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Abstract

We present an audio-visual multimodal approach for the
task of zeroshot learning (ZSL) for classification and re-
trieval of videos. ZSL has been studied extensively in the
recent past but has primarily been limited to visual modal-
ity and to images. We demonstrate that both audio and
visual modalities are important for ZSL for videos. Since
a dataset to study the task is currently not available, we
also construct an appropriate multimodal dataset with 33
classes containing 156, 416 videos, from an existing large
scale audio event dataset. We empirically show that the per-
formance improves by adding audio modality for both tasks
of zeroshot classification and retrieval, when using multi-
modal extensions of embedding learning methods. We also
propose a novel method to predict the ‘dominant’ modal-
ity using a jointly learned modality attention network. We
learn the attention in a semi-supervised setting and thus do
not require any additional explicit labelling for the modali-
ties. We provide qualitative validation of the modality spe-
cific attention, which also successfully generalizes to un-
seen test classes.

1. Introduction
Zeroshot learning (ZSL) refers to the setting when test

time data comes from classes that were not seen during
training. In the past few years, ZSL for classification has
received significant attention [1–9] due to the challenging
nature of the problem, and its relevance to real world set-
tings, where a trained model deployed in the field may en-
counter classes for which no examples were available dur-
ing training. Initially, ZSL was proposed and studied in the
setting where the test examples were from unseen classes
and were classified into one of the unseen classes only [6].
This however is an artificial/controlled setting. More re-
cent ZSL works thus focus on a setting where unseen test
examples are classified into both seen and unseen classes
[2, 9, 10]. The present work follows the latter setting known
as the Generalized ZSL.

The majority of work involving generalized ZSL [3, 10]
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Figure 1. Illustration of the proposed method. We jointly embed
all videos, audios and text labels into the same embedding space.
We learn the space such that the corresponding embedding vec-
tors for the same classes have lower distances than those of differ-
ent classes. Once embeddings are learned, ZSL classification and
crossmodal retrieval can be posed as a nearest neighbor search in
the embedding space.

has (i) worked with images, and (ii) used only visual repre-
sentations along with text embeddings of the classes. When
dealing with images, this is optimal. However, for the task
of video ZSL, the audio modality, if available, may help
with the task by providing complementary information. Ig-
noring the audio modality completely might even render
an otherwise easy classification task difficult, eg. if we are
looking to classify an example from the ‘dog’ class, the dog
might be highly occluded and not properly visible in the
video, but the barking sound might be prominent.

In this work, we study the problem of ZSL for videos
with general classes like, ‘dog’, ‘sewing machine’, ‘ambu-
lance’, ‘camera’, ‘rain’, and propose to use audio modality
in addition to the visual modality. ZSL for videos is rela-
tively less studied, cf. ZSL for images. There are several
works on video ZSL for the specific task of human action
recognition [11–13] but they ignored the audio modality as
well. Our focus here is on leveraging both audio and video
modalities to learn a joint projection space for audio, video
and text (class labels). In such an embedding space, ZSL
tasks can be formulated as nearest neighbor searches (fig. 1
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illustrates the point). When doing classification, a new test
video is embedded into the space and the nearest class em-
bedding is predicted to be its class. Similarly, when doing
retrieval, the nearest video or audio embeddings are pre-
dicted to be its semantic retrieval outputs.

We propose cross-modal extensions of the embedding-
based ZSL approach based on triplet loss for learning such
a joint embedding space. We optimize an objective based
on (i) two cross-modal triplet losses, one each for ensuring
compatibility between the text (class labels) and the video,
and the text and the audio, and (ii) another loss based on
crossmodal compatibility of the audio and visual embed-
dings. While the triplet losses encourage the audio and
video embeddings to come closer to respective class em-
beddings in the common space, the audio-visual crossmodal
loss encourages the audio and video embeddings from the
same sample to be similar. These losses together ensure
that the three embeddings of the same class are closer to
each other relative to their distance from those of differ-
ent classes. The crossmodal loss term is an `2 loss, and
uses paired audio-video data, the annotation being trivially
available from the videos. While the text-audio and text-
video triplet losses use class annotations available for the
seen classes during training, the crossmodal term uses the
trivial constraint that audio and video from the same exam-
ple are similar.

