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Abstract 
Recently deep learning – namely convolutional neural 

networks (CNNs) – have yielded impressive performance 

for the task of building segmentation on large overhead 

(e.g., satellite) imagery benchmarks. However, these 

benchmark datasets only capture a small fraction of the 

variability present in real-world overhead imagery, 

limiting the ability to properly train, or evaluate, models for 

real-world application. Unfortunately, developing a 

dataset that captures even a small fraction of real-world 

variability is typically infeasible due to the cost of imagery, 

and manual pixel-wise labeling of the imagery.  In this work 

we develop an approach to rapidly and cheaply generate 

large and diverse virtual environments from which we can 

capture synthetic overhead imagery for training 

segmentation CNNs.  Using this approach, generate and 

publicly-release a collection of synthetic overhead imagery 

– termed Synthinel-1 with full pixel-wise building labels.  

We use several benchmark dataset to demonstrate that 

Synthinel-1 is consistently beneficial when used to augment 

real-world training imagery, especially when CNNs are 

tested on novel geographic locations or conditions.  

1. Introduction 
Building footprint segmentation in overhead imagery 

(e.g., satellite images, aerial photography) is a challenging 

problem that has been extensively investigated within the 

computer vision community [1]–[3].  Recently, 

convolutional neural networks (CNNs) have led to 

substantial performance improvements over previous 

segmentation methods, and CNNs now dominate 

benchmark problems [4]–[6].  CNNs are high-capacity non-

linear models that must be trained to perform segmentation 

using large quantities of overhead imagery in which the 

building footprints have been annotated (e.g., with 

polygons). Therefore, a crucial contributor to the recent 

success of CNNs for building segmentation has been the 

development of large publicly-available benchmark 

datasets of hand-labeled overhead imagery.  Recent 

datasets such as Inria [7], DSTL [6], and DeepGlobe [5] are 

unprecedented in their size and geographic coverage.   

 

 
Despite their unprecedented scope, modern benchmark 

datasets still encompass relatively little of the variability 

present in real-world overhead imagery. The visual 

characteristics of overhead imagery vary tremendously, due 

to numerous factors: imaging conditions (e.g., camera 

NADIR, spatial resolution), environmental conditions (e.g., 

weather and atmospheric conditions, time-of-day, season), 

and geographic location (e.g., regional building styles vary 

across the globe).   Recent benchmark datasets, however, 

all encompass just a few geographic locations, and each 

location is imaged under relatively uniform conditions.   

Due to these limitations, it is unclear whether 

segmentation models trained and evaluated on recent 

benchmark datasets generalize well to novel overhead 

imagery, arguably a more realistic and practical scenario – 

    

 
Fig. 1. (a) Illustration of a virtual city and two perspectives of a 

virtual camera, set by the designer.  The corresponding images 

for each camera are shown in panels (b) and (c).  The camera 

settings in (c) are designed to create images that mimic overhead 

imagery. We changed the focal length of the camera (illustrated 

in (a)) so that the imagery mimics the perspective of a camera 

located at a much higher altitude than can be achieved with our 

virtual camera.  In (d) we show the corresponding ground truth 

labels extracted for the image in (c), which are readily available 

because we designed all of the content in the virtual world.   
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recent work [7], [8] indicates that they do not.  This result 

is further corroborated by the work presented here. This 

represents an important limitation of existing models.   

Unfortunately however, collecting a representative set of 

labeled overhead imagery, reflecting the variability of real-

world imagery, is completely infeasible. This would require 

collecting imagery from locations across the globe, and 

doing so several times under different imaging conditions. 

As we discuss in Section 3.2, acquiring even a relatively 

small imagery dataset, and annotating, is costly.  

1.1. Synthetic overhead imagery for building labeling 

In this work we explore the use of synthetic overhead 

imagery to overcome the limitations of real-world imagery. 

Here “synthetic imagery” refers to imagery that has been 

captured from a simulated camera operating over a virtual 

world, as illustrated in Fig. 1.   In a virtual world, a designer 

can specify the locations and visual characteristics of scene 

content, as well as the camera location and its 

characteristics.  As a result, the designer can collect large 

quantities of diverse imagery at little cost.  Furthermore, 

there is no need for annotation since the locations of all 

objects is known by design.  

