for defenses
that operate under the composition of functions f ◦ g. This works by defin-
ing the original input x as a function of a hidden state x = h(z) such that
g(h(z)) = h(z). Note that the main motivation behind reparametrization is to
alleviate instabilities of gradients caused by defenses that rely on said instability.
Although S2SNets are very deep architectures, the resilience of this defense lays
in the directed change that has been induced within the information contained
in gradients. In addition, there is no trivial way to come up with a suitable h(z)
that does not end up inducing the same transformation in the gradients, as done
by S2SNets.

Despite all these concerns, we assume for this experiment that such h(z)
can be found, and that attacking h(z) does indeed circumvent S2SNets alto-
gether. We simulate the potential strength of this attack by using gradients of
the original (unprotected) classifier, and applying them to the input directly. The
resulting adversarial attack is then passed through the hardened classifier. We
refer to this hypothetical scenario as White-Box+. Results are shown in Figure 5.

Under these conditions, we observe that hardened models revert back to the
behavior shown by their corresponding unprotected versions for FGSM and BIM.
In general, this condition is expected, and confirms once more that S2SNets are
being trained to preserve the information that is useful to the classifier. Gradients
collected directly from a vulnerable model, have by definition, only information
that is useful for classification and hence, perturbations based on those gradients
will be preserved by S2SNets. Interestingly, while CW is most successful in the
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CW

AI ◦ I
AR ◦ R
AS ◦ R

Fig. 5: White-Box+ attacks on ResNet 50 (R) and Inception v3 (I) classifiers.

previous white-box experiment, its highly optimized perturbations are less effec-
tive here. We believe that CW is “overfitting” more strongly on the adversarial
signal of the original model than what S2SNets find useful to preserve.

At this point, we can further exploit the benefits that S2SNets enjoy as
a defense, by adding another layer of protection and showing how it affects
the effectiveness of an attack. As shown by Palacio et al. [19], AEs following a
structure-to-signal training scheme exhibit strong resilience to random noise, as
opposed to traditionally trained AEs. We demonstrate that it is straightforward
to add a layer of protection based on random noise. Said stochastic strategy
is added after the adversarial image has been computed but before it passes
through an S2SNet defense. We experiment with three sources of noise:

– Gaussian Noise: x ∼ 1√
2πσ2

e−(x2/(2σ2)), where σ = η.

– Uniform Noise: ηx, where x ∼ U(−1, 1).
– Sign Noise: ηsgn(x), where x ∼ U(−0.5, 0.5)

Figure 6 shows the results of a BIM attack for ResNet 50, with noise levels η ∈
{0.5, 4, 8, 12, 15, 20, 30} under White-Box+ conditions. Overall, as noise strength
increases, the resilience to adversarial attacks improves. The initial degradation
under zero adversarial attacks is dependent on the amount of noise η which can
be tuned as the trade-off between maximum accuracy and adversarial robustness.

0.00 0.05 0.10
L2

0.00

0.25

0.50

0.75

to
p-

1
ac

c.

Uniform

0.00 0.05 0.10
L2

Sign

0.00 0.05 0.10
L2

Gaussian

η = 0.5 η = 4.0 η = 8.0 η = 12.0 η = 15.0 η = 20.0 η = 30.0

Fig. 6: White-Box+ attacks on R ◦ AR with BIM, mitigated with additive sign,
random and Gaussian noise of varying strength η.
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Fig. 7: Gray-Box− attacks on ResNet 50 (R) and Inception v3 (I).

We observe that both Gaussian and sign noise perform almost identically, while
uniform noise offers the least effective protection.

4.2 Gray-Box

In contrast to white-box scenarios, gray-box attacks assume that there is limited
access to information about the attack target. More specifically, the conditions
for gray-box define that the attacker has knowledge about the network but not
about the defense strategy.

Given the compositional nature of S2SNets, a novel way to defend a classifica-
tion network under gray-box conditions consists in giving access to the gradients
of S2SNets. Once an attack is ready, the S2SNet is removed and the perturbed
image is processed by the classifier only. In other words, for a classifier f and
corresponding defense g, the attack is crafted based on the combined network
f ◦ g but forwarded to just the classifier f . We refer to this type of defense as
Gray-Box−.

We run the attacks with the same experimental settings described in Sec-
tion 4.1, but enforce a defense policy following Gray-Box− conditions. Results
are presented in Figure 7. Overall, we see that this scenario is consistently robust
to any adversarial attack. Fooling perturbations are clearly visible and cannot be
considered adversarial anymore. With BIM-based attacks, classifiers gain back
roughly half as much accuracy as in the white-box case. Again, CW is more
comparable to FGSM than BIM, i.e., mostly ineffective, and consistent with
observations made in the White-Box+ case.

By combining the results of Gray-Box− and White-Box+, we can reason
about the relationship of Px,f and Px,f◦g. First, the White-Box+ experiment
tells us that attacks crafted for f are valid attacks for f ◦ g. Following from the
definition of these spaces, it holds that Px,f ⊂∼ Px,f◦g. Furthermore, looking at
the Gray-Box− experiments, taking elements from ∇xf ◦ g to create an attack,
produces elements in Px,f◦g. As these do not attack f , we conclude that those
same elements do not lie in Px,f . We finally conclude that with the tested attacks
Px,f cannot be reachable from ∇xf ◦ g.
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Fig. 8: Relative accuracy for black-box attacks on AlexNet (A), VGG 16 (V ),
ResNet 50 (R), and Inception v3 (I).

4.3 Classifier Relationships in Adversarial Space

Given the high robustness of S2SNets in the Gray-Box− scenario, we do not ex-
pect further insights from traditional black-box attacks. Instead, we explore the
relationships between the signal that different image classifiers use, as reported
in [19]. Intuitively, if a signal used by a classifier f1 also encompasses the signal
that another classifier f2 uses, then an adversarial attack crafted for f1 should
also fool f2. Note that the relation is directional, and it may not hold in the
opposite way.