As another contribution, we also propose a modality at-
tention based extension, which first seeks to identify the
‘dominant’ modality and then makes a decision based on
that modality only if possible. To clarify our intuition of
‘dominant’, we refer back to the dog video example above,
where the dog may be occluded but barking is prominent. In
this case, we would like the audio modality to be predicted
as dominant, and subsequently be used to make the class
prediction. In case the attention network is not able to de-
cide a clear dominant modality the inference then continues
using both the modalities. This leads to a more interpretable
model which can also indicate which modality it is basing
its decision on. Furthermore, we show empirically that us-
ing such attention learning improves the performance, and
brings it to be competitive to model trained on a concatena-
tion of both modality features.

A suitable dataset was not available for the task of audio-
visual ZSL. Hence, we construct a multimodal dataset with
class level annotations. The dataset is a subset of a recently
published large scale dataset, called Audioset [14], which
was primarily created for audio event detection and main-
tains a comprehensive sound vocabulary. We subsample the
dataset to allow studying the task of audiovisual ZSL in a
controlled setup. In particular, the subsampling ensures that
(i) the classes have relatively high number of examples, with
the minimum number of examples in any class being 292,
(ii) the classes belong to diverse groups, eg. animals, vehi-

cles, weather events, (ii) the set of unseen classes is such
that the pre-trained video networks could be used without
violating the zeroshot condition, ie. the pre-training did not
involve classes close to the unseen classes in our dataset.
We provide more details in sec. 4.

In summary, our contributions are as follows. (i) We in-
troduce the problem of audiovisual ZSL for videos, (ii) we
construct a suitable dataset to study the task, (iii) we pro-
pose a multimodal embedding based ZSL method for classi-
fication and crossmodal retrieval, (iv) we propose a modal-
ity attention based method, which indicates which modality
is dominant and was used to make the decision. We thor-
oughly evaluate our method on the dataset and show that
considering audio modality, whenever appropriate, helps
video ZSL tasks. We also show our method on standard
ZSL datasets and results for some existing ZSL approaches
for single-modality in our dataset as well. We also present
qualitative results highlighting the improved cases using the
proposed methods.

2. Related Work
Zeroshot learning.

ZSL has been quite popular for image classification [1–
9, 15–17], and recently has been used for object detection
in images as well [18–20]. The problem has been often ad-
dressed as a task of embedding learning, where the images
and their class labels are embedded in a common space. The
two types of class embeddings commonly used in the liter-
ature are based on (i) attributes like shape, color, and pose
[2, 5, 6, 9], and (ii) semantic word embeddings [2, 4, 7, 9].
Few works have also used both the embeddings together
[1, 8, 16]. Different from embedding learning, few recent
works [2, 9] have proposed to generate the data for the un-
seen class using a generative approach conditioned on the
attribute vectors. The classifiers are then learned using the
original data for the seen classes and the generated data for
the unseen classes. This line of work follows the recent
success of image generation methods [21, 22]. The initially-
studied setting in ZSL refers to the one where the test exam-
ples were classified into unseen test classes only [6]. How-
ever, more recently the generalized version was proposed
where they are classified into both seen and unseen classes
[3]. We address this later more practical, setting1.

Work on ZSL involving audio modality is scarce. We are
aware of only one very recent work, where the idea of ZSL
has been used to recognize unseen phonemes for multilin-
gual speech recognition [23].
Audiovisual learning. In the last few years, there has been
a significant growth in research efforts that leverage infor-
mation from audio modality to aid visual learning tasks and

1Some earlier video retrieval works were called zeroshot, however, they
are not strictly zeroshot in the current sense. Kindly see Supplementary
material for a detailed discussion
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vice-versa. Audio modality has been exploited for applica-
tions such as, audiovisual correspondence learning [24–27],
audiovisual source separation [28, 29] and source localiza-
tion [30–32]. Among the representative works, Owens et
al. [25] used CNNs to predict, in a self-supervised way, if a
given pair of audio and video clip is temporally aligned or
not. The learned representations are subsequently used to
perform sound source localization, and audio-visual action
recognition. In a task of crossmodal biometric matching,
Nagrani et al. [33] proposed to match a given voice sam-
ple against two or more faces. Arandjelovic et al. [30] in-
troduced the task of audio-visual correspondence learning,
where a network comprising visual and audio subnetworks
was trained to learn semantic correspondence between au-
dio and visual data. Along the similar lines, Arandjelovic
et al. [26] and Sencoak et al. [32] investigated the prob-
lem of localizing objects in an image corresponding to a
sound input. Gao et al. [29] proposed a multi-instance
multilabel learning framework to address the audiovisual
source separation problem, where they extract different au-
dio components and associate them with the visual objects
in a video. Ephrat et al. [34] proposed a join audiovisual
model to address the classical cocktail party problem (blind
speech source separation). Zhao et al. [28] proposed a self-
supervised learning framework to address the problem of
pixel-level (audio) source localization [35].