Recently computer vision researchers have found 

tremendous success using “synthetic” imagery for training 

recognition models in several application areas [9], [10], 

such as object recognition in street [9]–[12] and indoor [13], 

[14] scenes.   However, practical generation of overhead 

synthetic imagery presents several unique challenges 

compared to existing use-cases of synthetic imagery; to our 

knowledge the challenges of overhead imagery remain 

unexplored in any previous research literature.   

Existing uses of synthetic imagery require 

(geographically) small virtual worlds, with a focus on high-

fidelity visual features, layouts, and randomness of small-

scale objects (e.g., people, vegetation, road signs, furniture, 

etc.[9], [14]).  By contrast, even a small quantity of 

synthetic overhead imagery (e.g., 10-20 km2 ) requires a 

virtual world of corresponding large size.  Similarly, 

overhead synthetic imagery requires visual fidelity at much 

larger scales (e.g., a few meters), as well as appropriate 

sources of randomness for such scales (e.g., shape, colors, 

sizes, and layouts of roads, buildings, and landscapes). 

Existing tools cannot efficiently generate synthetic imagery 

at the scales required for overhead synthetic imagery.   

Tools are needed that can quickly generate large-scale 

virtual worlds with realistic (large-scale) variations, while 

maintaining realistic (large-scale) layouts and structure, and 

providing the designer with high-level controls over 

important characteristics.  Furthermore, while it seems 

likely that synthetic imagery should ultimately be beneficial 

for training DL models, the process for generating such a 

dataset, or the properties a virtual world should possess 

(e.g., layouts, textures, colors),  is far from obvious.  Object 
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recognition (buildings, or other objects) in overhead 

imagery relies on unique visual cues and considerations 

compared to existing work with synthetic imagery on 

indoor/street scenes.  

1.2. Contributions of this work  

In this work we explore the use of a widely-available 

software, CityEngine, as a tool for rapidly generating large-

scale virtual worlds; it possesses many of the 

aforementioned capabilities.  We develop additional 

software to rapidly extract overhead imagery at a desired 

resolution from these virtual worlds.  Using these 

approaches we generated a collection of synthetic imagery, 

termed Synthinel-1 (inspired by the Sentinel satellites).  We 

demonstrate that Synthinel-1 is beneficial for training 

modern deep learning models for building segmentation 

using several recent benchmark datasets and deep learning 

models.  We began with building segmentation due to its 

popularity, but these approaches can easily be extended to 

other tasks (e.g., object detection) and objects (e.g., roads, 

vehicles, vegetation, etc.). 

We also explore several basic questions related to 

overhead SI: what is the impact of the quantity of synthetic 

imagery on performance, ablation studies of the city styles 

and training procedures, and an initial investigation into the 

mechanism by which Synthinel-1 is beneficial (e.g., 

matching the visual features of real worlds, or instilling 

robustness e.g., domain randomization [12], [13]).   We will 

release the Synthinel-1 dataset with the publication of this 

work1.   

To our knowledge, we are the first to produce any of the 

important aforementioned results for overhead synthetic 

imagery. This work thereby provides researchers with the 

first well-validated baseline process for generating useful 

overhead imagery: a process that requires numerous steps 

and non-obvious design choices. This establishes an 

important foundation on which many additional lines of 

future work can be built (see Section 7).    

2. Related Work 
Remote Sensing Datasets. To support algorithm 

development, several publicly-available benchmark 

datasets have been developed for both segmentation, and 

general object recognition, on remote sensing imagery.  A 

variety of objects have been considered for recognition in 

remote sensing imagery, such as buildings[5]–[7], roads[5], 

[15], [16], vehicles [17], solar arrays [18], and more [17], 

[19].  The most recent and most diverse datasets encompass 

hundreds of square kilometers of labeled imagery, collected 

over a few of distinct geographic locations.  Some examples 

include DeepGlobe [5], Inria [4], DSTL[6], and ISPRS 

challenge[17].  Within a given geographic location, 

imagery is usually collected under similar conditions: e.g., 

https://github.com/timqqt/Synthinel
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the same sensor, day of year, and environmental conditions.  