To test this, we construct adversarial samples using FGSM for four refer-
ence classifiers: AlexNet [36], VGG 16 [37], ResNet 50, and Inception v3. For
each classifier we run black-box attacks with perturbations computed on the
other three models. The resulting accuracies (in terms of their relative drop in
accuracy) are shown in Figure 8.

As expected, adversarial examples from higher compatible architectures re-
sult in higher fooling rations (lower accuracy). Overall, adversarial samples cre-
ated for AlexNet are the least compatible among the four, mainly due to its
comparably lower accuracy and limited amount of input signal used. On the
other hand, ResNet 50 produces the most compatible perturbations, being the
model generating attacks that were most effective when tried on other architec-
tures.

Furthermore, we can also analyze how easy to fool a network is, based on the
following criteria:

– Fastest drop in accuracy per classifier.
– Mean accuracy of adversarial samples coming from other classifiers that have

the same L2.

With either criterion, results clearly show that VGG 16 is the easiest to fool,
coming up on first place, followed by ResNet 50, AlexNet, and finally Inception
v3. This relationship in terms of useful signal, aligns with results in [19]. Fur-
thermore, similar experiments in [7] based on universal perturbations, indicate
that a selection of similar architectures (CaffeNet, VGG 19, ResNet 101 and
GoogLeNet) maintain the same relationship.
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5 Conclusions & Future Work

We have proposed S2SNets as a new method to defend neural networks against
adversarial examples. We model the defense strategy as a transformation of the
domain used by attackers, namely gradients coming from the attacked classi-
fier. Instead of focusing on gradient obfuscation via non-differentiable methods
or any other instabilities, we purposely induce a transformation on the gradi-
ents that strip them from any semantic information. S2SNets work by masking
the classifier via the function composition. That way, the information of inputs
is preserved for classification, but gradients point to structural changes for re-
constructing the original sample. Such a defense is possible by using a novel
two-stage Structure-to-Signal training scheme for deep AEs. On the first stage,
the AE is trained unsupervised in the traditional way. For the second part, only
the decoder gets fine-tuned with gradients from the model that is to be defended.

We evaluate the proposed defense under white-box and gray-box settings us-
ing a large scale dataset, against three different attack methods, on two highly
performing deep image classifiers. A baseline comparison shows that the two-
staged training scheme performs better than using regular AEs. Most interest-
ingly, we show that resiliency to adversarial noise under white-box conditions, ex-
hibit comparable performance to state-of-the-art under more favorable gray-box
settings. Furthermore, we show how the properties of S2SNets can be exploited
to add more defense mechanisms to maintain robustness even under the harsh-
est, albeit currently hypothetical conditions, where the protection of S2SNets is
circumvented. A gray-box scenario was also tested where the defense consists on
the removal of S2SNets, showing high levels of robustness for all attacks. Finally,
a comparison between the resiliency of four well-known deep CNNs is presented,
providing further evidence that a relation of order exists between these classifiers,
in terms of the amount of signal they use; this time, in terms of the effectiveness
of adversarial noise.

S2SNets are only one way in which the transformation can occur in gradient
space. We would like to explore other ways in which such transformation can oc-
cur, and even if the intersection between gradients yielding successful adversarial
perturbations can be effectively zero. The signal-preserving nature of S2SNets
make this defense a potential mechanism to explore and understand the nature
of attacks. Comparing classification consistency of a clean sample, before and
after being passed through a S2SNet, has potential implications for detection of
adversarial attacks by learning abnormal distribution fluctuations.
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A On the Relationship between Px,f and Px,f◦g: Formal
Proof

Experiments of Section 3.2 show that the domain of attacks is being shifted such
that their range does not lie on the vulnerable space Px,f . We conduct a formal
analysis of the relationship between perturbation spaces Px,f and Px,f◦g and
show that one is a subset of the other. There are a few simplifications required
for the proof, which will be accounted for at the end of this section. First, we use
the results of BIM for an L2 = 0.05 tested on ResNet 50 as a reference. Values for
the baseline (no defense), White-Box+ and, Gray-Box− are 0.0, 0.0 and 0.672041
respectively. Computing the relative drop in performance (i.e., normalizing by
0.75004: the accuracy under no attack) yields 0.0, 0.0 and 0.8960. To simplify
the handling of fuzzy sets, we assign the membership functions µ(α(x)) for each
perturbation set to be either 0 or 1 if the fooling ratio is below random chance
or above 0.8 respectively. With this in mind, we can define four axioms that
come from the domain of the adversarial attack α : ∇f ∪ ∇f◦g → P, and the
aforementioned experiments with simplified membership functions. The proof is
a simple proof by contradiction with case analysis on the first disjunction.

Proof.

1. ∀x(x ∈ ∇f ∨ x ∈ ∇f◦g) (Def. domain of α)
2. ∀x(x ∈ ∇f → α(x) ∈ Px,f ) (Baseline Exp.)
3. ∀x(x ∈ ∇f → α(x) ∈ Px,f◦g) (White-Box+)
4. ∀x(x ∈ ∇f◦g → α(x) 6∈ Px,f ) (Gray-Box−)

5. ∃x(α(x) ∈ Px,f ∧ α(x) 6∈ Px,f◦g) (Assumption, 6⊆)
6. α(a) ∈ Pa,f ∧ α(a) 6∈ Pa,f◦g (Skolemization x→ a, 5)
7. a ∈ ∇f ∨ a ∈ ∇f◦g (U.I. x→ a, 1)
8. a ∈ ∇f → α(a) ∈ Pa,f◦g (U.I. x→ a, 3)
9. a ∈ ∇f◦g → α(a) 6∈ Pa,f (U.I. x→ a, 4)