3. Coordinated Joint Multimodal Embeddings
We now present our method in detail. Fig. 1 illustrates

the basic idea and Fig. 2 gives the high level block diagram
of the proposed method. Our method works by projecting
all three inputs, audio, video and text, onto a common em-
bedding space such that class constraints and crossmodal
similarity constraints are satisfied. The class constraints
are enforced using bimodal triplet losses between audio and
text, and video and text embeddings. Denoting ai,vi, ti
as the audio, video and text embedding (we explain how we
obtain them shortly) for an example i, we define the bimodal
triplet losses as follows

LTA(ap, tp,aq, tq) = [d(ap, tp)− d(aq, tp) + δ]+ (1)

LTV (vp, tp,vq, tq) = [d(vp, tp)− d(vq, tp) + δ]+ (2)

where, (ap,vp, tp) and (aq,vq, tq) are two example videos
with tp 6= tq . These losses force the audio and video em-
beddings to be closer to the correct class embedding by a
margin δ > 0 cf. the incorrect class embeddings.

We also use a third loss to ensure the crossmodal simi-
larity between the audio-video streams that come from the
same video in the common embedding space. This loss is
simply a `2 loss given by

LAV (ap,vp) = ‖ap − vp‖22. (3)

‘dog’: label for second example

second class example video and audio

first class example video and audio

‘cat’: label for first example

spectrogram

spectrogram

Figure 2. Block diagram of the proposed approach. Pairs of video,
audio and text networks share weights.

The full loss function is thus a weighted average of these
three losses.

L = λ
∑
p∈T
LAV + γ

∑
p,q∈T
yp 6=yq

{αvLTV + αaLTA} , (4)

where, λ, γ, αv, αa are the hyperparameters that control the
contributions of the different terms, and T is the index set
over the training examples {(ai,vi, yi)|i = 1, . . . , N} with
yi being the class label. With these three losses over all pair-
wise combinations of the modalities, ie. LTV ,LTA,LAV ,
we force the embeddings from all the three modalities to re-
spect the class memberships and similarities.

Representations and parameters. We now need to specify
the parameters over which these losses are optimized. We
represent each of the three types of inputs, ie. audio, video,
and text, using the corresponding state-of-the-art neural net-
works outputs which we denote as fa(·), fv(·), ft(·). We
project each representation with corresponding neural net-
works which are small MLPs, denoted as ga(·), gv(·), gt(·)
with parameters θa, θv, θt (we give details about all these
networks in the implementation details sec. 5). Finally,
the representations are obtained by passing the input au-
dio/video/text through the corresponding networks sequen-
tially, ie. x = gx ◦ fx(X) where x ∈ a,v, t and X is the
corresponding raw audio/video/text input. We keep the ini-
tial network parameters fixed to be that of the pretrained
networks and optimize over the parameters of the projec-
tion networks. Hence, the full optimization is given as,

θ∗a, θ
∗
v , θ
∗
t = argmin

θa,θv,θt

L(T ). (5)

We train for the parameters using standard backpropagation
for neural networks.
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Inference. Once the model has been learned, we use nearest
neighbor in the embedding space for making predictions. In
the case of classification, the audio and video are embedded
in the space and the class embedding with the minimum
average distance with them is taken as the prediction, ie.

t∗ = argmin
t
{d(a, t) + d(v, t)} . (6)

In the case of (crossmodal) retrieval, the sorted list of audio
or video examples are returned as the result, based on their
distance from the query in the embedding space.

Modality attention based learning. In the prequel, the
method learns to make a prediction (classification or re-
trieval) using both the audio as well as video modalities. We
augment our method to predict modality attention to find
the dominant modality for each sample, eg. in case when
the object is occluded or not visible, but the characteristic
sound is clearly present we want the network to be able to
make the decision based on the audio modality only. We in-
corporate such attention by adding a attention predictor net-
work fattn(·), with parameters θattn, which takes the con-
catenated audio and video features as inputs and predicts
a scalar α which gives us the relative importance weights
αv = α, αa = 1 − α in eq. 4. All the network parameters
are then learned jointly.