Although these datasets are crucial to the current success of 

deep learning, they capture relatively little of the variability 

in real-world imagery, motivating the development of 

methods for generating synthetic imagery. 

Semantic Segmentation. State-of-the-art segmentation 

algorithms are largely comprised of CNNs, and can be 

divided into two categories. The first category uses an 

encoder-decoder structure to maintain fine-grinned object 

boundary details [20], [21].   Variants of the U-net model, 

an encoder-decoder structure, recently yielded top 

performance on the Inria, DeepGlobe, and DSTL 

benchmarks for building segmentation in overhead 

imagery[6], [7], [22].  The second category makes use of 

feature pyramid pooling structures to capture contextual 

information at different image resolutions [23]–[25]. 

Variants of the DeepLab model, an example of this 

architecture, have recently led benchmarks for street view 

segmentation [26] and the PASCAL VOC segmentation 

challenge[27].   

Synthetic imagery for training networks.  In recent 

years interest has grown rapidly in the use of virtual worlds 

to generate ground truth, especially for sematic 

segmentation tasks where obtaining pixel-wise labels is 

especially time-consuming and costly.  A large number of 

publications have demonstrated success using synthetic 

imagery [9]–[14], [28].  Some notable examples were 

presented in [9] (the SYNTHIA dataset) and [10], in which 

synthetic imagery with pixel-wise semantic labels were 

generated from 3D virtual worlds.  It has shown that these 

synthetic datasets can boost the performance of 

segmentation networks on real-world benchmark imagery, 

such as for this task, such as the CamVid [29] and KITTI 

[30] dataset, among others.  In [31] the authors were able to 

outperform standard training on real imagery using 

synthetic imagery that was stylized to look more realistic, 

using an adversarial loss, bridging the gap between 

synthetic and real imagery.   

Limitations of existing synthetic imagery rendering. 

Several different resources have been developed for 

developing synthetic imagery such as those based on Unreal 

Engine [32], existing video game engines [28], the Unity 

game engine [9], [33].  Many of these engines can generate 

virtual worlds with high fidelity, but often rely on highly-

designed models of objects, or layouts [12], [13] that can be 

time-consuming to construct.  The existing models and 

tools for randomization are best designed for (relatively) 

small-scale scenes compared to overhead imagery, such as 

indoor scenes or street scenes.  Designing objects like 

buildings, road networks, and vegetation for the large areas 

necessary for synthetic overhead imagery would be time-

consuming, or infeasible. We explore CityEngine as a tool 

that can help fulfill these unique needs, providing rapid 
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generation of randomized large-scale virtual worlds.  We 

note however that CityEngine can be paired with many 

existing tools such as Unity, to improve visual fidelity 

where it may be helpful.   

Synthetic overhead imagery. To our knowledge no 

rigorous work has been conducted on utilizing synthetic 

overhead imagery (e.g., satellite or high-altitude aerial 

photography) for training machine-learning models.  The 

only existing work exploring this idea was recently (2018 

presented in [34], however this work suffers from numerous 

limitations. Most crucially, the authors employed a 

military-grade rendering software that is inaccessible to the 

public, and their raw synthetic imagery was not made 

publicly available.  This system also requires substantial 

design work to generate even very limited quantities of 

imagery. The authors only use a single private dataset for 

experimentation, rather than any benchmark datasets.  

This contrasts with the systematic and comprehensive 

results provided here, as detailed in Section 1.2.  Therefore, 

the work here essentially provides the first treatment of this 

topic in the research literature.   

3. The Synthinel-1 dataset 
In this section we briefly describes the process of 

creating Synthinel-1, as well as its characteristics, and an 

analysis of the costs/time associated with generating real-

world and synthetic overhead imagery, respectively.   

3.1. Synthetic imagery creation 

We provide a brief overview here, but further details are 

available in the supplementary materials.  Our methodology 

for generating synthetic imagery is built upon the 

CityEngine software 2 . Our main motive for using this 

software is that it allows users to rapidly generate 

geographically large virtual worlds, that are randomized to 

introduce variability, while being constrained to exhibit 

realistic characteristics (e.g., layouts of building, roads and 

landscapes; colors and textures of large-scale objects).  