10. a ∈ ∇f◦g (Assumption, 7)
11. α(a) 6∈ Pa,f (→ 10, 9)
12. α(a) 6∈ Pa,f ∧ α(a) ∈ Pa,f (∧, 11, 6)
13. Contradiction! E

14. ¬(a ∈ ∇f◦g) (Q.E.A. 10)
15. a ∈ ∇f (D.Syllogism, 14, 7)
16. α(a) ∈ Pa,f◦g (→ 15, 8)
17. α(a) 6∈ Pa,f◦g ∧ α(a) ∈ Pa,f◦g (∧, 6, 16)
18. Contradiction! E

19. ¬∃x(α(x) ∈ Px,f ∧ α(x) 6∈ Px,f◦g) (Q.E.A., 5)
20. ∀x¬(α(x) ∈ Px,f ∧ α(x) 6∈ Px,f◦g) (¬∃, 19)
21. ∀x(α(x) 6∈ Px,f ∨ α(x) ∈ Px,f◦g) (Distr. ¬, 20)
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22. ∀x(α(x) ∈ Px,f → α(x) ∈ Px,f◦g) (MI →., 21)
23. Px,f ⊆ Px,f◦g (Def. ⊆, 22)

Going back to the simplified membership function, it follows that different
reference experiments (network, attack and L2) will naturally yield different
results. This is especially true if we take the raw accuracy as the membership
function, instead of the simplified one. However, one can argue that the subset
relationship is, in general terms, valid since overall, most experiments under the
simplified membership function yield the same axioms). This is why we denote
such a relationship by the approximate subset relationship ⊆ to refer to this
result.

VulnerableS2SNets
Classifier
∇xf

∇xf ◦ g

Structural

Semantic

Gradient Space Perturbation Space P

Adversarial Space Px,f

Adversarial
Attack

VulnerableS2SNets
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∇xf

∇xf ◦ g

Structural
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Gradient Space Perturbation Space P

Px,fAdversarial
Attack

Px,f◦g

∇xf∇xf ◦ g
Adversarial

Attack

Px,f Px,f◦g

Fig. 9: Analysis of the relationship between gradient space and perturbation
space. By doing case analysis (middle) and a proof by contradiction, we infer
that the perturbation space approximates Px,f ⊂∼ Px,f◦g

A similar analysis can be done graphically as shown in Figure 9 (middle).
Case A is covered by Gray-Box− experiments which show that Px,f can only
be reached 10.4% of the time, which we know now, actually corresponds to
case B due to the inclusion Px,f ⊂∼ Px,f◦g. This leaves cases C, D which are
covered by White-Box experiments. Here, using the BIM on ResNet 50 and L2

= 0.05 as reference, yields that α(x) ∈ Px,f◦g with a membership µ(α(x)) =
1 − (0.5/0.75) = 0.333. That leaves case D with perturbations in the remaining
0.667 in P − {Px,f ∪ Px,f◦g}.

Likewise, for cases where the domain is ∇f , we see that they all fall into Px,f
which we know lies in Px,f◦g hence, they all fall into case F, eliminating samples
falling into the remaining ones E, G, H.
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B Perturbed Images and their Reconstructions

The following figures (10-16) show attack attempts on ResNet 50 (R) with cor-
rectly classified images from our random shuffle of the ImageNet validation set.
x (column 1) denotes the clean image and x̂ its perturbed variants. Columns
2-7 show a combination of attack method (FGSM, BIM, CW) and gradient
sources (∇xR(x), ∇xR ◦ AA(x)). Below are perturbations δ (row 2), recon-
structions x̂′ = AR(x̂) (row 3), and remaining perturbation in reconstructions
δ′ = AR(x̂)−AR(x) (row 4). Perturbation images are subject to histogram equal-
ization for increases visibility. These examples further illustrate the structural
nature of attacks through S2SNets.

x̂

x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 10: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.032, 0.032,
0.098, 0.115, 0.052, 0.064.
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x̂
x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 11: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.036, 0.036,
0.111, 0.104, 0.059, 0.172.

x̂

x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 12: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.028, 0.028,
0.084, 0.105, 0.045, 0.095.
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x̂
x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 13: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.028, 0.028,
0.088, 0.119, 0.046, 0.054.

x̂

x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 14: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.025, 0.025,
0.077, 0.124, 0.041, 0.212.
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x̂
x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 15: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.030, 0.030,
0.095, 0.107, 0.050, 0.150.

x̂

x FGSM R ... R ◦AR BIM R ... R ◦AR CW R ... R ◦AR

δ
x̂

′
δ

′

Fig. 16: Example of different attacks on ResNet 50 (R) with and without AR,
along with perturbations and reconstructions. L2 (left to right): 0.018, 0.018,
0.053, 0.067, 0.029, 0.045.
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C Raw Experiment Data

This section contains raw values for all experiments we conducted. A subset was
used to create the plots seen in the paper, but we also provide results we ended
up not using for our argumentation. In the following tables, L2 denotes the
normalized L2 dissimilarity (Equation 1) wrt. reference image x1 and another
image x2. We also provide L∞ values, the usual infinity norm divided by 255
(Equation 2). Settings for attacks besides ε are defined in Section 4.

L2(x1, x2) =
||x1 − x2||2
||x1||2

(1)

L∞(x1, x2) =
max(|x1 − x2|)

255
(2)

Tables 2, 3, and 4 contain White-Box results for the respective attack method.
They cover experiments described in Section 4.1 Tables 5, 6, and 7 contain results
attacks where the network that supplied the gradients (source network) that the
attack is based on is different from the network that is attacked (target network).
They cover White-Box+ and Gray-Box− experiments described in Section 4.1
and 4.2. Finally, Table 8 contains results on BIM attacks mitigated by different
types and strengths (η) of noise.