To further guide the attention network, we use the intu-
ition that when one modality is dominant, say audio, the
correct class embedding is expected to be much closer to
the audio embedding, than the other classes cf. the video
embedding. Hence the entropy of the prediction probability
distribution over classes, for the dominant modality, should
be very low. To compute such distribution, we first com-
pute the inverse of the distances of the query embedding
to all the class embeddings, and then `1 normalize the vec-
tor. We then derive a supervisory signal for α using the en-
tropies computed w.r.t. audio and video modalities, denoted
ea, ev ∈ [0, logNc] where Nc is the number of classes over
which prediction is being done, as

α =

 0, if ev < ea − ξ
1, if ea < ev − ξ
0.5, otherwise

(7)

where, ξ > 0 is a threshold parameter for preferring one
of the modalities based on their entropy difference. The
modality attention objective becomes,Lattn = L+LCE−α,
where L is the objective from eq. 4, LCE−α is the cross en-
tropy loss on α based on the generated supervision above.
This loss is then minimized jointly over all θa, θv, θt, θattn.

Modality selective inference with attention. While atten-
tion is interesting at training as it helps identify the domi-
nant modality and learn better models. We also use attention

to make inference using only the predicted dominant modal-
ity at test time. When the predicted attention is higher than
a threshold for one of the modalities we only compute dis-
tance for that modality in the embedding space and use that
to make the prediction.

We could also use the above computed α value based
on the difference of entropies of the prediction distributions
(eq. 7) at test time, even when not training with modality
attention. We use that as a baseline to verify that learning to
predict the attention helps improve the performance.

Calibrated stacking in generalized ZSL (GZSL). The
common problem with GZSL setting is that the classifier
is always biased to wards the seen classes. This reduces the
performance for the unseen classes as the unseen examples
are often misclassified to one of the seen classes. A sim-
ple approach to handle this was proposed in [3], where the
authors suggested to reduce the scores for the seen classes.
The amount β by which the scores are additively reduced
for the seen classes, is a parameter which needs to be tuned.
We use the approach of calibrated stacking, and as we are
working with distances instead of similarities, we use the
modified prediction rule at inference, given by

t∗ = argmin
t,c∈{S+U}

{dc(x, t) + βI(c ∈ S)} , (8)

where, x can be audio, video or concatenated feature, I is
the indicator function which is 1 when the input condition
is true and 0 otherwise.

4. Proposed AudioSet ZSL Dataset
A large scale audio dataset, AudioSet [14], was recently

released containing segments from in-the-wild YouTube
videos (with audio). These videos are weakly annotated
with different types of audio events ranging from human
and animal sounds to musical instruments and environmen-
tal sound. In total, there are 527 audio events, and each
video segment is annotated with multiple labels.

The original dataset being highly diverse and rich, is of-
ten used in parts to address specific tasks [29, 36].

To study the task of audiovisual ZSL, we construct a
subset of the Audioset containing 156416 video segments.
We refer to this subset as the AudioSetZSL. While the
original dataset was multilabel, the example videos were
selected such that every video in AudioSetZSL has only
one label, ie. it is a multiclass dataset. Fig. 3 shows the num-
ber of examples for different classes in AudioSetZSL,
tab. 8 gives some statistics.

We follow the steps below to create the AudioSetZSL:
(i) We remove classes with confidence score (for annotation
quality) less than 0.7, (ii) we then determine the group of
classes that are semantically similar, e.g. animals, vehicles,
water bodies. We do so to ensure that the seen and unseen

4



2k 4k 6k 8k 10k
cashbox

thunderstorm
camera

hammer
panther*

clock*
sawing

fan*
cattle

pig*
church-bell*

boom
sewing

goat
rain

stream*
bicycle

fireworks
skateboard

horse
ocean

printer*
cat

gunshot*
ambulance

bus*
aircraft*

motorcycle
train
truck

Figure 3. Distribution of the different classes in AudioSetZSL.
Apart from these three other classes included in the dataset are
dog, bird and car containing 12646, 25153 and 38315 examples.
The unseen classes are appended with a ‘*’.

min max mean std. dev.
292 38315 4739.88 7693.10

Table 1. Statistics on the number of examples per class for the
AudioSetZSL dataset.

classes for ZSL have some similarities and the task is feasi-
ble with the dataset. (iii) After selecting the classes, we dis-
card highly correlated classes within those groups to have
a challenging dataset, obtaining 33 classes. (iv) We then
remove the examples which correspond to more than one
of the 33 classes to keep the dataset multiclass. We then re-
move the examples that are no longer available on YouTube.
Tab. 8 and Fig. 3 give some statistics and more details are
in the supplementary document.

To create the seen, unseen splits for ZSL tasks, we se-
lected a total of 10 classes spanning all the groups as the
zero-shot classes (marked with ‘*’ in Fig. 3). We ensure that
the unseen classes have minimal overlap with the Kinetics
dataset [37] training classes as we use CNNs pre-trained
on that. We do so by not choosing any class whose class
embedding similarity is greater than 0.8 with any of the Ki-
netics train class embeddings in the word2vec space.