Furthermore, the user is provided with high-level controls 

over the features of the virtual world.   

For example, the software begins with a procedural 

generation algorithm for roadways (described in [35]).  The 

designer can control features of the topology of the road 

network (e.g., “organic”, “raster”, “radial”, or 

combinations).  Once a street network is generated, the 

intervening space is randomly populated with structures 

(e.g., buildings, trees, landscapes, etc.).  The designer can 

control the qualities of these objects using a combination of 

(i) libraries of object models and textures (easily 

customized if desired), and (ii) computer-generated 

Architecture (CGA) scripts (described in [36]).   

We altered the CGA files to generate virtual worlds with 

desired geographic extent.  We then developed Python 

https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview
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scripts that communicate through a built-in CityEngine API 

to systematically move a simulated camera around the 

virtual world and take overhead photographs at regular 

spatial intervals.  Our software also controls the camera 

height and field-of-view to obtain the proper resolution 

(approx. 0.3m/pixel).   

3.2. Synthinel-1 dataset details 

Although it is possible to design a virtual world with 

specific characteristics (e.g., to mimic a real-world city, or 

style), we began by leveraging pre-defined city “styles” that 

are freely available online.  This is simpler, and we 

reasoned (if it worked) it would serve as an excellent 

baseline for more sophisticated approaches.  We identified 

nine candidate styles to explore first, based on our 

subjective assessment of their realism. These styles are 

presented in Fig. 2, and comprise the full Synthinel-1 dataset.  

We extracted 2,108 synthetic images with corresponding 

ground truth imagery, using the procedure described in 

Section 3.1. Each synthetic image is 572×572 pixels in 

size, with a resolution 0.3m/pixel.  Our total pool of 

synthetic imagery is constructed from equal quantities of 

image patches from each of the nine styles illustrated in Fig. 

2. We will release Synthinel-1 with the publication of this 

work.   

The Synth-1 subset. For most experiments, unless 

otherwise stated, we use a subset of the full Synthinel-1 

imagery composed of the following six styles: {a, b, c, g, h, 

i}. We refer to this as Synth-1. These styles were chosen 

based upon ablation studies in Section 6.1. The total 

number of images in Syn-1 is 1,640, or approximately 47 

km2 of labeled synthetic imagery.   

 

3.3. Costs and time: real-world versus synthetic  

In this section we compare real and synthetic imagery on 

two characteristics: the price of (i) acquiring imagery and 

(ii) annotation, respectively; comparing, for real and 

synthetic satellite imagery, respectively.  The cost of 

satellite imagery can vary substantial, depending upon 

many factors: spatial resolution, geographic coverage, its 

age, level of preprocessing by the vendor, and more. 

However, archived (i.e., ≥3 month old) color imagery at 

0.3m/pixel (i.e., a popular resolution, used in this work) 

from an imagery vendor encompassing a few municipal 

regions can cost on the order of tens of thousands of dollars, 

and in the millions for entire countries. By contrast, the 

marginal price for one additional square km of synthetic 

imagery is $0, once a commercial license to CityEngine is 

purchased at $2000 per year.  Many research institutions 

(e.g., universities) also have a site license, making it free to 

use for students and researchers there.  Therefore, even 

small quantities of real imagery greatly exceed the prices of 

synthetic imagery (using the approaches proposed here).   

Annotation is another major cost (time and money) 

associated with using real overhead imagery.  While 

synthetic imagery does not require any annotation – a major 

benefit – it still requires a software a designer to invest time 

designing features of the virtual world.  As a result, a 

precise comparison of the time associated with each 

approach is difficult to make. For example, a carefully 

designed virtual world, with highly customized features 

intended to maximize realism, will require substantially 

greater design time than one that largely utilizes default 

settings.  However, we hypothesize that designing a virtual 

world will generally require substantially less time than 

annotation, and we expect the advantage of synthetic 

imagery to grow as further research is conducted on its 

design.   Finally, we note that, once a virtual world is 

designed, it requires (approx.) 1 minute per square km of 

generated overhead synthetic imagery on standard 

hardware (an Intel(R) Core(TM) i7-7700HQ CPU@2.80 

GHz)  - negligible for most applications. 