Table 2: Accuracy and distance statistics for FGSM attacks.

Network ε top-1 acc. (%) . . . (adversarial) L2 L∞

A 0.5 56.48 20.30 0.00413 0.00196
A 1.0 56.48 8.60 0.00825 0.00392
A 2.0 56.48 2.80 0.01647 0.00784
A 4.0 56.48 1.14 0.03283 0.01569
A 8.0 56.48 0.83 0.06533 0.03137
A 16.0 56.48 0.69 0.12945 0.06275
I 0.5 76.86 32.58 0.00413 0.00196
I 1.0 76.86 25.32 0.00825 0.00392
I 2.0 76.86 21.32 0.01647 0.00784
I 4.0 76.86 20.04 0.03284 0.01569
I 4.0 76.86 20.04 0.03284 0.01569
I 8.0 76.86 21.37 0.06535 0.03137
I 16.0 76.86 25.09 0.12948 0.06275
R 0.5 76.03 23.49 0.00413 0.00196
R 1.0 76.03 12.58 0.00826 0.00392
R 2.0 76.03 8.00 0.01648 0.00784
R 4.0 76.03 6.90 0.03284 0.01569
R 8.0 76.03 8.02 0.06535 0.03137
R 16.0 76.03 10.37 0.12947 0.06275
V 0.5 73.28 8.82 0.00413 0.00196
V 1.0 73.28 3.75 0.00826 0.00392
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Table 2: Accuracy and distance statistics for FGSM attacks.

Network ε top-1 acc. (%) . . . (adversarial) L2 L∞

V 2.0 73.28 2.74 0.01648 0.00784
V 4.0 73.28 2.85 0.03285 0.01569
V 8.0 73.28 3.79 0.06537 0.03137
V 16.0 73.28 6.64 0.12951 0.06275

A ◦ AA 0.5 56.38 54.90 0.00413 0.00196
A ◦ AA 1.0 56.38 53.79 0.00827 0.00392
A ◦ AA 2.0 56.38 52.37 0.01650 0.00784
A ◦ AA 4.0 56.38 50.68 0.03289 0.01569
A ◦ AA 8.0 56.38 48.56 0.06545 0.03137
A ◦ AA 16.0 56.38 42.86 0.12970 0.06275
I ◦ AI 0.5 76.79 75.46 0.00413 0.00196
I ◦ AI 1.0 76.79 74.51 0.00825 0.00392
I ◦ AI 2.0 76.79 73.41 0.01647 0.00784
I ◦ AI 4.0 76.79 71.91 0.03283 0.01569
I ◦ AI 8.0 76.79 69.89 0.06532 0.03137
I ◦ AI 16.0 76.79 65.40 0.12942 0.06275
R ◦ AR 0.5 75.00 73.35 0.00413 0.00196
R ◦ AR 1.0 75.00 72.33 0.00826 0.00392
R ◦ AR 2.0 75.00 70.99 0.01648 0.00784
R ◦ AR 4.0 75.00 69.33 0.03285 0.01569
R ◦ AR 8.0 75.00 66.65 0.06535 0.03137
R ◦ AR 16.0 75.00 60.47 0.12948 0.06275
V ◦ AV 0.5 68.14 65.20 0.00413 0.00196
V ◦ AV 1.0 68.14 63.38 0.00827 0.00392
V ◦ AV 2.0 68.14 61.01 0.01650 0.00784
V ◦ AV 4.0 68.14 58.16 0.03289 0.01569
V ◦ AV 8.0 68.14 54.85 0.06544 0.03137
V ◦ AV 16.0 68.14 47.38 0.12965 0.06275
I ◦ AS 0.5 73.80 71.37 0.00413 0.00196
I ◦ AS 1.0 73.80 69.71 0.00825 0.00392
I ◦ AS 2.0 73.80 67.63 0.01647 0.00784
I ◦ AS 4.0 73.80 65.41 0.03283 0.01569
I ◦ AS 8.0 73.80 63.10 0.06532 0.03137
I ◦ AS 16.0 73.80 59.38 0.12943 0.06275
R ◦ AS 0.5 72.07 68.75 0.00413 0.00196
R ◦ AS 1.0 72.07 66.33 0.00825 0.00392
R ◦ AS 2.0 72.07 63.47 0.01647 0.00784
R ◦ AS 4.0 72.07 59.89 0.03283 0.01569
R ◦ AS 8.0 72.07 56.03 0.06533 0.03137
R ◦ AS 16.0 72.07 48.87 0.12943 0.06275
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Table 3: Accuracy and distance statistics for BIM attacks.

Network ε top-1 acc. (%) . . . (adversarial) L2 L∞

A 0.5 56.48 0.11 0.02278 0.01961
A 1.0 56.48 0.05 0.03842 0.03922
A 2.0 56.48 0.03 0.06572 0.07843
A 4.0 56.48 0.02 0.11770 0.15686
A 8.0 56.48 0.01 0.22130 0.31373
I 0.5 76.86 0.50 0.01508 0.01961
I 1.0 76.86 0.20 0.02698 0.03921
I 2.0 76.86 0.15 0.05147 0.07841
I 4.0 76.86 0.10 0.10090 0.15682
I 8.0 76.86 0.08 0.19724 0.31366
R 0.5 76.03 0.10 0.01669 0.01961
R 1.0 76.03 0.05 0.02847 0.03922
R 2.0 76.03 0.02 0.05232 0.07843
R 4.0 76.03 0.01 0.10067 0.15686
R 8.0 76.03 0.00 0.19510 0.31373
V 0.5 73.28 0.34 0.01724 0.01961
V 1.0 73.28 0.27 0.02920 0.03922
V 2.0 73.28 0.23 0.05305 0.07843
V 4.0 73.28 0.18 0.10117 0.15686
V 8.0 73.28 0.12 0.19571 0.31372