We finally split, both the seen and unseen classes, as
60− 20− 20 into train, validation and test sets. We set the
protocol to be as follows. Train on the train classes and then
test on seen class examples and unseen class examples, both
being classified into one of all the classes. The performance
measure is mean class accuracies for seen classes and un-
seen classes and the harmonic mean of these two values,
following that in image based ZSL work [10].

5. Experiments

Implementation details The audio network fa(·) is based
on that of [38], and is trained on the spectrogram of the

audio clips in the train set of our dataset. We obtain the
audio features after seven conv layers of the network, and
average them to obtain 1024D vector. The video network,
denoted as fv(·) is an inflated 3D CNN network which is
pretrained on the Kinetics dataset [37] and a large video
dataset of action recognition. We also obtain the video fea-
tures form the layer before the classification layer and aver-
age them to get a vector of 1024D. Finally the text network,
denoted as ft(·) is the well known word2vec network pre-
trained on Wikipedia [39] with output dimension of 300D.

The projection model for text embeddings was fixed to
be a single layer network, where as for the audio and video
was fixed to be a two layer network, with the output di-
mensions matching for all. In order to find the seen/unseen
class bias parameter β we divide the maximum and min-
imum possible value of β into 25 equal intervals and then
evaluate performances on the val set. We chose the best per-
forming β among those.

Evaluation and performance metrics. We report the mean
class accuracy (% mAcc) for the classification task and the
mean average precision (% mAP) for the retrieval tasks.
The performance for the seen classes (denoted as S) is clas-
sified (retrieved) over all the classes (seen and unseen), and
that for the unseen classes (denoted as U) are also reported.
The harmonic mean HM of S and U indicates how well the
system performs on both seen and unseen categories on av-
erage. For classification, we classify each test example, and
for retrieval, we perform leave-one-out testing, ie. each test
example is considered as a query with the rest being the
gallery. The performance reported is (mean class) averaged.

Methods reported. We report performances of audio and
video only methods, ie. only the respective modality is used
to test and train. We also report a naive combination by
concatenation of features from audio and video modalities
before learning the projection to the common space. This
method allows zeroshot classification and retrieval only
when both the modalities are available, and it does not allow
crossmodal retrieval at all. We then report performances
with the proposed Coordinated Joint Multimodal Embed-
dings (CJME) method, when modality attention is used and
when it is not used. In either of the cases, we can choose
dominant modality (or not) based on the α value (eq. 7). We
report with both the cases.

We also compare our approach to two other baseline
methods, namely pre-trained features and GCCA. In ‘Pre-
trained’ method the raw features obtained from the individ-
ual modality pre-trained network are directly used for re-
trieval as both are of same dimensions. This can be consid-
ered as one of the lower bound since no common projection
is learned for the different modalities in this case. GCCA
[40] or Generalized Canonical Correlation Analysis is the
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Figure 4. Effect of classification performance for model M1 (left)
and model M2 (right) with different values of bias parameter.

Train Modality Test Modality S U HM
audio audio 28.35 18.35 22.22
CJME audio 25.58 20.30 22.64
video video 43.27 27.11 33.34
CJME video 41.53 28.76 33.99

both (concat) both 45.83 27.91 34.70
CJME both 30.29 31.30 30.79

CJME (no attn) audio or video 31.72 26.31 28.76
CJME (w/ attn) audio or video 41.07 29.58 34.39

Table 2. Zeroshot classification performances (% mAcc) achieved
with audio only, video only, and both audio and video used for
training and test. Note that the audio and video concatenation
model requires both the modalities to be available during testing.

standard extension of the Canonical Correlation Analysis
(CCA) method from two-set method to multi-set method,
where the correlation between the example pair from each
sets are maximized. We use here the GCCA to maximize
the correlation between all the three modalities (text, audio
and video) for every example triplet in the dataset.

5.1. Quantitative Evaluation

Evaluation of calibrated stacking performance. We have
shown the improvement in performance with the approach
of calibrated stacking in Fig. 4. This shows the perfor-
mances with different values of the bias parameter, ie. accu-
racies for seen and unseen classes, as well as their harmonic
means. We observe that the performance increases with the
initial increase in bias, and then falls after a certain point as
expected. We choose the best performing value of the class
bias on the val set and then fix it for the experiments on test
set.