4. Experimental design details 
In this section we first describe our default experimental 

design details. Particular details may vary in some 

experiments, and we will state this clearly where it occurs.  

4.1. Satellite imagery benchmark datasets   

Inria. The INRIA Aerial Image Labeling Challenge 

Dataset [7] is a popular recent benchmark dataset for 

building footprint segmentation.  This dataset features RGB 

aerial imagery collected over ten cities across the U.S. and 

Europe.  A total of 36 images were captured over each city, 

at a resolution of 0.3m.  Each of the 36 images encompasses 

2.25 km2 resulting in 81km2 of labeled imagery for each 

city.  The ground truth for five of the cities is used as a 

benchmark performance metric (e.g., see [4]) and therefore 

 

 
Fig. 2. An illustration of the nine different virtual city styles that 

we use. (a) Red roof style; (b) Paris’ buildings style; (c) ancient 

building style; (d) sci-fi city style; (e) Chinese palace style;(f) 

Damaged city style (g) Austin city style; (h) Venice style; (i) 

modern city style. 
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it is not public. Therefore we conduct our experiments on 

the remaining five cities with publicly-available labels: 

Austin, Chicago, Kitsap, Western Tyrol, and Vienna.   

DeepGlobe (DG).  The DG dataset [5] is another popular 

benchmark recently utilized for a road and building 

footprint segmentation competition at CVPR 2018 [5].  The 

DG dataset features varying quantities of 0.3m imagery 

collected over four cities across the world: Shanghai, China 

(133 km2) ; Khartoum, Sudan (29 km2) ; Las Vegas, 

U.S.A. (113km2); and Paris, France (33km2) .   

4.2. Benchmark segmentation networks 

For our experiments we consider two segmentation 

network architectures: U-net and DeepLabV3.  There are 

(at least) two general architectures for segmentation: the 

encoder-decoder structure, and the feature pyramid 

structure. U-net and DeepLabV3 represent a popular 

version of each network architecture.  The U-net was 

originally proposed for medical image segmentation [21], 

and has since become popular for segmentation of remote 

sensing imagery as well [4].  We use a modified version of 

the U-net model and training procedure that recently 

achieved the highest accuracy on the Inria benchmark 

competition [4], [37]. The DeepLabV3 model, and its 

variants, have recently achieved state-of-the-art 

performance on the segmentation of street view scenes [26].   

4.3. Network training details 

Our networks are implemented in TensorFlow using the 

Adam optimizer to minimize a cross-entropy loss between 

the pixel-wise ground truth and predictions in each input 

patch. We train all networks for 80,000 mini-batch 

iterations with a batch size of seven. We found a batch size 

of seven to yield the best performance on real-world 

imagery, for both the U-net and DeepLabV3 models.   

Without synthetic imagery: We use learning rates of 

5e-5 and 1e-4 for the DeepLabV3 and U-net models, 

respectively.  In contrast to DeepLabV3, the U-net does not 

have a pre-trained encoder, and therefore we found it 

performed best (training solely on real imagery) using a 

higher learning rate.  For both networks we drop the 

learning rate by one order of magnitude after 50,000 

iterations of training.  

With synthetic imagery added:  We employ a two-

stage training procedure when using synthetic imagery.  

First we train using the mixed-batch training procedure 

previously employed for leveraging synthetic imagery in 

[10].  We again use a batch size of seven, but each batch 

contains six real images, and one synthetic image.  In a 

second stage the model is fine-tuned on only the available 

real imagery for an additional 50,000 iterations using a 

reduced learning rate of 2e-5. 

5. Benchmark testing with Synthinel-1  
For these experiments we use the datasets, models, and 

training procedures described in Section 4. In these 

experiments we aim to evaluate two qualities of the 

synthetic imagery: within-sample and out-of-sample testing. 

The details and motives for these two data handling 

schemes is presented next (Section 5.1). 