A ◦ AA 0.5 56.38 44.11 0.02637 0.01961
A ◦ AA 1.0 56.38 35.57 0.04537 0.03922
A ◦ AA 2.0 56.38 24.47 0.07559 0.07843
A ◦ AA 4.0 56.38 12.69 0.12549 0.15686
A ◦ AA 8.0 56.38 4.00 0.22330 0.31373
I ◦ AI 0.5 76.79 66.48 0.02235 0.01961
I ◦ AI 1.0 76.79 60.47 0.03852 0.03922
I ◦ AI 2.0 76.79 51.12 0.06634 0.07843
I ◦ AI 4.0 76.79 37.65 0.11604 0.15686
I ◦ AI 8.0 76.79 23.03 0.21053 0.31373
R ◦ AR 0.5 75.00 62.05 0.02445 0.01961
R ◦ AR 1.0 75.00 53.64 0.04197 0.03922
R ◦ AR 2.0 75.00 41.21 0.07040 0.07843
R ◦ AR 4.0 75.00 25.93 0.11964 0.15686
R ◦ AR 8.0 75.00 11.78 0.21596 0.31373
V ◦ AV 0.5 68.14 46.16 0.02467 0.01961
V ◦ AV 1.0 68.14 34.45 0.04230 0.03922
V ◦ AV 2.0 68.14 22.14 0.07086 0.07843
V ◦ AV 4.0 68.14 12.65 0.11932 0.15686
V ◦ AV 8.0 68.14 6.33 0.21275 0.31373
R ◦ AS 0.5 72.07 45.11 0.02507 0.01961
R ◦ AS 1.0 72.07 31.29 0.04294 0.03922
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Table 3: Accuracy and distance statistics for BIM attacks.

Network ε top-1 acc. (%) . . . (adversarial) L2 L∞

R ◦ AS 2.0 72.07 18.32 0.07170 0.07843
R ◦ AS 4.0 72.07 9.86 0.12014 0.15686
R ◦ AS 8.0 72.07 5.42 0.21249 0.31373
R ◦ AS 16.0 72.07 1.09 0.40976 0.62744

Table 4: Accuracy and distance statistics for CW attacks.

Network ε top-1 acc. (%) . . . (adversarial) L2 L∞

I 0.5 76.86 0.16 0.00805 0.00587
I 1.0 76.86 0.29 0.01475 0.00966
I 2.0 76.86 0.99 0.03084 0.01848
I 4.0 76.86 2.13 0.05731 0.03350
R 0.5 76.03 0.10 0.00752 0.00511
R 1.0 76.03 0.02 0.01387 0.00850
R 2.0 76.03 0.42 0.02964 0.01644
R 4.0 76.03 1.32 0.05459 0.02917

I ◦ AI 0.5 76.80 44.49 0.07357 0.11869
I ◦ AI 1.0 76.80 33.58 0.10195 0.17756
I ◦ AI 2.0 76.80 25.19 0.13851 0.24872
I ◦ AI 4.0 76.80 19.72 0.18622 0.31932
R ◦ AR 0.5 75.01 36.66 0.07310 0.11166
R ◦ AR 1.0 75.01 26.59 0.09461 0.15410
R ◦ AR 2.0 75.01 20.63 0.11958 0.19562
R ◦ AR 4.0 75.01 16.68 0.15458 0.23814
R ◦ AS 0.5 72.07 20.26 0.04971 0.06407
R ◦ AS 1.0 72.07 14.08 0.06044 0.07838
R ◦ AS 2.0 72.07 11.27 0.07758 0.09839
R ◦ AS 4.0 72.07 10.45 0.10965 0.13377

Table 5: Accuracy for FGSM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

A I 0.5 76.86 56.11
A R 0.5 76.03 55.93
A V 0.5 73.28 56.01
A A ◦ AA 0.5 56.38 56.26
A I 1.0 76.86 55.86
A R 1.0 76.03 55.43
A V 1.0 73.28 55.58
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Table 5: Accuracy for FGSM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

A A ◦ AA 1.0 56.38 56.19
A I 2.0 76.86 55.02
A R 2.0 76.03 54.16
A V 2.0 73.28 54.38
A A ◦ AA 2.0 56.38 55.89
A I 4.0 76.86 52.48
A R 4.0 76.03 50.82
A V 4.0 73.28 51.57
A A ◦ AA 4.0 56.38 55.25
A I 8.0 76.86 44.76
A R 8.0 76.03 41.18
A V 8.0 73.28 43.48
A A ◦ AA 8.0 56.38 52.33
A A ◦ AA 16.0 56.38 41.49
I A 0.5 56.48 76.31
I R 0.5 76.03 74.63
I V 0.5 73.28 75.11
I I ◦ AI 0.5 76.79 76.71
I A 1.0 56.48 75.70
I R 1.0 76.03 72.26
I V 1.0 73.28 73.29
I I ◦ AI 1.0 76.79 76.45
I A 2.0 56.48 74.27
I R 2.0 76.03 68.06
I V 2.0 73.28 69.89
I I ◦ AI 2.0 76.79 75.90
I A 4.0 56.48 71.20
I R 4.0 76.03 61.82
I V 4.0 73.28 64.71
I I ◦ AI 4.0 76.79 74.65
I A 8.0 56.48 64.46
I R 8.0 76.03 54.70
I V 8.0 73.28 58.73
I I ◦ AI 8.0 76.79 72.45
I I ◦ AI 16.0 76.79 68.18
R A 0.5 56.48 75.29
R I 0.5 76.86 74.01
R V 0.5 73.28 73.22
R R ◦ AR 0.5 75.00 75.71
R R ◦ AS 0.5 72.07 75.03
R A 1.0 56.48 74.39
R I 1.0 76.86 71.87
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Table 5: Accuracy for FGSM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