Zeroshot audio-visual classification. Tab. 2 gives the
performances of the different models for the task of ze-
roshot classification. We make multiple observations here.
The video modality performs better than the audio modality
for the task (33.34 vs. 22.22 HM), which is interesting as the
original dataset was constructed for audio event detection.
We also observe that when both audio and video modalities
are used by simply concatenating the feature from the re-
spective pre-trained networks, the performance increases to
34.70. This shows that adding the audio modality is help-
ful for zeroshot classification. Our coordinated joint mul-
timodal embeddings (denoted CJME in the table) improves

Model Test S U HM
pre-trained T→ A 3.83 1.66 2.32
GCCA [40] T→ A 49.84 2.39 4.56

audio T→ A 43.16 3.34 6.20
CJME T→ A 48.24 3.32 6.21

pre-trained T→ V 3.83 2.53 3.05
GCCA [40] T→ V 57.67 3.54 6.67

video T→ V 48.62 5.25 9.47
CJME T→ V 59.39 5.55 10.15

both (concat) T→ AV 63.13 7.80 13.88
CJME T→ AV 65.45 5.40 9.97

CJME (no attn) T→ A or V 65.74 5.09 9.45
CJME (w/ attn) T→ A or V 62.97 5.67 10.41

Table 3. Zeroshot retrieval performances (% mAP) achieved by
models when audio only, video only, and both audio and video
modalities are used for training and test. Note that the audio and
video concatenation based model requires both modalities at test
time also and can not predict using any single one.

the performance of video and audio only models on the re-
spective test sets by modest but consistent margins. This
highlights the efficacy of the proposed method to learn joint
embeddings which are comparable (slightly better) than in-
dividually trained models.

The performance of the proposed method is lower with-
out attention learning and selective modality based test
time prediction cf. the concatenated input model (30.79 vs.
34.70), but is comparable to it when trained and tested with
attention (34.39). Also, when we do not train for atten-
tion but use selective modality based prediction the perfor-
mance falls (28.76). Both these comparisons validate that
the modality attention learning is an important addition to
the base multimodal embedding learning framework.

Zeroshot audio-visual retrieval. Table 3 compares the per-
formances of different models for the task of zeroshot re-
trieval. The performance on the unseen classes are quite
poor, albeit it is approximately three times the baseline pre-
trained performance. This is because of the bias towards
the seen classes in generalized ZSL. This happens for clas-
sification setting as well but is corrected for explicitly by
reducing the scores of the seen classes. However, in a re-
trieval scenario, since the class of the gallery set member is
not known in general, such correction can not be applied.
We tried classifying the gallery sets first and then apply-
ing the seen/unseen class bias correction, however that did
not improve results possibly because of erroneous classifi-
cations.

We observe, from Tab. 3, similar trends as with zeroshot
classification. The proposed CJME performs similar to
audio only (6.20 vs. 6.21) and slightly better than video
only (9.47 vs. 10.15) models but consistently outperforms
both pre-trained and GCCA model. Compared to the au-
dio and video features concatenated model, the performance
without modality attention based training are lower (13.88
vs. 9.47) which improve upon using attention at training
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Model Test S U HM
pre-trained audio→ video 3.61 2.37 2.86
GCCA [40] audio→ video 22.12 3.65 6.26

CJME audio→ video 26.87 4.31 7.43
pre-trained video→ audio 4.22 2.57 3.19
GCCA [40] video→ audio 26.68 2.98 5.26

CJME video→ audio 29.33 4.35 7.58
Table 4. Zeroshot crossmodal retrieval performances (% mAP).

LAV LTA LTV S U HM
7 7 3 1.26 10.13 2.24
7 3 7 3.00 4.18 3.49
7 3 3 31.20 28.47 29.77
3 7 3 30.39 27.31 28.76
3 3 7 30.07 25.06 27.33
3 3 3 33.29 28.18 30.53

Table 5. Ablation study to verify the contribution of different loss
terms. Performances for proposed CJME (with attention) method
on zeroshot classification (% mAcc)

(10.41), albeit staying a little lower cf. similar in the classi-
fication case. We thus conclude that CJME is as good as au-
dio only or video only model and is competitive cf. concate-
nated features model, while allowing crossmodal retrieval,
which we evaluate next.

Crossmodal retrieval. Since CJME learns to embed both
audio and video modality in a common space, it allows for
doing crossmodal retrieval from audio to video and vice-
versa. Tab. 4 gives the performances of such crossmodal
retrieval from audio and video domains. We observe that
the retrieval accuracy in the case of crossmodal retrieval are
7.43 and 7.58 for audio to video and video to audio respec-
tively. Due to the inability to do seen/unseen class bias cor-
rection, we observe a large gap between the retrieval perfor-
mance of seen classes cf. unseen classes, which stays true in
the case of crossmodal retrival as well. The performance is
still three times better than the raw pre-trained features. We
believe these are encouraging initial results on the challeng-
ing task of audio-visual crossmodal retrieval on real world
unconstrained videos in zeroshot setting.