5.1. Data handling and performance metrics 

We split the Inria and DG datasets into two disjoint 

subsets, as illustrated in Fig. 3.  Following the guidance 

from the Inria authors[7], we use the first 5 tiles of each 

Inria city for testing (14%), and the remaining imagery for 

training (86%).  For DG we used 60% of the imagery for 

training, and the remaining imagery for testing.  All 

performance measures throughout the paper are computed 

on the same two testing subsets of the DG and Inria 

imagery. Synthetic imagery is only included for training 

models, in conjunction with real imagery (as opposed to 

testing).  We use the intersection-over-union (IoU) metric 

for evaluating the performance of all trained models, 

following recent building segmentation studies [4], [5].  

We have two goals with our data handling scheme.  The 

first is to maintain constant testing datasets, so that we can 

isolate the impact of changes in the training strategy, and 

especially the inclusion of synthetic imagery.  The second 

goal is to understand the impact of synthetic imagery when 

the trained model is evaluated on a novel imagery domain 

(i.e., imagery collected under novel imaging conditions, or 

at a new geographic location) with respect to the training 

imagery, versus a similar domain.   Within-domain testing 

has historically been popular in the literature [6], [17], [38], 

but recent results [7], [8] indicate that the accuracy of deep 

learning models drops substantially when applied to novel 

data - a more challenging scenario, but arguably much more 

important for real-world application.   

We propose to address these questions by training every 

model on just one of our two available real-world 

benchmark datasets, but evaluating them on both.  When 

training with Inria, we use 14% of the training imagery (5 

tiles) for validation.  When training with DG, we use 10% 

of the training imagery for validation. 

 

5.2. Testing on the training cities (within-domain) 

 The results of within-domain testing are presented in 

Table 1.   In this case Synth-1 was beneficial in three of the 

four experiments with an average +0.4% improvement.  

 
Fig. 3. Illustration of data handling for all experiments.   
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These results are unsurprising, since the models were tested 

on highly similar imagery – the testing tiles were sampled 

randomly from the total available imagery.  These results 

are notable however because they indicate that Synth-1 is 

not detrimental even when the target domain is already 

highly similar to the training imagery – so in practice there 

is little risk to using Synth-1.   

 

 

5.3. Testing on previously unseen cities (out-of-domain) 

The results of out-of-domain testing are presented in 

Table 2, indicating that the addition of Synth-1 always 

improves performance.  The improvements are more 

substantial, ranging from 4.0% to nearly 20%, with an 

average of 9%. These results suggest that Synth-1 aids the 

models with generalization to novel imagery, collected 

under different conditions, or in different locations. 

 

   
These results are especially compelling because Synth-1 

is raw synthetic imagery – recent techniques for domain 

adaptation and style transfer have been used to improve the 

utility of synthetic imagery, and could likely be adapted 

here to substantially improve the value of the synthetic 

imagery. Furthermore, a more systematic exploration of 

styles and imaging conditions of the synthetic imagery 

(e.g., lighting angles, intensity, and camera angles) could 

yield further improvements as well. 

 

 
Comparing the results in Table 2 and Table 1, we also see 

that there is a substantial performance loss when models are 

tested on a new domain, corroborating recent evidence [7], 

[8] that this is a problem.  The results here indicate that 

synthetic imagery may be a viable avenue to help overcome 

this practical challenge, acting as a complement to other 

techniques for visual domain adaptation [11], [39]. 

In Fig. 4 we presents examples of predictions made by 

DeepLabV3 for the DG → Inria scenario (Table 5), 

providing qualitative examples of cases when the benefits 

of the synthetic imagery.  

5.4. Why is Synthinel-1 helpful: domain matching, or 

domain confusion?  

Here we stratify the results in Section 5.3 by city, and 

investigate whether the addition of Synth-1 is beneficial for 

performance on particular cities, or it tends to improve 

performance across all real-world cities.  The results for DG 

and Inria are presented in Tables 3 and 4, respectively.  The 

results indicate that, while there are variations in the degree 

of performance improvement across cities, there appears to 

be no strong bias in favor of one city.   We hypothesize 

therefore that the benefits of Synth-1 are most similar to 

those of domain randomization[12], [13], in which models 

are improved by presenting them with synthetic data 

exhibiting diverse and possibly unrealistic visual features.    