R V 1.0 73.28 70.38
R R ◦ AR 1.0 75.00 75.42
R R ◦ AS 1.0 72.07 73.89
R A 2.0 56.48 72.36
R I 2.0 76.86 68.23
R V 2.0 73.28 65.24
R R ◦ AR 2.0 75.00 74.68
R R ◦ AS 2.0 72.07 71.70
R A 4.0 56.48 68.07
R I 4.0 76.86 63.06
R V 4.0 73.28 58.30
R R ◦ AR 4.0 75.00 73.01
R R ◦ AS 4.0 72.07 67.98
R A 8.0 56.48 58.65
R I 8.0 76.86 56.61
R V 8.0 73.28 51.20
R R ◦ AR 8.0 75.00 69.59
R R ◦ AS 8.0 72.07 62.50
R R ◦ AR 16.0 75.00 62.54
V A 0.5 56.48 72.30
V I 0.5 76.86 70.97
V R 0.5 76.03 69.25
V V ◦ AV 0.5 68.14 72.52
V A 1.0 56.48 71.19
V I 1.0 76.86 68.69
V R 1.0 76.03 65.32
V V ◦ AV 1.0 68.14 71.79
V A 2.0 56.48 68.84
V I 2.0 76.86 64.78
V R 2.0 76.03 59.18
V V ◦ AV 2.0 68.14 70.12
V A 4.0 56.48 63.51
V I 4.0 76.86 59.33
V R 4.0 76.03 51.14
V V ◦ AV 4.0 68.14 67.02
V A 8.0 56.48 52.28
V I 8.0 76.86 51.99
V R 8.0 76.03 42.35
V V ◦ AV 8.0 68.14 62.11
V V ◦ AV 16.0 68.14 53.49

A ◦ AA A 0.5 56.48 41.39
A ◦ AA A 1.0 56.48 29.07
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Table 5: Accuracy for FGSM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

A ◦ AA A 2.0 56.48 14.42
A ◦ AA A 4.0 56.48 5.32
A ◦ AA A 8.0 56.48 2.23
A ◦ AA A 16.0 56.48 1.34
I ◦ AI I 0.5 76.86 62.88
I ◦ AI I 1.0 76.86 51.84
I ◦ AI I 2.0 76.86 40.63
I ◦ AI I 4.0 76.86 33.02
I ◦ AI I 8.0 76.86 29.92
I ◦ AI I 16.0 76.86 29.42
R ◦ AR R 0.5 76.03 54.46
R ◦ AR R 1.0 76.03 39.20
R ◦ AR R 2.0 76.03 23.53
R ◦ AR R 4.0 76.03 14.43
R ◦ AR R 8.0 76.03 11.67
R ◦ AR R 16.0 76.03 11.25
V ◦ AV V 0.5 73.28 35.55
V ◦ AV V 1.0 73.28 18.50
V ◦ AV V 2.0 73.28 8.27
V ◦ AV V 4.0 73.28 5.41
V ◦ AV V 8.0 73.28 5.39
V ◦ AV V 16.0 73.28 7.72
R ◦ AS R 0.5 76.03 47.90
R ◦ AS R 1.0 76.03 31.81
R ◦ AS R 2.0 76.03 18.28
R ◦ AS R 4.0 76.03 11.96
R ◦ AS R 8.0 76.03 10.40

Table 6: Accuracy for BIM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

A I 0.5 76.86 55.04
A R 0.5 76.03 53.95
A V 0.5 73.28 54.42
A A ◦ AA 0.5 56.38 54.61
A I 1.0 76.86 53.51
A R 1.0 76.03 51.69
A V 1.0 73.28 52.67
A A ◦ AA 1.0 56.38 51.96
A I 2.0 76.86 48.11
A R 2.0 76.03 45.05
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Table 6: Accuracy for BIM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

A V 2.0 73.28 47.17
A A ◦ AA 2.0 56.38 46.29
A I 4.0 76.86 33.50
A R 4.0 76.03 29.14
A V 4.0 73.28 34.14
A A ◦ AA 4.0 56.38 34.28
A I 8.0 76.86 11.08
A R 8.0 76.03 8.70
A V 8.0 73.28 12.73
A A ◦ AA 8.0 56.38 14.31
I A 0.5 56.48 71.70
I R 0.5 76.03 67.32
I V 0.5 73.28 70.39
I I ◦ AI 0.5 76.79 74.27
I A 1.0 56.48 67.01
I R 1.0 76.03 60.49
I V 1.0 73.28 65.72
I I ◦ AI 1.0 76.79 71.67
I A 2.0 56.48 58.45
I R 2.0 76.03 49.84
I V 2.0 73.28 57.29
I I ◦ AI 2.0 76.79 67.21
I A 4.0 56.48 41.90
I R 4.0 76.03 34.22
I V 4.0 73.28 44.44
I I ◦ AI 4.0 76.79 58.85
I A 8.0 56.48 18.61
I R 8.0 76.03 17.36
I V 8.0 73.28 28.68
I I ◦ AI 8.0 76.79 46.60
R A 0.5 56.48 68.98
R I 0.5 76.86 68.41
R V 0.5 73.28 64.93
R R ◦ AR 0.5 75.00 72.31
R R ◦ AS 0.5 72.07 63.43
R A 1.0 56.48 62.48
R I 1.0 76.86 62.54
R V 1.0 73.28 57.52
R R ◦ AR 1.0 75.00 68.83
R R ◦ AS 1.0 72.07 51.71
R A 2.0 56.48 50.59
R I 2.0 76.86 52.16
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Table 6: Accuracy for BIM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