Ablation of the different loss components. Tab. 5 gives
the performances in the different cases when we selectively
turn off different combination of losses in the optimization
objective eq. 4. We observe that all three losses contribute
positively towards the performance. When either of the
triplet loss is turned off, the performance drastically fall to
∼ 3, but when the crossmodal audio-video loss is added
with one of the triplet losses turned off, they recover to rea-
sonable values ∼ 28. Compared to the final performance
of 30.53, when the text-audio, text-video and audio-video
losses are turned off, the performances fall to 28.76, 27.33
and 29.77 respectively. Thus we conclude that each com-
ponent in the loss function is useful and that the networks
(which are already pre-trained on auxiliary classification
tasks) need to be trained for the current task to give mean-

ingful results.

5.2. Comparison with state of the art methods

We address both possible issues , i.e. (i) our imple-
mentation is competitive w.r.t. other methods on standard
datasets, and (ii) how do other methods compare on the pro-
posed audio-visual ZSL dataset, by providing additional re-
sults. Tab. 6 gives the performance of our implementation
on other datasets (existing method performances are taken
from Xian et al. [10]).

We observe that our method is competitive to other meth-
ods on an average. Tab. 7 gives the classification perfor-
mance of other methods using our features on the proposed
dataset. We see that our method performs better than many
existing methods (eg. ALE 33.0 vs. CJME 34.4). Hence we
conclude that our implementation and method, both, per-
form comparable to existing appearance based ZSL meth-
ods. Tab. 7 also shows that adding audio improves the video
only ZSL from 33.3 to 34.4 HM.

In these comparisons, we have not included some of
the recent generative approaches [2, 9] which handles the
task by conditional generation of examples form the unseen
classes. Although these approaches increase the perfor-
mance but they come with the drawback of soft-max clas-
sification, which requires the classifier to be trained form
scratch once again if a new class is added to the existing
setup at test time. This also requires saving all the training
data for generative approaches while in the projection based
methods, this is not required.

5.3. Qualitative evaluation

Fig. 5 shows qualitative crossmodal retrieval results for
all three pairs of modalities, ie. text to audio/video, audio
to video and video to audio. We see that method makes
acceptable mistakes, eg. for the car text query one of the
audio retrieval contains motorbike due to the similar sound,
for the bird video query the wrong retrieval is a cat purring
sound which is similar to a pigeon sound. In the unseen
class case, the bus text query return car, train and truck
audio as the top false positives. Easier and distinct cases
such as gunshot audio query gives very good video re-
trievals. We encourage the readers to look at the result
videos available at https://www.cse.iitk.ac.in/
users/kranti/avzsl.html for a better understand-
ing of qualitative results.

6. Conclusion
We presented a novel method, which we call Coordi-

nated Crossmodal Joint Embeddings (CJME), for the task of
audio visual zeroshot classification and retrieval of videos.
The method learns to embeds audio, video and text into a
common embedding space and then performs nearest neigh-
bor retrieval in that space for classification and retrieval.
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SUN CUB AWA1 AWA2
Method U S HM U S HM U S HM U S HM

CONSE [7] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0
DEVISE [4] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8

SAE [17] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2
ESZSL [5] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0

ALE [8] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9

CJME 30.2 23.7 26.6 35.6 26.1 30.1 29.8 47.9 36.7 51.9 36.8 43.1
Table 6. Comparison with existing methods on standard datasets (projection based methods
only, see sec. 5.2 for details)

Modality
Method train test S U HM

CONSE [7] video video 48.5 19.6 27.9
DEVISE [4] video video 39.8 26.0 31.5

SAE [17] video video 29.3 19.3 23.2
ESZSL [5] video video 33.8 19.0 24.3

ALE [8] video video 47.9 25.2 33.0
CJME video video 43.2 27.1 33.3
CJME both video 41.5 28.8 33.9
CJME both both 41.0 29.5 34.4

Table 7. Comparison with existing methods
on proposed dataset (projection based meth-
ods only, see sec. 5.2 for details)
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Figure 5. Qualitative crossmodal retrieval results with the proposed method. Each block of two rows from top to bottom corresponds to text
to audio, text to video, audio to video and video to video respectively. The small icons on the left top of each image indicates the modality
considered for that specific video. Please see detailed results video in the supplementary material.