 

 
In contrast, our virtual cities could provide the model 

with styles of cities that are present in some of the 

benchmark data – an effect we term as domain matching.  

Table 1: Training and testing on the same geographic locations. 

Results (intersection-over-union) of segmentation on popular 

building segmentation benchmark datasets.   

Model 
Scenario 

(train->test) 
Add  

Synth-1? 
IoU 

% IoU 
Change 

U
-n

et
 

DG→DG Yes 0.682 
-0.6% 

DG→DG No 0.686 

Inria→Inria Yes 0.692 
0.3% 

Inria→Inria No 0.690 

D
ee

p
La

b
V

3
 

DG→DG Yes 0.767 
0.6% 

DG→DG No 0.762 

Inria→Inria Yes 0.730 
1.1% 

Inria→Inria No 0.722 

 

Table 2: Training and testing on different geographic locations. 

Results (intersection-over-union) of segmentation on popular 

building segmentation benchmark datasets. 

Model 
Scenario 

(train->test) 
Add  

Synth-1? 
IoU 

% IoU 
Change 

U
-n

et
 

DG→Inria Yes 0.529 
6.8% 

DG→Inria No 0.495 

Inria→DG Yes 0.247 
19.9% 

Inria→DG No 0.206 

D
ee

p
La

b
V

3
 

DG→Inria Yes 0.624 
4.0% 

DG→Inria No 0.600 

Inria→DG Yes 0.404 
6.6% 

Inria→DG No 0.379 

 

 
Fig. 4. Examples of predictions made by the DeepLabV3 model    

before, and after, the inclusion of synthetic imagery in training.  

Three examples are shown along the rows, illustrating diverse 

geographic locations.  

 

Table 3: City-wise performance (IoU) when evaluating 

DeepLabV3 in the DG→Inria scenario. 

Training 
data 

DeepGlobe testing city 

Vegas Shanghai Paris Khartoum 

DG+Synth-1 0.633 0.365 0.477 0.268 

DG 0.598 0.155 0.396 0.072 
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This would allow the model to learn the particular textures 

and colors of the buildings in the particular target cities of 

interest, but would not necessarily lead to a more robust 

model overall.  In this case we would expect to see strong 

performance improvements on particular cities, rather than 

a consistent improvement across all real cities.   

 

 

5.5. Blind testing on an additional benchmark  

In an effort to further validate Synth-1, we evaluated the 

models that were trained on DG and Inria in Section 5.3 on 

the ISPRS benchmark (2016) [17] for multiclass 

segmentation. We used the models, as is, with no 

optimization, and applied blindly to ISPRS.  In the ISPRS 

dataset we treated all ground truth object classes as a single 

background class, except for the building class.  We also 

resampled the imagery to match the resolution of DG and 

Inria. The results are presented in Table 5, and indicate that 

Synth-1 provides large performance improvements three of 

the four cases.   In the one case it failed (U-net trained on 

DG), the performance of the U-net was already extremely 

low (IoU=0.15), suggesting that the models are making 

highly random predictions, and the performance variations 

across the two models may be dominated by factors other 

than their ability to recognize buildings (e.g., a 

larger/smaller prior of predictions in favor of one class). 

 

 

6. Additional analysis  
In this section we provide some further analysis of the 

properties of overhead SI, using the Synth-1 dataset. 

6.1. Ablation and training optimization studies 

In this section we systematically vary different 

characteristics of the Synth-1 dataset, as well as our training 

procedure, and evaluate their impact.  All of these 

experiments were conducted using the DeepLabV3 model 

with the 𝐷𝐺 → 𝐼𝑛𝑟𝑖𝑎 scenario.  Due to space limitations, 

we summarize the findings here, but the full experimental 

results can be found in the supplementary material: 

 City styles in Synth-1: We could not exhaustively 

explore the impact of including/excluding all 

combinations of city styles in Synth-1, so we 

incrementally removed city styles and evaluated its 

impact on performance.  Based on these experiments 

we found styles {a, b, c, g, h, i} yielded the best results.    