R V 2.0 73.28 46.09
R R ◦ AR 2.0 75.00 63.07
R R ◦ AS 2.0 72.07 35.85
R A 4.0 56.48 30.60
R I 4.0 76.86 37.46
R V 4.0 73.28 32.11
R R ◦ AR 4.0 75.00 53.10
R R ◦ AS 4.0 72.07 20.81
R A 8.0 56.48 10.25
R I 8.0 76.86 21.29
R V 8.0 73.28 18.94
R R ◦ AR 8.0 75.00 36.36
R R ◦ AS 8.0 72.07 11.40
V A 0.5 56.48 63.81
V I 0.5 76.86 64.25
V R 0.5 76.03 53.11
V V ◦ AV 0.5 68.14 64.68
V A 1.0 56.48 55.92
V I 1.0 76.86 57.50
V R 1.0 76.03 41.59
V V ◦ AV 1.0 68.14 56.26
V A 2.0 56.48 42.54
V I 2.0 76.86 45.69
V R 2.0 76.03 26.86
V V ◦ AV 2.0 68.14 43.38
V A 4.0 56.48 23.27
V I 4.0 76.86 30.33
V R 4.0 76.03 13.02
V V ◦ AV 4.0 68.14 27.12
V A 8.0 56.48 6.32
V I 8.0 76.86 15.10
V R 8.0 76.03 4.42
V V ◦ AV 8.0 68.14 13.25

A ◦ AA A 0.5 56.48 0.95
A ◦ AA A 1.0 56.48 0.13
A ◦ AA A 2.0 56.48 0.04
A ◦ AA A 4.0 56.48 0.02
A ◦ AA A 8.0 56.48 0.01
I ◦ AI I 0.5 76.86 23.14
I ◦ AI I 1.0 76.86 10.72
I ◦ AI I 2.0 76.86 3.87
I ◦ AI I 4.0 76.86 1.23
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Table 6: Accuracy for BIM attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

I ◦ AI I 8.0 76.86 0.40
R ◦ AR R 0.5 76.03 2.65
R ◦ AR R 1.0 76.03 0.44
R ◦ AR R 2.0 76.03 0.08
R ◦ AR R 4.0 76.03 0.01
R ◦ AR R 8.0 76.03 0.00
V ◦ AV V 0.5 73.28 0.59
V ◦ AV V 1.0 73.28 0.33
V ◦ AV V 2.0 73.28 0.24
V ◦ AV V 4.0 73.28 0.18
V ◦ AV V 8.0 73.28 0.12
R ◦ AS R 0.5 76.03 0.73
R ◦ AS R 1.0 76.03 0.11
R ◦ AS R 2.0 76.03 0.03
R ◦ AS R 4.0 76.03 0.01
R ◦ AS R 8.0 76.03 0.00

Table 7: Accuracy for CW attacks when source and target network differ.

Source Network Target Network ε top-1 acc. (%) . . . (adversarial)

I I ◦ AI 0.5 76.80 72.90
I I ◦ AI 1.0 76.80 70.08
I I ◦ AI 2.0 76.80 65.54
I I ◦ AI 4.0 76.80 59.46
R R ◦ AR 0.5 75.01 71.15
R R ◦ AR 1.0 75.01 67.98
R R ◦ AR 2.0 75.01 63.42
R R ◦ AR 4.0 75.01 57.05

I ◦ AI I 0.5 76.86 64.36
I ◦ AI I 1.0 76.86 43.53
I ◦ AI I 2.0 76.86 28.18
I ◦ AI I 4.0 76.86 20.69
R ◦ AR R 0.5 76.03 53.83
R ◦ AR R 1.0 76.03 28.23
R ◦ AR R 2.0 76.03 12.76
R ◦ AR R 4.0 76.03 8.50
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Table 8: BIM attacks on ResNet 50, mitigated with different types and strength
(η) of noise.

Noise Type ε η top-1 acc. (%) . . . (adversarial)

Gaussian 0.5 0.5 76.03 2.77
Gaussian 0.5 1.0 76.03 3.15
Gaussian 0.5 2.0 76.03 4.73
Gaussian 0.5 4.0 76.03 11.15
Gaussian 0.5 8.0 76.03 29.17
Gaussian 0.5 12.0 76.03 41.43
Gaussian 0.5 15.0 76.03 46.46
Gaussian 0.5 20.0 76.03 50.48
Gaussian 0.5 30.0 76.03 48.21
Gaussian 1.0 0.5 76.03 0.45
Gaussian 1.0 1.0 76.03 0.50
Gaussian 1.0 2.0 76.03 0.65
Gaussian 1.0 4.0 76.03 1.88
Gaussian 1.0 8.0 76.03 11.37
Gaussian 1.0 12.0 76.03 24.19
Gaussian 1.0 15.0 76.03 31.81
Gaussian 1.0 20.0 76.03 40.08
Gaussian 1.0 30.0 76.03 43.35
Gaussian 2.0 0.5 76.03 0.08
Gaussian 2.0 1.0 76.03 0.08
Gaussian 2.0 2.0 76.03 0.10
Gaussian 2.0 4.0 76.03 0.16
Gaussian 2.0 8.0 76.03 1.05
Gaussian 2.0 12.0 76.03 5.00
Gaussian 2.0 15.0 76.03 10.38
Gaussian 2.0 20.0 76.03 20.76
Gaussian 2.0 30.0 76.03 32.58
Gaussian 4.0 0.5 76.03 0.01
Gaussian 4.0 1.0 76.03 0.01
Gaussian 4.0 2.0 76.03 0.01
Gaussian 4.0 4.0 76.03 0.02
Gaussian 4.0 8.0 76.03 0.04
Gaussian 4.0 12.0 76.03 0.10
Gaussian 4.0 15.0 76.03 0.30
Gaussian 4.0 20.0 76.03 1.85
Gaussian 4.0 30.0 76.03 11.53
Gaussian 8.0 0.5 76.03 0.00
Gaussian 8.0 1.0 76.03 0.00
Gaussian 8.0 2.0 76.03 0.00
Gaussian 8.0 4.0 76.03 0.00
Gaussian 8.0 8.0 76.03 0.00
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Table 8: BIM attacks on ResNet 50, mitigated with different types and strength
(η) of noise.