The loss function we propose has three components, two bi-
modal text-audio and text-video triplet losses, and an audio-
video crossmodal similarity based loss. Motivated by the
fact that the two modalities might carry different amount
of information for different examples, we also proposed a
modality attention learning framework. The attention part
learns to predict the dominant modality for the task, ie. if the
object is occluded but the audio is clear, and base the pre-
diction on that modality only. We reported extensive exper-

iments to validate the method and showed advantages of the
method over baselines, as well as demonstrated crossmodal
retrieval which is not possible with the baseline methods.
We also constructed a dataset appropriate for the task which
is a subset of a large scale unconstrained dataset for audio
event detection in video. We plan to release the dataset de-
tails upon acceptance.
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A. Difference with previously claimed zeroshot
video retrieval approach

There have been some earlier works [41, 42] that claimed
to be zeroshot video retrieval but their definition of zeroshot
is different from the contemporary meaning [10]. In these
earlier works of zeroshot, there is no separation of seen and
unseen class queries, which clearly violates the contempo-
rary meaning of zeroshot.

The authors claim these works to be zeroshot as there
is no pairing between the query and the example retrieval
lists in the training set. In order to learn from the un-
paired dataset, ’concept’ detectors (e.g. airplanes, bicycles,
church, computers) are used separately for both the modal-
ities to extract the concepts. The extracted concepts are fi-
nally aligned for cross-modal retrieval. However, these con-
cept detectors are pre-trained on external annotated datasets
(e.g. ImageNet, UCF101) which means that their models
have already seen the concepts prior to testing.

This again violates the contemporary setting of zero-shot
where no pre-training is allowed for the unseen data.

Our definition of zero-shot is aligned with the more re-
cent and strict definition [10], where the unseen query con-
cept class examples are never seen during training (i.e. even
pre-trained detectors are not allowed). Hence, our approach
of zero-shot is different from the previously claimed ap-
proach and can not be compared directly with them.

B. Dataset
In this section we give more details about the dataset,

AudioSetZSL as mentioned in Section. 4 of the paper.
The statistics for different splits of the dataset is given in
Table. 8. The number of examples in the seen and unseen
classes is given in Table. 9 and the number of examples in
each class of the dataset is shown in Table. 10. We have
provided some examples videos from the seen and unseen
classes in Fig. 6 and Fig. 7 respectively. As the dataset was
collected for the audio task, it can be clearly seen that some
of the frame doesn’t contain the video as suggested in the
paper. This can be seen for the 2nd examples in the class
ambulance.

split min max mean std. dev.
train 176 22989 2844.39 4615.77
val 58 7663 947.61 1538.65
test 58 7663 947.88 1538.68

Table 8. Statistics on the number of examples per class for the
AudioSetZSL dataset.

class train val test
seen classes 79795 26587 26593

unseen classes 14070 4684 4687
Total 93865 31271 31280

Table 9. No. of examples in seen and unseen classes of the dataset

class train val test
dog 7588 2529 2529
cat 2133 710 711

horse 1862 620 620
cattle 437 145 145
pig 467 155 156
goat 1096 365 365

panther 379 126 126
bird 15092 5030 5031

thunderstorm 192 64 64
rain 1317 439 439
stream 1583 527 527
ocean 1871 623 623
car 22989 7663 7663

truck 5514 1837 1838
bus 2888 962 962

ambulance 2540 846 846
motorcycle 4000 1333 1333

train 5140 17113 1713
aircraft 3104 1034 1034
bicycle 1622 540 541

skateboard 1703 567 568
clock 389 129 130
sewing 1050 350 350
fan 434 144 144

cashbox 176 58 58
printer 1915 638 638
camera 204 68 68

church-bell 662 220 220
hammer 260 86 86
sawing 431 143 143
gunshot 2249 749 750

fireworks 1699 566 566
boom 879 292 293
Total 93865 31271 31280

Table 10. Number of examples per class available in the
AudioSetZSL dataset. The zeroshot classes are marked with
boldface.
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(Dog) (Cat)

(Car) (Ambulance)

(Hammer) (Sawing)
Figure 6. Example videos from seen classes of the dataset. The classes are mentioned below each of the figure. Each row in the figure
corresponds to an example video, where the frames are extracted at equal intervals from the entire video.
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(Pig) (Panther)

(Clock) (Gunshot)
Figure 7. Example videos from unseen classes of the dataset. The classes are mentioned below each of the figure. Each row in the figure
corresponds to an example video, where the frames are extracted at equal intervals from the entire video.
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