 Training with synthetic imagery: We explored two 

recent strategies from the literature for training with 

synthetic imagery: Mixed-batch (MB) [10], Balanced 

Gradient Contribution (BCG) [9].  For MB we varied 

the mini-batch ratio and for BCG we varied the weights 

assigned to real and synthetic imagery, respectively.  

We found MB training with a batch ratio of 6:1 

(real:synthetic) yielded the best results.   

 Fine-tuning on real data:  We considered fine-tuning 

on real data as a second stage of training, following 

joint training (i.e., mixed-batch training) using both 

synthetic and real imagery.  We found fine-tuning was 

consistently beneficial. 

Through this exploration we improved the performance of 

models using Synth-1, but we note that Synth-1 was usually 

beneficial, even without optimal settings.  

6.2. The impact of the quantity of synthetic imagery 

In this section we varied the quantity of either real and 

SI, separately, and evaluated its impact on the performance 

of the models.  Once again we use the DeepLabV3 model 

and the DG→Inria scenario.  In Fig. 5 we gradually reduce 

the size of the Synth-1 dataset by randomly sampling and 

removing tiles from it.  

 
The results indicate that performance saturates at a size 

of 70-80% of the Synth-1 size.  This suggests that, given 

our current approach for randomly generating imagery, 

there is little additional benefit beyond roughly 6 𝑘𝑚2 of 

imagery (~80% total available) from each style of virtual 

Table 4: City-wise performance (IoU) when evaluating 

DeepLabV3 in the Inria→DG scenario.  

Training data 
Inria testing city 

Austin Chicago Kitsap Tyrol-w Vienna 

Inria+Synth-1 0.602 0.580 0.573 0.640 0.690 

Inria 0.582 0.548 0.565 0.600 0.670 

 

Table 5: Results (intersection-over-union) of blind segmentation 

of buildings on the ISPRS benchmark.  

Model 
Scenario 

(train->test) 
Add  

Synth-1? 
IoU 

% IoU 
Change 

U
-n

et
 

DG→ISPRS Yes 0.133 
-13.6% 

DG→ISPRS No 0.154 

Inria→ISPRS Yes 0.477 
+6% 

Inria→ISPRS No 0.450 

D
ee

p
La

b
V

3
 

DG→ISPRS Yes 0.683 
+1.3% 

DG→ISPRS No 0.674 

Inria→ ISPRS Yes 0.635 
+9.3% 

Inria→ISPRS No 0.581 

 

 
Fig. 5. Performance (IoU) versus the quantity of unique 

synthetic imagery available.   
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city.   Introduction of further sources of randomness (e.g., 

additional building shapes, sizes, background scenery) 

could however result in the need for larger areas of imagery 

for each individual style.   

7. Conclusions and future work 
Conclusions. In this work we explored the use of 

synthetic overhead imagery for training deep learning 

models for segmentation in overhead imagery.  We 

developed software tools for rapidly generating synthetic 

overhead imagery, and used the tools to generate a set of 

overhead imagery, termed Synthinel-1, that we release with 

this publication.  We further demonstrated that Synth-1 (a 

subset of Synthinel-1) can be used to augment real satellite 

imagery to improve the performance of building 

segmentation models, especially on novel imagery that was 

not present in the training dataset.   

To our knowledge, we are the first to produce any of the 

aforementioned results for overhead synthetic imagery. 

This work thereby provides researchers with the first well-

validated baseline process for generating useful overhead 

imagery: a process that requires numerous steps and non-

obvious design choices. This establishes an important 

foundation on which many additional lines of future work 

can be built (see Section 7). 

Potential future work.  There are many potential 

avenues to improve and expand upon the work presented 

here. We began here with building segmentation due to its 

popularity, but these approaches can easily be extended to 

other tasks (e.g., object detection) and objects (e.g., roads, 

vehicles, vegetation, etc.).  Another important avenue of 

exploration is the introduction of variability in the lighting 

conditions, camera angle, image resolution, and other 

factors that are extremely difficult to obtain in real-world 

imagery, but easily be introduced with synthetic imagery.  

We did not provide a systematic investigation of these 

factors here. Another important avenue of subsequent work 

is applying more recent and sophisticated forms of domain 

adaptation (e.g., [11]) to further improve the utility of 

Synth-1.   
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