Noise Type ε η top-1 acc. (%) . . . (adversarial)

Gaussian 8.0 12.0 76.03 0.00
Gaussian 8.0 15.0 76.03 0.01
Gaussian 8.0 20.0 76.03 0.01
Gaussian 8.0 30.0 76.03 0.26

Sign 0.5 0.5 76.03 2.77
Sign 0.5 1.0 76.03 3.14
Sign 0.5 2.0 76.03 4.81
Sign 0.5 4.0 76.03 11.25
Sign 0.5 8.0 76.03 29.59
Sign 0.5 12.0 76.03 41.88
Sign 0.5 15.0 76.03 47.01
Sign 0.5 20.0 76.03 50.73
Sign 0.5 30.0 76.03 47.74
Sign 1.0 0.5 76.03 0.45
Sign 1.0 1.0 76.03 0.47
Sign 1.0 2.0 76.03 0.65
Sign 1.0 4.0 76.03 1.94
Sign 1.0 8.0 76.03 11.61
Sign 1.0 12.0 76.03 24.76
Sign 1.0 15.0 76.03 32.74
Sign 1.0 20.0 76.03 40.71
Sign 1.0 30.0 76.03 43.30
Sign 2.0 0.5 76.03 0.08
Sign 2.0 1.0 76.03 0.08
Sign 2.0 2.0 76.03 0.09
Sign 2.0 4.0 76.03 0.16
Sign 2.0 8.0 76.03 1.13
Sign 2.0 12.0 76.03 5.38
Sign 2.0 15.0 76.03 11.19
Sign 2.0 20.0 76.03 21.74
Sign 2.0 30.0 76.03 33.49
Sign 4.0 0.5 76.03 0.01
Sign 4.0 1.0 76.03 0.01
Sign 4.0 2.0 76.03 0.01
Sign 4.0 4.0 76.03 0.02
Sign 4.0 8.0 76.03 0.04
Sign 4.0 12.0 76.03 0.12
Sign 4.0 15.0 76.03 0.38
Sign 4.0 20.0 76.03 2.25
Sign 4.0 30.0 76.03 13.05
Sign 8.0 0.5 76.03 0.00
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Table 8: BIM attacks on ResNet 50, mitigated with different types and strength
(η) of noise.

Noise Type ε η top-1 acc. (%) . . . (adversarial)

Sign 8.0 1.0 76.03 0.00
Sign 8.0 2.0 76.03 0.00
Sign 8.0 4.0 76.03 0.00
Sign 8.0 8.0 76.03 0.00
Sign 8.0 12.0 76.03 0.00
Sign 8.0 15.0 76.03 0.01
Sign 8.0 20.0 76.03 0.01
Sign 8.0 30.0 76.03 0.44

Uniform 0.5 0.5 76.03 2.72
Uniform 0.5 1.0 76.03 2.81
Uniform 0.5 2.0 76.03 3.37
Uniform 0.5 4.0 76.03 5.57
Uniform 0.5 8.0 76.03 13.82
Uniform 0.5 12.0 76.03 24.69
Uniform 0.5 15.0 76.03 31.86
Uniform 0.5 20.0 76.03 40.42
Uniform 0.5 30.0 76.03 49.01
Uniform 1.0 0.5 76.03 0.44
Uniform 1.0 1.0 76.03 0.44
Uniform 1.0 2.0 76.03 0.49
Uniform 1.0 4.0 76.03 0.76
Uniform 1.0 8.0 76.03 2.69
Uniform 1.0 12.0 76.03 8.04
Uniform 1.0 15.0 76.03 13.55
Uniform 1.0 20.0 76.03 23.04
Uniform 1.0 30.0 76.03 37.01
Uniform 2.0 0.5 76.03 0.08
Uniform 2.0 1.0 76.03 0.08
Uniform 2.0 2.0 76.03 0.08
Uniform 2.0 4.0 76.03 0.10
Uniform 2.0 8.0 76.03 0.20
Uniform 2.0 12.0 76.03 0.63
Uniform 2.0 15.0 76.03 1.43
Uniform 2.0 20.0 76.03 4.51
Uniform 2.0 30.0 76.03 15.73
Uniform 4.0 0.5 76.03 0.01
Uniform 4.0 1.0 76.03 0.01
Uniform 4.0 2.0 76.03 0.01
Uniform 4.0 4.0 76.03 0.01
Uniform 4.0 8.0 76.03 0.02
Uniform 4.0 12.0 76.03 0.03
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Table 8: BIM attacks on ResNet 50, mitigated with different types and strength
(η) of noise.

Noise Type ε η top-1 acc. (%) . . . (adversarial)

Uniform 4.0 15.0 76.03 0.04
Uniform 4.0 20.0 76.03 0.09
Uniform 4.0 30.0 76.03 0.83
Uniform 8.0 0.5 76.03 0.00
Uniform 8.0 1.0 76.03 0.00
Uniform 8.0 2.0 76.03 0.00
Uniform 8.0 4.0 76.03 0.00
Uniform 8.0 8.0 76.03 0.00
Uniform 8.0 12.0 76.03 0.00
Uniform 8.0 15.0 76.03 0.00
Uniform 8.0 20.0 76.03 0.00
Uniform 8.0 30.0 76.03 0.01
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